
Visitor (cont.)

Comp-304 : Visitor (cont.)
Lecture 30

Alexandre Denault
Original notes by Marc Provost

and Hans Vangheluwe
Computer Science
McGill University

Fall 2007

Mercury

7 / 23 = 30.4%

Tutorial

Thursday April 12th

Friday April 13th

Saturday April 14th

Sunday April 15th

Monday April 16th

The Code

int i = 5;
float j = 4.5;
float k = i + j;

Example

Visitor

class PrettyPrinterVisitor implements Visitor {

public visitStatementList(StatementList elem) {
//Nothing to do

}

public visitStatement(Statement elem) {
print(“ ;”);

}

public visitDeclaration(Declaration elem) {
print(elem.getType() + “ “);

}

public visiAssignment(Assignment elem) {
print(“ = “);

}

Visitor

public visitMultiply(Multiply elem) {
print(“ * “);

}

public visitFloat(Float elem) {
print(elem.getValue());

}

public visitInt(Int elem) {
print(elem.getValue());

}

public visitIdentifier(Identifier elem) {
print(elem.getName());

}
}

Composite Concerns

■ When dealing with composites, who should take care of
the traversal?

Composite Concerns

■ When dealing with composites, who should take care of
the traversal?
 Composite
 Visitor
 External class (somebody else)

Traversal : Composite

■ Using the composite to take care of the traversal is the
simplest solution.

■ We saw something similar to this with the car example.
 public void accept(Visitor visitor) {
 visitor.visitCar(this);
 engine.accept(visitor);
 body.accept(visitor);
 for(int i = 0; i < wheels.length; ++i) {
 wheels[i].accept(visitor);
 }
 }

■ Unfortunately, this only works if all the visitors need to
visit the elements in the same order.

■ Using the Composite to control the traversal leaves us
with very little flexibility.

External Class

■ Use an external class to define the traversal.
■ That class would require internal knowledge of the data

structure, but at least the visitor would remain generic.
■ This traversal object could even be considered an

iterator.

External Class for Traversal

Traversal - Visitor

■ To allow different traversal orders, the traversal could be
in the visitors.

■ This would allow each visitor to use a special traversal.
 This is the only solution for very complex traversal.

■ What's bad about this?

Visitor

class PrettyPrinterVisitor implements Visitor {
...
public visitStatement(Statement elem) {

elem.def.accept(this)
elem.assign.accept(this)
print(“ ;”);

}

public visiAssignment(Assignment elem) {
elem.id.accept(this)
print(“ = “);
elem.exp.accept(this)

}
...

The Problem

■ The visitor needs to know and understand the data
structure.
 Breaks the abstraction, creates coupling

■ Each visitor must include information on how to traverse
the data structure.
 Can represent lots of duplicate code.

