' Observer /| Template Methods

Comp-304 : Observer / Template Methods
Lecture 26

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007




' Olympics

B The |.T. Systems for the Olympic represent quite an
architecture challenge.

® |nformation about the events, such as the detailed
scheduling, competitors and results are all stored on a
centralized system.

B This information must then be distributed to various
subsystem, each used by different category of people.
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' Data Source and Subsystems
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' Concerns

B Such a system must be very efficient:
+ [t will have to deal with a tremendous amount of load.

B As such, the subsystems cannot continuously poll the
data source for content.

B However, the data source cannot push all the content
upon the subsystems.
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' Observer Pattern

B The Observer pattern defines an one-to-many
dependency between objects so that when one object
changes state, all its dependents are notified and
updated automatically.

m A K.A. Dependents, Publisher Subscriber
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student
John
Bob
Jane
hlary
Cory
Adam
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otacy
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EW!
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5. .00%
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BhE.00%
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ad 00%
B9.00%
a3.00%
75.00%
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' Motivation

B The main motivation behind observer is the desire to

maintain consistency between related objects without
making them tightly coupled.

B |n our spreadsheet example, we don't want the different
representations to be coupled with each other.

B However, if the information changes in the spreadsheet,
all the different representations should be updated.
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' Actions

Attach : let observer observe subject

Detach : let observer not observe subject

Notify : let observers know something has changed.
Update : inform an observer that new data is available
GetData : get data after notify (pull method)

Update with data : send data to observers (push method)
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Sequence (Pull)
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Sequence (Push)
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' Applicability

B Abstraction has multiple aspects, each independent.
« Encapsulation of both independently allows for reuse

B Unknown # of observers

B No assumptions made about observers
+ (except for update())




' Consequences

m Abstract coupling between Subject and Observer.
« The subject does not require knowledge of the observer.
« The observer only needs to know how to get new data.

m Support for broadcast communication.

« An update() triggers a broadcast communication across all
observers.

B Unexpected updates.

« The subject is blind to its observer. Thus, the cost of an
update() is unknown.

« Observers have no control to when they will receive updates.
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' Implementation Concerns

® The Observer pattern has numerous implementation
concerns:

« Push vs Pull

+  Who stores the subscription?

+ Observing more than one subject.
«  Who triggers update?

« Deleting subjects and observers?
+ Subject's self-consistency

« Complex subscriptions

+ Observers/Subject




' Push vs Pull

® \What are the advantages, disadvantages?




' Pull

B |n the pull model, observers are responsible to acquiring
the new state after an update() is called.

B + Better transparency, subject doesn't need to know
about observer.

®m + QObserver is free to determine if it wants to acquire the
new state.

m - Observer must determine what is new without help from

the subject.



' Push

B |n the push model, state changes are sent along the
update message.

m + Efficient, observer does need to determine what was
updated.

B - Requires the subject to know more about the observer
(breaks abstraction).

m - Observer automatically receives the update, either it

wants it or now.



' Observing more that one subject

B |n some situation, it might make senses that an observer
be attached to more than one subject.

®m Our current infrastructure is very poor for this.
+ We don't know who called the update method.

® How can we fix this?
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