
Adapter (cont.)

Comp-304 : Adapter (cont.)
Lecture 24

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Assignment 4

Is due today, at 11:55.
However ...



Assignment 5

■ Due date: March 19th
■ Team size == 1
■ In this assignment, you will implement the Command 

Pattern for the physical simulation system you worked on 
in assignment 1.

■ This is probably one of the shortest assignment I've ever 
given, the solution being less than 150 lines of code.

■ But beware assignment 6, it's going to be a long one.



jMonkey Engine

■ jME (jMonkey Engine) is a high performance scene 
graph based graphics API. 
 The scenegraph allows for organization of the game data in a 

tree structure.
 Typically, these nodes are organized spatially to allow the 

quick discarding of whole branches for processing.
■ jME was built to fulfill the lack of full featured graphics 

engines written in Java.



Mouse Handling in jMonkey

■ Mouse handling in jMonkey is slightly different.
■ For keyboard input, it uses an action handler system 

similar to the Command Pattern.
 The user can specify the behavior of his application by 

implementing an InputHandler.
 He then gives behavior to the InputHandler by registering 

InputAction objects.
■ For mouse input, we just need to register a different kind 

of listener.



MouseInputListener

private class MouseListener implements MouseInputListener{

public void onButton(int button, boolean pressed, 
int x, int y) {

if(pressed)
dispplay.fireMousePressedEvent(x, y, 

getMouseButton(button), 1);
else

dispplay.fireMouseReleasedEvent(x, y, 
getMouseButton(button), 1);

}

public void onMove(int xDelta, ...
public void onWheel(int wheelDelta, ...

}



Java RMI

■ Another example of the Adapter pattern is Java RMI.
■ To better understand this example, we need to take a 

look at Java RMI.



Java RMI explained

■ RMI stands for Remote Method Invocation.
■ In simple terms, RMI allows you to execute methods on 

objects found on a different machine.
■ It is similar to other method invocation system, such as 

CORBA (Common Object Request Broker Architecture).
■ RMI makes invoking methods transparent:

LinkList remoteList = RMI.getObject(“nameoflist”);
remoteList.add(new Integer(1));



Components of a RMI System

Client NetworkStub Skeleton Server



Components of a RMI System

Client NetworkStub Skeleton Server

Adapter



Remote Objects

■ Objects hosted on the server must implement the 
java.rmi.Remote interface.

■ However, you might not want to modify your existing 
object.

■ Thus you need an adapter.



Tree Widgets



Pluggable Adapters

■ A class is more reusable when you minimize the 
assumptions other classes must make to use it.

■ By building interface adaption into a class, you eliminate 
the assumption that the other classes see the same 
interface.

■ In other words, interface adaptation lets us incorporate 
our class into existing systems that might expect 
different interfaces to the class.



In our example

■ Our example showed three example of tree widgets in 
Eclipse.

■ Each of these widget showed a different tree structure:
 Files
 Packages
 Type Hierarchy

■ However, each of these tree will have their own data 
structure.

■ So how do I build a tree widgets that works with any type 
of tree class.



First Step

■ First, you must find a “narrow” interface for the Adaptee.
 The smallest subset of operations that let us do the adaptation.

■ The “narrower” the interface, the easier the adaptation.
■ But what do I need to know about a tree to display it?



To draw a tree

■ I need two functions:
 GetChildren(node: Node) : Set<Node>
 CreateGraphicsForNode(node: Node) : void

■ But how do I implement this?



Using Abstract Operations



BuildTree(node: Node)

children = GetChildren(N)
for each child in children

graphic.add(CreateGraphicsForNode(child))
BuildTree(child)



Using Delegate Objects



BuildTree(node: Node)

children = delegate.GetChildren(N)
for each child in children

graphic.add(delegate.CreateGraphicsForNode(child))
BuildTree(child)


