' Observer /| Template Methods

Comp-304 : Observer / Template Methods
Lecture 26

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

' Olympics

B The |.T. Systems for the Olympic represent quite an
architecture challenge.

® |nformation about the events, such as the detailed
scheduling, competitors and results are all stored on a
centralized system.

B This information must then be distributed to various
subsystem, each used by different category of people.

y

' Information Dsitribution

Scheduling Pagtr i()cfiilfljggts Results
Organizers
Judges
Athletes
Spectators

Press

y

Information Dsitribution

Scheduling Pagtr igg{ggts Results
Organizers A\
Judges R
Athletes R W
Spectators R
Press R R

' Data Source and Subsystems

Organizers
Centralized Data Source Scheduler
Scheduling Judges Intranet
Participants (?
Profiles ® Press Intranet
Results
Athlete Intranet

Event Website

' Concerns

B Such a system must be very efficient:
+ [t will have to deal with a tremendous amount of load.

B As such, the subsystems cannot continuously poll the
data source for content.

B However, the data source cannot push all the content
upon the subsystems.

y

' Observer Pattern

B The Observer pattern defines an one-to-many
dependency between objects so that when one object
changes state, all its dependents are notified and
updated automatically.

m A K.A. Dependents, Publisher Subscriber

y

student
John
Bob
Jane
hlary
Cory
Adam
Mancy
otacy
James
William
EW!
Richard
Fatricia
Linda
Barbara
Faul
Elizabeth

Grade
a5 00%
05.00%
72.00%
B3.00%
ok .00%
O0.00%
21.00%
5. .00%
73.00%
75.00%
BhE.00%
BE.00%
78.00%
ad 00%
B9.00%
a3.00%
75.00%

Classical Example

Grade Distribution

srade # of students
100-20 3
S0-20]
80-70 10
f0-B0 A
RO-50 2
Less than G0 2

Grade Distribution

10

g_
j=g.

?_

\

> "

5_

2

z

14

Grade Distibution 9 T T T T T
10020 [TuR=N] 20-70 FOEOD BO-50 Lesz than
a0

' Motivation

B The main motivation behind observer is the desire to

maintain consistency between related objects without
making them tightly coupled.

B |n our spreadsheet example, we don't want the different
representations to be coupled with each other.

B However, if the information changes in the spreadsheet,
all the different representations should be updated.

change()
notify()

Publisher
(Subject)

-«

attach()
detach()
getData()

Participants

update()

Observer
(Subscriber,
Dependents)

' Actions

Attach : let observer observe subject

Detach : let observer not observe subject

Notify : let observers know something has changed.
Update : inform an observer that new data is available
GetData : get data after notify (pull method)

Update with data : send data to observers (push method)

y

Sequence (Pull)

subject ol:0bserver o2 Observer
| | |
: I |
I
observers: | attachi) |
07 e
I
I I
|]
observers: | e attachy)
01,02 -~
I

change().. |
-

notify() s, |

- = = = = = = =

update() =4
b=

getData()

updatg()
getD at}a[j

A%

Sequence (Push)

‘Subject 01:0bserver 02:0bserver
| | |
: ' '
: |
ohservers: | attach() |
0 i |
| |
|]
ohservers: L attachy)
o1, 02 ~

change() - !
-

notiv() <,

update(data) .
|2l

update(data)

%

' Applicability

B Abstraction has multiple aspects, each independent.
« Encapsulation of both independently allows for reuse

B Unknown # of observers

B No assumptions made about observers
+ (except for update())

' Consequences

m Abstract coupling between Subject and Observer.
« The subject does not require knowledge of the observer.
« The observer only needs to know how to get new data.

m Support for broadcast communication.

« An update() triggers a broadcast communication across all
observers.

B Unexpected updates.

« The subject is blind to its observer. Thus, the cost of an
update() is unknown.

« Observers have no control to when they will receive updates.

y

' Implementation Concerns

® The Observer pattern has numerous implementation
concerns:

« Push vs Pull

+ Who stores the subscription?

+ Observing more than one subject.
« Who triggers update?

« Deleting subjects and observers?
+ Subject's self-consistency

« Complex subscriptions

+ Observers/Subject

' Push vs Pull

® \What are the advantages, disadvantages?

' Pull

B |n the pull model, observers are responsible to acquiring
the new state after an update() is called.

B + Better transparency, subject doesn't need to know
about observer.

®m + QObserver is free to determine if it wants to acquire the
new state.

m - Observer must determine what is new without help from

the subject.

' Push

B |n the push model, state changes are sent along the
update message.

m + Efficient, observer does need to determine what was
updated.

B - Requires the subject to know more about the observer
(breaks abstraction).

m - Observer automatically receives the update, either it

wants it or now.

' Observing more that one subject

B |n some situation, it might make senses that an observer
be attached to more than one subject.

®m Our current infrastructure is very poor for this.
+ We don't know who called the update method.

® How can we fix this?

y

