
Visitor

Comp-304 : Visitor
Lecture 29

Alexandre Denault
Original notes by Marc Provost

and Hans Vangheluwe
Computer Science
McGill University

Fall 2007

Mercury

2 / 23 = 8.7%

Final Exam

It's got 11 Questions.
It's 33% pre-midterm material.

Do you want a tutorial?

3D Room

Scene Graphs

Universe

Room 1 Room 2

Desk

Books Lamp

Bed Wardrobe

DrawersDoors

What if?

■ I want to print out the content of the room.
■ To do this, I need to build a string containing a list of the

items in the room.
■ How do I do this?

The Challenge

■ The class calling the universe.toString() method should
not have information on how data is store in the
universe.

■ Thus, universe.toString() should take care of traversing
the tree.

■ This means that each node will need to have it's own
toString() method.

■ If I want to calculate the weight of the universe, I will also
need to add a getWeight() function to each node.

■ Is there a generic way I can traverse a tree without
having to add new methods?

Visitor Pattern

■ Represent an operation to be performed on the elements
of an object structure.

■ In other words, it allows you to separate the algorithm
from the data structure.

Introduction to Compilers

■ A compiler is a tool that transforms a program for a high
level representation to a lower level representation.
 Java -> Bytecode
 C -> Assembler

■ The first step of a compiler is to take the grammar of a
language and transform the code into an abstract syntax
tree.
 Flex + Bison in C
 SableCC in Java

The Code

int i = 5;
float j = 4.5;
float k = i + j;

Example

Class Diagram of Example

Compilers Continued

■ Further operations are done by traversing the tree
 Weeding
 Type Checking
 Symbol Table
 Code Generation

■ Do we want to add functions to every node we need to
traverse?
 This would be the intuitive solution
 We would need the following functions: weed(), typeCheck(),

symbol(), code()

Intuitive Solution

Problem

■ Each node class is 'polluted' with several methods.
■ The implementation of an algorithm spread over all

classes.
 i.e. The weeding algo is spread across several node.

■ Do keep track of the traversal, either
 must use global variables
 must arguments passed by reference in each method call

Visitor Pattern Solution

Advantages

■ The algorithm is now located in a single class.
 All variables needed to execute the algorithm are also in the

class.
 No need for global variables anymore (or variables passed by

reference).
■ The AST class structure (tree) was not modified!
■ It's easy to add new operations.
■ A visitor can iterate over elements which are not sharing

a common parent class.

Disadvantages

■ However, if a new subtype of Node is added, all the
visitors must be modified.
 For instance, we might want to add an 'Addition' node.
 This would require a new function 'visitAddition' in each visitor.

■ Encapsulation could be broken if a visitor needs to
access an element internal state.

Class Diagram

Composite Elements

■ When dealing with data structures, it's highly possible
that a node will contain references to other nodes
(children, etc).

■ For the visitor pattern to work, the accept() calls must be
propagated to the children nodes (other references).

■ Most often, the simplest solution is add this propagation
to the accept() call of the parent.

 public void accept(Visitor visitor) {
 visitor.visit(this);

for (Node node: nodes) {
node.accept(visitor)

}
 }

Example

Add the visitor pattern

Wheel, Body, Engine

class Wheel {
 public void accept(Visitor visitor) {
 visitor.visitWheel(this);
 }
}

class Engine {
 public void accept(Visitor visitor) {
 visitor.visitEngine(this);
 }
}

class Body {
 public void accept(Visitor visitor) {
 visitor.visitBody(this);
 }
}

Car

class Car implements Visitable {

 private Engine engine;
 private Body body;
 private Wheel[] wheels;

 public void accept(Visitor visitor) {
 visitor.visitCar(this);
 engine.accept(visitor);
 body.accept(visitor);
 for(int i = 0; i < wheels.length; ++i) {
 wheels[i].accept(visitor);
 }
 }
}

Visitor

class PrintVisitor implements Visitor {
 private static count = 0;

 public void visit(Wheel wheel) {
 count++;

 System.out.println("Visiting wheel " + count);
 }
 public void visit(Engine engine) {
 System.out.println("Visiting engine");
 }
 public void visit(Body body) {
 System.out.println("Visiting body");
 }
 public void visit(Car car) {
 System.out.println("Visiting car");
 }
}

