
The meaning of OO, the conclusion

Comp-304 : The meaning of OO, the conclusion
Lecture 7

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Recap

1)Encapsulated
2)State Retention
3)Implementation / Information Hiding
4)Object Identity
5)Messages
6)Classes
7)Inheritance
8)Polymorphism
9)Generacity



Classes

■ A class is the stencil from which objects are created 
(instantiated).

■ Each object has the same structure and behavior as the 
class from which it is instantiated.
● same attributes (same name and types)
● same methods (same name and signature)

● If object obj belongs to class C
● then obj is an instance of C.

● So, how do we tell objects apart?
● Object Identity



Instantiation

c1

x:int
y:int

int m()

o1:c1

x = 1
y = 1

int m() o2:c1

x = 2
y = 3

int m()o3:c1

x = 2
y = 3
int m()

I
n
s
t
a
n
t
i
a
t
i
o
n



Classes vs Objects

■ Classes are static and are evaluated at compile time.
 Only one copy of the class exist.
 Memory to store methods is only allocated once.

■ Objects are dynamic and are created at run time.
 One copy of the object is created every time the object is 

instantiated
 Thus, memory to store the attributes is allocated for every 

instantiated object.



Instantiating Ghosts

Class
Ghost



Instantiating Pellets

Class
Pellets



Inheritance

■ Suppose you have classes c1 and c2. At design time, 
you notice that everything in c1 (attributes and methods) 
should also be in c2, plus some extra stuff.

■ Instead of rewriting all of c1's code into c2, we say that 
c2 inherits from c1.

■ Thus, c2 has defined on itself (implicitly) all the attributes 
and methods of c1, as if the attributes and methods had 
been defined in c2 itself.



Relationship

■ Inheritance is an “is a” relationship
■ Suppose we have a class MotorVehicle

 A Automobile is a MotorVehicle
 A Motorcycle is a MotorVehicle

■ We call MotorVehicle the superclass and Automobile is a 
subclass
 MotorVehicle is more generalized
 Automobile is more specialized



Specialization

Square
x:int
int area()

s
p
e
c
i
a
l
i
z
e
d

g
e
n
e
r
a
l
i
z
e
d

superclass

subclass

Cube
x:int
int area()
int volume()



Type Family

■ A type family is defined by a type hierarchy.
■ At the top of the hierarchy is a supertype that defines 

behavior common to all family members.
■ Other members are subtypes of this supertype.
■ A hierarchy can have many levels.
■ Type hierarchy can be used

 to define multiple implementations of a type that are more 
efficient under particular circumstances.

➔ Vector & LinkedList implement Collection
 to extend the behavior of a simple type by providing extra 

methods
➔ BufferedReader extends Reader



Substitution Principal

■ A supertypes behavior must be supported by all 
subtypes.

■ Therefore, in any situation in which a supertype can be 
used, it can be substituted by a subtype.

■ Most compilers enforces this by only allowing extensions 
to a type 
 you can only redefine and add methods, not remove them.

■ The substitution principle provides abstraction by 
specification for type hierarchies:
 Subtypes behave in accordance with the specification in their 

supertype.



Inheritance In Pacman

Game
Object

Character Pellet

Player Ghost Super
Pellet



Multiple Inheritance

■ Many classes can inherit from one class
■ One class can inherit from many classes

 Why is this good ?
 Why is this bad?



The Good

■ Allows code reuse
 code in superclasses doesn't have to be rewritten in 

subclasses
■ Ease of maintenance 

 if we add an attribute to a superclass, all subclasses will 
automatically inherit it



The Bad

■ If one class can inherit 
from many classes, we 
may get multiple 
inheritance

■ Which x should C3 
inherit, the one from C1 
or the one from C2?

■ How can this be taken 
care of?

C1
x:int
int m()

C2
x:int
int n()

C3
x:int
int m()
int n()



The Worse

■ If many classes can 
inherit from one class, we 
may get repeated 
inheritance

■ C1 and C2 inherit x from 
C0. Now, they are all the 
“same” x, but which x 
does C3 inherit?

