
Testing Strategies

Comp-304 : Testing Strategies
Lecture 3

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006 



Python

Do you know Python yet?



Questions

■ How is scope defined?
■ What is an object?
■ What keyword is used to defined classes?
■ In a class, what is the first argument of every function?
■ How do you declare a variable?
■ What keyword is used to define a constructor?
■ What is the name of the main function?



Help!

■ If you didn't know the answers to the previous questions, 
check out:

Dive Into Python
http://www.diveintopython.org/

Python Library Reference
http://www.python.org/doc/current/lib/lib.html



Bug

■ A software bug is an error, flaw, mistake, failure, or fault 
in a computer program that prevents it from working as 
intended, or produces an incorrect result.

■ Bugs can exist at different levels
 Design
 Source Code

■ Bugs have severities
 Some bugs simply crash an application.
 Some bugs cause loss of data.
 Some bugs cause loss of money.
 The worst bugs cause loss of life.



Origin or Bugs

In 1946, when Hopper was released from active 
duty, she joined the Harvard Faculty at the 

Computation Laboratory where she continued her 
work on the Mark II and Mark III. Operators traced 
an error in the Mark II to a moth trapped in a relay, 

coining the term bug. This bug was carefully 
removed and taped to the log book September 9th 
1945. Stemming from the first bug, today we call 

errors or glitch's [sic] in a program a bug.



Well known bugs

■ Y2K – date overflow
■ Ariane 5 Flight 501 – conversion overflow
■ MIM-104 Patriot bug – clock drift
■ Therac-25 – multiple causes



The Problem

■ Every programmer knows they should write tests for their 
code. Few do. 
 The universal response to "Why not?" is "I'm in too much of a 

hurry." 
 This quickly becomes a vicious cycle- the more pressure you 

feel, the fewer tests you write. 
 The fewer tests you write, the less productive you are and the 

less stable you code becomes. 
 The less productive and accurate you are, the more pressure 

you feel.

Kent Beck, Erich Gamma



Testing Terminology

■ Validation : a process designed to increase our 
confidence that a program works as advertised.

■ Verification : a formal or informal argument that a 
program works on all possible inputs.

■ Testing : a process of running a program on a limited set 
of inputs and comparing the actual results with expected 
results.

■ Debugging : a process designed to determine why a 
program is not working correctly.

■ Defensive programming : the practice of writing a 
program in a way designed specifically to ease validation 
and debugging.



Designing test cases

■ Exhaustive testing is usually impossible
 A program with three inputs ranging from 1 to 1000 would take 

1'000'000'000 test cases.
 With a speed of 1 test per second, it would take 31 years.

■ How to define a limited set of good test cases ?
 Black-box testing : testing from specification without regarding 

implementation or internal structure.
 Glass-box testing : augments black-box testing by looking 

atimplementation.



Black-box testing

■ Advantages:
 not influenced by assumptions about implementation details
 robust with respect to changes in implementation
 allows observers with no internal knowledge of the program to 

interpret the results of the test
■ Disadvantages:

 unlikely to test all parts of a program



Glass-box testing

■ Glass-box tests complement Black-box testing by adding 
a test for each possible path through the program's 
implementation.
 A glass-box test set should be path-complete.



Golden Rule

Test for Success
Test for Failure
Test for Sanity



Test for Success

■ The most fundamental part of unit testing is constructing 
individual test cases. A test case answers a single 
question about the code it is testing.

■ In the case of Test for Success, a test cases shows that 
a feature works with a particular set of input.

■ A test case should be able to
 run completely by itself, without any human input. Unit testing 

is about automation.
 determine by itself whether the function it is testing has passed 

or failed, without a human interpreting the results.
 run in isolation, separate from any other test cases (even if 

they test the same functions). Each test case is an island.



Testing boundary conditions

■ A program should test typical input values:
 Arrays or sets are not empty.
 Integers are between smallest and largest values.

■ Boundary conditions usually reveal:
 Logical errors where the path to a special case is absent.
 Conditions which cause the underlying hardware or system to 

raise an exception (e.g. arithmetic overflow).
■ Test data should cover all combinations of largest and 

smallest values:
 Epsilon close to 0.001 and 0.00001
 Arrays of 0 and 1 element
 Empty strings and strings of one character



Test for Failure

■ It is not enough to test that functions succeed when 
given good input; you must also test that they fail when 
given bad input.

■ And not just any sort of failure; they must fail in the way 
you expect.
 1 + “a” = exception
 1 / 0 = exception

■ What to do in case of failure?
 Depends on the specification and the target language.
 Exception, invalid return value, global error number, etc.



Test for Sanity

■ You will find that a unit of code contains a set of 
reciprocal functions (ex: add/substract).
 (1 + 1) + -1 = 1
 (2 + 1) = (1 + 2) = 3
 (5 * 5) * 0.2 = 5
 decrypt(crypt(“cool”, key), key) = “cool”

■ It is useful to create a “sanity check” to make sure that 
you can convert A to B and back to A without 
 losing precision, 
 incurring rounding errors
 etc.



Black-box Example

■ toRoman should return the Roman numeral representation for all 
integers 1 to 3999.

■ toRoman should fail when given an integer outside the range 1 to 
3999.

■ toRoman should fail when given a non-integer number.
■ fromRoman should take a valid Roman numeral and return the 

number that it represents.
■ fromRoman should fail when given an invalid Roman numeral.
■ If you take a number, convert it to Roman numerals, then convert 

that back to a number, you should end up with the number you 
started with. So fromRoman(toRoman(n)) == n for all n in 1..3999.

■ toRoman should always return a Roman numeral using uppercase 
letters.

■ fromRoman should only accept uppercase Roman numerals (i.e. it 
should fail when given lowercase input).



Glass-box Example

   if type(input) != type(1):
      raise TypeError, "expected integer, got %s" % type(input)
   if not 0 < input < 4000:
      raise ValueError, "Argument must be between 1 and 3999"   
   ints = (1000, 900,  500, 400, 100,  90, 50,  40, 10,  9,   5,  4,   1)
   nums = ('M',  'CM', 'D', 'CD','C', 'XC','L','XL','X','IX','V','IV','I')
   result = ""
   for i in range(len(ints)):
      count = int(input / ints[i])
      result += nums[i] * count
      input -= ints[i] * count
   return result


