
Observer / Template Methods (cont.)

Comp-304 : Observer / Template Methods (cont.)
Lecture 27

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Questions?

■ What is a design pattern?
■ What are the participants of the observer pattern?



Class Diagram



Implementation Concerns

■ The Observer pattern has numerous implementation 
concerns:
 Push vs Pull ?
 Who stores the subscription?
 Observing more than one subject.
 Who triggers update?
 Deleting subjects and observers?
 Subject's self-consistency
 Complex subscriptions
 Observers/Subject



Who stores the subscriptions?

■ In a traditional Observer Pattern, the subject manages 
it's own subscriptions.

■ This adds overhead to that class.
 Clusters the API.
 Forces it to deal with attach/detach method calls.

■ In a system with a low number of subscription, this is not 
a problem.

■ However, this is a burden to the subject if there are 
many subscriptions.

■ What can I do?



Subscription Manager



Notify()

■ Who can/should trigger notify?
■ When do we call a notify?



Who triggers notify()?

■ It's a question of safety vs performance.
■ Safety: after every setState(), we do a notify() and 

update() are sent.
 This insures a consistent state.
 It's very expensive when there are many setState() calls.

■ Performance: we do a nofity() after having completed the 
necessary setStates().
 We don't flood the system with update() calls.
 There is a danger of having inconsistencies.
 There is a danger that the call to notify is omitted



Deleting the Subject

■ If a subject is deleted, what should happen to its 
observer?



Deleting the Subject

■ We could delete the observers.
■ It's never that simple.

 Other objects might refer to those observers.
 The observers might be attached to other observers.

■ Maybe the subject could warn the observer?



Deleting the Observer

■ If an observer is deleted, what should happen to its 
subject?



Deleting the Observer

■ It's important to detach() the observer before deleting it.
■ Is there anything different between this detach() and a 

normal detach() call?



Observer / Subject

■ An object could be both a subject and an observer.
 In our example, OS is an observer and a subject.
 What happens when OS calls s.getState()?
 Most likely it will update its state, triggering a notify() and an 

update() call to O3.
 What happens if S observes O1? We would get a loop.
 If an object can be both an observer and a subject, we need to 

deal with loop.

S
OS

O1

O2

O3



Specific Interest

■ As we have already mentioned, the subscription 
mechanisms could be altered to deal with specific 
interests.

■ In other words, an observer could specify what part of 
the state it is interested in.
 Register with a player object, but only wish to receive updates 

about positions.
 Register with the stock exchange object, but only wish to 

receive updates about stocks trading for more that 10$.
■ While the complete state doesn't need to be sent, we 

have to keep track of what each observer want.



Increased overhead

■ In the scenario where subscriptions deal with specific 
interest, each subscriptions must be tracked separately

■ When the state of a subject is modified, each 
subscriptions must be checked.
 Information sent to the observers depends on their individual 

subscriptions.
 In particular case, we might need to check the subscription to 

see if update() is even called.
■ This means we are no longer broadcasting information in 

a generic fashion.
■ Preparing and sending each of these updates is very 

time consuming.



Self-consistency

■ Do you see a problem?



Self-consistency

■ Special care must be taken when extending the subject 
object.

■ The trick is that every method must respect self-
consistency as a pre-condition and post-condition.

■ This means that before the state is changed, the system 
should be consistent.

■ This also means that after the state is changed, the 
system should also be consistent (or at least converge 
towards a consistent state).

■ Instead of sub-classing, the template method design 
pattern is much more secure.



Template Method Pattern

■ Define the skeleton of an algorithm in an operation, 
deferring some steps to subclasses.

■ Template methods refine certain steps of an algorithm 
without changing an algorithms structure.



Example

■ Every concrete class can 
have it's own primitive 
operations and template 
calls these functions.



Concerns

■ The biggest challenge in template methods is making 
sure the method is used properly.
 Users need to know and understand which methods need to be 

overridden and which method is the template.
■ Luckily, most OO programming have constructs that help 

us out with this.
 Abstract methods, final methods, etc.

■ One of the most important things to keep in mind is to 
minimize the number of primitive operations.
 Keeps things simple and easier to implement.



Solution to Observer Problem

■ Template Method allows us to solve the self-consistency 
problem.

■ The idea is that the setState() method should be a 
template method with notify() as it's last line.

■ Sub-classes can then vary the behavior of the subject by 
changing the primitive operations.