C1
x:int
...

C2
x:int
...

C3
x:int
...

C0
x:int
...



Polymorphism

■ A single method (or attribute) defined on more than one 
class that may take on different implementations in each 
different class

■ An attribute or variable that may refer to objects of 
different classes at different times during program 
execution

■ Polymorphism literally means many forms in Greek



Real type vs Apparent type

■ Collection myVar = new LinkedList()
■ The apparent type of myVar is Collection.

 At compile time, the compiler only keeps track of the apparent 
type of a variable.

■ The real type of myVar is LinkedList.
 At run time, in most programming language, the application 

keeps track of the real type of a variable.



Example of Polymorphism

Object
objName:str
show()

String
objName:str
show()
show(int)

Tuple
objName:str
show()
show(int)

Number
objName:str
show()
show(int)

superclass

subclasses



First definition

■ Method show() is a form of polymorphism, as per the first 
definition.

■ When we call someObject.show(), the object which is 
being referenced will know how to show itself

■ It must be ensured that show() is properly implemented 
for each subclass (and possibly the superclass) and that 
the user need not worry about the implementation



Which show() to call?

■ Which show() to execute 
will be determined at run-
time (and NOT at 
compile-time). This is 
known as dynamic, run-
time or late binding

■ Consider this code

Object o
o = Object.new()
s = String.new()
t = Tuple.new()
...
if user says string : o = s
else : o = t
...
o.show()



Second Definition

■ At run-time, the object o may be an object of type String 
or of type Tuple.

■ What o actually is will only be determined at run-time, 
after the user's input.

■ When o.show() is executed, the method show() of the 
appropriate object will be executed.

■ Attribute o is an example of polymorphism, as per the 
second definition, because it can point to objects of 
different types.



Overloading vs Overriding

■ Overriding is the redefinition of a method defined on a 
class C in one of C's subclasses.

■ Overloading of a name or symbol occurs when several 
operations (or operators) defined on the same class 
have that name or symbol. 
 We say that the name or symbol is overloaded.



Overridding

■ show() is an example of overriding because subclasses 
Number, String and Tuple redefined show() to suit their 
needs.

■ If we wish to actually execute show() of the superclass 
(Object), we would execute super.show() in the subclass.

● Overriding can also be used to cancel certain inherited 
methods.
● Suppose we have a subclass Hash that cannot show itself, then 

we can override show() in class Hash to return some error.
● This is not clean O.O., but it is a practical solution.



Overloading

■ show(int) is an example of overloading
 show() will show the object at some default size
 show(int) will show the object at some ratio, passed as an 

argument
■ Which method will be executed depends on which 

method signature is used to call it.



Pacman : show()



More tricky

■ If B and C are subclasses of A.
■ Class D has the following methods.

 show(B b)
 show(C c)

■ What happens if?
 A var = new B();
 d.show(var)

■ Depends on the lookup:
 Lookup uses apparent type : call is ambiguous
 Lookup is dynamic : call to show(B b) is made



Genericity

■ Imagine I spend thousands of dollars developing an 
algorithm to sort trees of integers.

■ I don't want to rebuild the algorithm if I store floats or 
strings in the trees.

■ I want a generic algorithm for all trees containing items 
that can be compared.

■ Solution : Genericity (also known as templates)



Definition

■ Genericity – one or more classes that are used internally 
by some class and are only supplied at run-time (or upon 
instantiation)

■ Genericity can be emulated using inheritance.



Suppose ...

■ Suppose
 we code a class IntArray which ENTIRELY deals with the ins 

and outs of arrays and array operations (the array holds ints)
■ Suppose

 we code a class StrArray which ENTIRELY deals with the ins 
and out of arrays and array operations (the array holds strs)

■ We will notice that all of the code in IntArray and StrArray 
will be identical except for the type of element that the 
array holds.

■ Instead of having two (or more) separate classes, we 
should have one class called Array and parameterize it.

■ We write Array <ElementType> where ElementType will 
be the class (or type) of the element that the array will 
store.


