
Observer / Template Methods

Comp-304 : Observer / Template Methods
Lecture 26

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Olympics

■ The I.T. Systems for the Olympic represent quite an 
architecture challenge.

■ Information about the events, such as the detailed 
scheduling, competitors and results are all stored on a 
centralized system.

■ This information must then be distributed to various 
subsystem, each used by different category of people.



Information Dsitribution

Scheduling Participants
Profiles Results

Organizers

Judges

Athletes

Spectators

Press



Information Dsitribution

Scheduling Participants
Profiles Results

Organizers

Judges

Athletes

Spectators

W

R W

R W R

R R

Press R R R



Data Source and Subsystems

Centralized Data Source

Participants
Profiles

Scheduling

Results

Event Website

Athlete Intranet

Press Intranet

Judges Intranet

Organizers
Scheduler

?

Event WebsiteEvent WebsiteEvent WebsiteEvent Website



Concerns

■ Such a system must be very efficient:
 It will have to deal with a tremendous amount of load.

■ As such, the subsystems cannot continuously poll the 
data source for content.

■ However, the data source cannot push all the content 
upon the subsystems.



Observer Pattern

■ The Observer pattern defines an one-to-many 
dependency between objects so that when one object 
changes state, all its dependents are notified and 
updated automatically.

■ A.K.A. Dependents, Publisher Subscriber



Classical Example



Motivation

■ The main motivation behind observer is the desire to 
maintain consistency between related objects without 
making them tightly coupled.

■ In our spreadsheet example, we don't want the different 
representations to be coupled with each other.

■ However, if the information changes in the spreadsheet, 
all the different representations should be updated.



Participants

Publisher
(Subject)

Observer
(Subscriber,
Dependents)

attach()
detach()
getData()

update()
change()
notify()



Actions

■ Attach : let observer observe subject
■ Detach : let observer not observe subject
■ Notify : let observers know something has changed.
■ Update : inform an observer that new data is available
■ GetData : get data after notify (pull method)
■ Update with data : send data to observers (push method)



Sequence (Pull)



Sequence (Push)



Applicability

■ Abstraction has multiple aspects, each independent.
 Encapsulation of both independently allows for reuse

■ Unknown # of observers
■ No assumptions made about observers

 (except for update())



Consequences

■ Abstract coupling between Subject and Observer.
 The subject does not require knowledge of the observer.
 The observer only needs to know how to get new data.

■ Support for broadcast communication.
 An update() triggers a broadcast communication across all 

observers.
■ Unexpected updates.

 The subject is blind to its observer. Thus, the cost of an 
update() is unknown.

 Observers have no control to when they will receive updates.



Implementation Concerns

■ The Observer pattern has numerous implementation 
concerns:
 Push vs Pull
 Who stores the subscription?
 Observing more than one subject.
 Who triggers update?
 Deleting subjects and observers?
 Subject's self-consistency
 Complex subscriptions
 Observers/Subject



Push vs Pull

■ What are the advantages, disadvantages?



Pull

■ In the pull model, observers are responsible to acquiring 
the new state after an update() is called.

■ + Better transparency, subject doesn't need to know 
about observer.

■ + Observer is free to determine if it wants to acquire the 
new state.

■ - Observer must determine what is new without help from 
the subject.



Push

■ In the push model, state changes are sent along the 
update message.

■ + Efficient, observer does need to determine what was 
updated.

■ - Requires the subject to know more about the observer 
(breaks abstraction).

■ - Observer automatically receives the update, either it 
wants it or now.



Observing more that one subject

■ In some situation, it might make senses that an observer 
be attached to more than one subject.

■ Our current infrastructure is very poor for this.
 We don't know who called the update method.

■ How can we fix this?


