Adapter (cont.)

Comp-304 : Adapter (cont.)
Lecture 24

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

Assignment 4

Is due today, at 11:55.
However ...

' Assignment 5

B Due date: March 19th
B [eam Size ==

B |n this assignment, you will implement the Command
Pattern for the physical simulation system you worked on
In assignment 1.

B This is probably one of the shortest assignment I've ever
given, the solution being less than 150 lines of code.

B But beware assignment 6, it's going to be a long one.

y

' jMonkey Engine

® |ME (jMonkey Engine) is a high performance scene
graph based graphics API.

« The scenegraph allows for organization of the game data in a
tree structure.

« Typically, these nodes are organized spatially to allow the
quick discarding of whole branches for processing.

® JME was built to fulfill the lack of full featured graphics

engines written in Java.

' Mouse Handling in jMonkey

® Mouse handling in jMonkey is slightly different.
B For keyboard input, it uses an action handler system
similar to the Command Pattern.

« The user can specify the behavior of his application by
iImplementing an InputHandler.

« He then gives behavior to the InputHandler by registering
InputAction objects.

® For mouse input, we just need to register a different kind

of listener.

MouselnputListener

private class Mouselistener 1mplements MouselnputListener{

public void onButton (int button, boolean pressed,

int x, int vy) {

1f (pressed)

dispplay.fireMousePressedEvent (x, v,
getMouseButton (button), 1);

else

dispplay.fireMouseReleasedEvent (x, v,
getMouseButton (button), 1);

public void onMove (int xDelta,

public void onWheel (int wheelDelta,

' Java RMI

®m Another example of the Adapter pattern is Java RMI.

®m To better understand this example, we need to take a
look at Java RMI.

y

' Java RMI explained

B RMI stands for Remote Method Invocation.

B |n simple terms, RMI allows you to execute methods on
objects found on a different machine.

B |t is similar to other method invocation system, such as
CORBA (Common Object Request Broker Architecture).

® RMI makes invoking methods transparent:
LinkList remotelList = RMI.getObject (“nameoflist”);

remotelList.add (new Integer(l));

y

y

Client

Components of a RMI System

Stub

Skeleton

Server

y

y

Client

Components of a RMI System

Stub

Skeleton

Server

|

Adapter

y

' Remote Objects

B Objects hosted on the server must implement the
java.rmi.Remote interface.

B However, you might not want to modify your existing
object.

B Thus you need an adapter.

y

Tree Widgets

Package Explorer =0 Hierarchy = O Package Explorer M
| = <}==b - s = % = arldObject, working set: Window Working Set =
& = 5 Mammoth Al 1'wfal Tk E -
(= build =5 Game =
(= config B Marmoth, AT MPC =97 Baseworldobject
g gatabase B} Mammoth, ALMPC Actions ©* pynamicobjectimpl
az Zame i Mammoth, ALMPC.Examples © SpawnpointImpl
= image =@ staticobjectImpl
4= Mammoth 8 Mammath, ALMPC,Plan Ga e hjectimp
& maps 18 Mammoth, ALPathFinding e Et’s:;""efmp'
(= music B Mammath, Authentication ® oerne
[objects L) TextureImpl
B Mammath, suthentication, Clien @ T
changelog. bxt L i Tile
| keystore B Mammoth. Authentication, Mess ia wialImpl
log#. praperties £ Mammoth. Authentication, Sery =& Dynamicobject
mammath, properties B Mammath, Authentication, Test Cly CrynamicObiectImpl
mammoth-client. properties £ Mammath. Chat O activeObject
(= lib B4 Marmmath, Chat, Client & ItemObject
= 30l o o
classpath H Mammath. Chat, Server = StaticObject
project B4 Mammath, Chat, Test g StaticObjectImpl
1 build ol B} Marmoth. Client o ;Jhsl;acle
S :
= Fwingperson4021-0 B Mammmath, Client, MainScreen T o
| Flwingperson4031-0 B} Mammath. Client . MainScreen. C opampoint
license. kxt)) ' O Texture
readme. bxt B} Mammath, Client,MainScreen, C O wal

B3 Mammath. Client.MainScresn,
B} Mammath, Client. MainScreen, hd
£ | >

\=| startServer.sh

bodo, kxt

R R R e R e R e B R e~ B R B R E B A R

' Pluggable Adapters

B A class is more reusable when you minimize the
assumptions other classes must make to use it.

® By building interface adaption into a class, you eliminate
the assumption that the other classes see the same
interface.

® |n other words, interface adaptation lets us incorporate
our class into existing systems that might expect
different interfaces to the class.

y

' In our example

®m Our example showed three example of tree widgets in
Eclipse.

®m Fach of these widget showed a different tree structure:
+ Files
« Packages
« Type Hierarchy

B However, each of these tree will have their own data
structure.

® S50 how do | build a tree widgets that works with any type

of tree class.

' First Step

B First, you must find a “narrow” interface for the Adaptee.
+ The smallest subset of operations that let us do the adaptation.

® The “narrower” the interface, the easier the adaptation.
®m But what do | need to know about a tree to display it?

y

' To draw a tree

B | need two functions:
« GetChildren(node: Node) : Set<Node>
+ CreateGraphicsForNode(node: Node) : void

®m But how do | implement this?

Using Abstract Operations

—_—————— —

INode: Object

TreelWidget

+GetChildren(node: Node) | Sef<Node=
+CreateGraphicsForNodefnode Node) © Graphic
+BuildTree(node: Node)

+DisplayTree()

FileTreeWidget PackageTresWidget
fileSystem: FileSystem -package: PackageHierarchy
+GetChildren(node: Maode) : Set<Nades +GetChildren(node: Nade) : Set<Maodes

+CreateGraphicsFomlode(node: Node) : vaid +CreateGraphicsFoMode(node: Node) : vaid

BuildTree(node: Node)

children = GetChildren (N)

for each child in children
graphic.add (CreateGraphicsForNode (child))
BuildTree (child)

Using Delegate Objects

TreeWidget TreeWidgetDelegate
+BuildTree(node: Node) * +GetChildreninode: Node) - Set<Nodes
+DisplayTree() +CreateGraphicsForNode(node: Node) - Graphic

+SetDelegate(delegate: TreeWidgetDelegate)

FileTreeWidget PackageTreeWidget
-fileSystem: FileSystem -packaqe: PackageHierarchy
+5etChildren(node: Node) : Set<Node> +5etChildren(node: Mode) : Set<N ode>

+CreateGraphicsFomode(node: Mode) : void +CreateGraphicsFomlode(node: Node) : void

BuildTree(node: Node)

children = delegate.GetChildren (N)

for each child in children
graphic.add (delegate.CreateGraphicsForNode (child))
BuildTree (child)

