
Unit Testing

Comp-304 : Unit Testing
Lecture 4

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006

Recap

■ Validating, Verifying, Testing, Debugging
■ Three types of Tests
■ Two testing methodologies
■ Why test boundaries?

Glass-box Example

 if type(input) != type(1):
 raise TypeError, "expected integer, got %s" % type(input)
 if not 0 < input < 4000:
 raise ValueError, "Argument must be between 1 and 3999"
 ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)
 nums = ('M', 'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IV','I')
 result = ""
 for i in range(len(ints)):
 count = int(input / ints[i])
 result += nums[i] * count
 input -= ints[i] * count
 return result

When to test?

■ Testing should NOT be viewed as a separate phase.
■ Testing should be a continuous process, to be done at

the same time as development.

Automated Testing

■ Automated Testing is achieved by running tests using
software and comparing results to predetermined values.

■ Unit Tests tools are often used to achieve this goal.
■ Automated testing can be used in different ways:

 By a programmer to verify his code
 At a specific time, to determine the correctness of the code in a

repository.
 When a programmer checks in his code, to determine the

correctness of the addition.

Regression Testing

■ Adding a new feature can sometimes have unforeseen
effect on existing code.

■ To detect this problems, we should always run both old
and new tests.
 Note: running the full suite of time can be very time consuming

(i.e. hours).
■ This is called regression testing.

Unit Testing

■ Unit Testing is writing code that tests code that you
haven't written yet.

■ The keyword, unit, refers to the smallest piece of code
that can be tested.
 In OO language, this is a class.

■ Unit testing is not a replacement for higher-level
functional or system testing, but it is important in all
phases of development:

■ Unit testing started as a framework for testing SmallTalk
code.

■ It evolved into JUnit, and latter, into PyUnit.

Is important because ...

■ Before writing code, it forces you to detail your
requirements in a useful fashion.

■ While writing code, it keeps you from over-coding. When
all the test cases pass, the function is complete.

■ When refactoring code, it assures you that the new
version behaves the same way as the old version.

■ When writing code in a team, it increases confidence
that the code you're about to commit isn't going to break
other peoples' code, because you can run their unittests
first.

Components of a Unit Test

■ test fixture
 A test fixture represents the preparation needed to perform one or more

tests, and any associate cleanup actions. This may involve, for example,
creating temporary or proxy databases, directories, or starting a server
process.

■ test case
 A test case is the smallest unit of testing. It checks for a specific response

to a particular set of inputs. unittest provides a base class, TestCase, which
may be used to create new test cases.

■ test suite
 A test suite is a collection of test cases, test suites, or both. It is used to

aggregate tests that should be executed together.

■ test runner
 A test runner is a component which orchestrates the execution of tests and

provides the outcome to the user. The runner may use a graphical
interface, a textual interface, or return a special value to indicate the results
of executing the tests.

PyUnit

■ The test case and test fixture concepts are supported
through the TestCase class.

■ When building test fixtures using TestCase, the setUp()
and tearDown() methods can be overridden to provide
initialization and cleanup for the fixture.

■ Each instance of the TestCase will only be used to run a
single test method, so a new fixture is created for each
test.

PyUnit (cont.)

■ Test suites are implemented by the TestSuite class.
 This class allows individual tests and test suites to be

aggregated; when the suite is executed, all tests added directly
to the suite and in ``child'' test suites are run.

■ A test runner is an object that provides a single method,
run(), which accepts a TestCase or TestSuite object as a
parameter, and returns a result object.
 The class TestResult is provided for use as the result object.

Example
import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

 def setUp(self):
 self.seq = range(10)

 def testshuffle(self):
 # make sure the shuffled sequence does not lose any elements
 random.shuffle(self.seq)
 self.seq.sort()
 self.assertEqual(self.seq, range(10))

 def testchoice(self):
 element = random.choice(self.seq)
 self.assert_(element in self.seq)

if __name__ == '__main__':
 unittest.main()

Output

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

Continue Reading on PyUnit

■ Python Library Ref
 http://www.python.org/doc/current/lib/module-unittest.html

■ Dive Into Python
 http://www.diveintopython.org/unit_testing/index.html

■ PyUnit
 http://pyunit.sourceforge.net/

Mutable vs Immutable Objects

■ An Immutable object is an object that is created once
and is never changed.
 String, Long, etc.
 Two Immutable objects are considered the same if they have

the same state.
■ A Mutable object is an object who's state can change.

 Vector, Array, etc.
 Two different Mutable objects are never considered the same

(different identity).

