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Olympics

■ The I.T. Systems for the Olympic represent quite an 
architecture challenge.

■ Information about the events, such as the detailed 
scheduling, competitors and results are all stored on a 
centralized system.

■ This information must then be distributed to various 
subsystem, each used by different category of people.
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Concerns

■ Such a system must be very efficient:
 It will have to deal with a tremendous amount of load.

■ As such, the subsystems cannot continuously poll the 
data source for content.

■ However, the data source cannot push all the content 
upon the subsystems.



Observer Pattern

■ The Observer pattern defines an one-to-many 
dependency between objects so that when one object 
changes state, all its dependents are notified and 
updated automatically.

■ A.K.A. Dependents, Publisher Subscriber



Classical Example



Motivation

■ The main motivation behind observer is the desire to 
maintain consistency between related objects without 
making them tightly coupled.

■ In our spreadsheet example, we don't want the different 
representations to be coupled with each other.

■ However, if the information changes in the spreadsheet, 
all the different representations should be updated.
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Actions

■ Attach : let observer observe subject
■ Detach : let observer not observe subject
■ Notify : let observers know something has changed.
■ Update : inform an observer that new data is available
■ GetData : get data after notify (pull method)
■ Update with data : send data to observers (push method)
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Applicability

■ Abstraction has multiple aspects, each independent.
 Encapsulation of both independently allows for reuse

■ Unknown # of observers
■ No assumptions made about observers

 (except for update())



Consequences

■ Abstract coupling between Subject and Observer.
 The subject does not require knowledge of the observer.
 The observer only needs to know how to get new data.

■ Support for broadcast communication.
 An update() triggers a broadcast communication across all 

observers.
■ Unexpected updates.

 The subject is blind to its observer. Thus, the cost of an 
update() is unknown.

 Observers have no control to when they will receive updates.



Implementation Concerns

■ The Observer pattern has numerous implementation 
concerns:
 Push vs Pull
 Who stores the subscription?
 Observing more than one subject.
 Who triggers update?
 Deleting subjects and observers?
 Subject's self-consistency
 Complex subscriptions
 Observers/Subject



Push vs Pull

■ What are the advantages, disadvantages?



Pull

■ In the pull model, observers are responsible to acquiring 
the new state after an update() is called.

■ + Better transparency, subject doesn't need to know 
about observer.

■ + Observer is free to determine if it wants to acquire the 
new state.

■ - Observer must determine what is new without help from 
the subject.



Push

■ In the push model, state changes are sent along the 
update message.

■ + Efficient, observer does need to determine what was 
updated.

■ - Requires the subject to know more about the observer 
(breaks abstraction).

■ - Observer automatically receives the update, either it 
wants it or now.



Observing more that one subject

■ In some situation, it might make senses that an observer 
be attached to more than one subject.

■ Our current infrastructure is very poor for this.
 We don't know who called the update method.

■ How can we fix this?


