
Adapter (cont.)

Comp-304 : Adapter (cont.)
Lecture 24

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Assignment 4

Is due today, at 11:55.
However ...



Assignment 5

■ Due date: March 19th
■ Team size == 1
■ In this assignment, you will implement the Command 

Pattern for the physical simulation system you worked on 
in assignment 1.

■ This is probably one of the shortest assignment I've ever 
given, the solution being less than 150 lines of code.

■ But beware assignment 6, it's going to be a long one.



jMonkey Engine

■ jME (jMonkey Engine) is a high performance scene 
graph based graphics API. 
 The scenegraph allows for organization of the game data in a 

tree structure.
 Typically, these nodes are organized spatially to allow the 

quick discarding of whole branches for processing.
■ jME was built to fulfill the lack of full featured graphics 

engines written in Java.



Mouse Handling in jMonkey

■ Mouse handling in jMonkey is slightly different.
■ For keyboard input, it uses an action handler system 

similar to the Command Pattern.
 The user can specify the behavior of his application by 

implementing an InputHandler.
 He then gives behavior to the InputHandler by registering 

InputAction objects.
■ For mouse input, we just need to register a different kind 

of listener.



MouseInputListener

private class MouseListener implements MouseInputListener{

public void onButton(int button, boolean pressed, 
int x, int y) {

if(pressed)
dispplay.fireMousePressedEvent(x, y, 

getMouseButton(button), 1);
else

dispplay.fireMouseReleasedEvent(x, y, 
getMouseButton(button), 1);

}

public void onMove(int xDelta, ...
public void onWheel(int wheelDelta, ...

}



Java RMI

■ Another example of the Adapter pattern is Java RMI.
■ To better understand this example, we need to take a 

look at Java RMI.



Java RMI explained

■ RMI stands for Remote Method Invocation.
■ In simple terms, RMI allows you to execute methods on 

objects found on a different machine.
■ It is similar to other method invocation system, such as 

CORBA (Common Object Request Broker Architecture).
■ RMI makes invoking methods transparent:

LinkList remoteList = RMI.getObject(“nameoflist”);
remoteList.add(new Integer(1));



Components of a RMI System

Client NetworkStub Skeleton Server



Components of a RMI System

Client NetworkStub Skeleton Server

Adapter



Remote Objects

■ Objects hosted on the server must implement the 
java.rmi.Remote interface.

■ However, you might not want to modify your existing 
object.

■ Thus you need an adapter.



Tree Widgets



Pluggable Adapters

■ A class is more reusable when you minimize the 
assumptions other classes must make to use it.

■ By building interface adaption into a class, you eliminate 
the assumption that the other classes see the same 
interface.

■ In other words, interface adaptation lets us incorporate 
our class into existing systems that might expect 
different interfaces to the class.



In our example

■ Our example showed three example of tree widgets in 
Eclipse.

■ Each of these widget showed a different tree structure:
 Files
 Packages
 Type Hierarchy

■ However, each of these tree will have their own data 
structure.

■ So how do I build a tree widgets that works with any type 
of tree class.



First Step

■ First, you must find a “narrow” interface for the Adaptee.
 The smallest subset of operations that let us do the adaptation.

■ The “narrower” the interface, the easier the adaptation.
■ But what do I need to know about a tree to display it?



To draw a tree

■ I need two functions:
 GetChildren(node: Node) : Set<Node>
 CreateGraphicsForNode(node: Node) : void

■ But how do I implement this?



Using Abstract Operations



BuildTree(node: Node)

children = GetChildren(N)
for each child in children

graphic.add(CreateGraphicsForNode(child))
BuildTree(child)



Using Delegate Objects



BuildTree(node: Node)

children = delegate.GetChildren(N)
for each child in children

graphic.add(delegate.CreateGraphicsForNode(child))
BuildTree(child)


