Command

Comp-304 : Command
Lecture 22

Alexandre Denault
Original notes by Marc Provost
and Hans Vangheluwe
Computer Science
McGill University
Fall 2007

Ly
—_
=

b0 &0 [,

[«

=

L aw

MNew
CpEm, .. Chrl+O

Recent Docurnents
Wizards

Close
Save Chel+5
Save As...

Save all

Relnad

Versions. ..

Export...
Export as POF...
Send

Properties...
Digital Signatures. ..

Templates

Brink. .. Ckel+P

Printer Settings...

Exit Chrl+C

]

k

'jP

Iﬂ' i

& & | m

<
% [

a3

Undo: Move Bitmap Chrl+2
Zuk Chel+¥
Copy Chrl+C
Paste Chel+Y

Paste Special,., Crrl+Shifk+y

Select Al Chel+A
Find & Replace. .. Ckrl+F
Mavigakar Ckrl+Shift+FS
Cuplicate, .. Shift+F3
Painks Fa
Glue Poinks

Delete Slide

Plug-in

ImageMap

Eal

Slide
Duplicate Slide

Summary Slide
Page Mumber. ..
Date and Time. ..
Fields

Farmatking Mark,
Hyperlink,

Animated Image. ..

Picture

Mavie and Saund
Ohiject
Spreadshest
Chart...

Flaaking Frame

Eile. ..

Classic Example

Eum@ 47 i

Character. ..
Paragraph...
Bullets and Mumbering. ..

Page...

Change Case r

Line. ..
Area...,

Texk...

Slide Design. ..
Slide Layout, .,
Skyles and Formatking F11

Graup [

F@

Spellcheck. ..

Language
AutaCorrect, .,

Gallery
Evedropper
Media Playver

Macros

F7

Extension Manager...
®ML Filker Setkings. ..

Cuskomize, ..

Options...

' Problem

B User interface toolkit includes buttons and menus that
carry out a request corresponding to user input.

B The buttons and menus can't explicitly implement the
action, because only an application knows what should
be done on which object.

« GUIs only provide a button construct. It has no behavior.
+ It's up to the programmer to give the button a behavior.

® How do we encapsulate behavior?

y

' Command Pattern

B Fncapsulate request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operation.

y

' Motivation

B Separates an operation from the object that executes it.

® \Vith the Command Pattern, it is possible to parametrize
an object with an operation.

®m Support undo/redo

m Possible to execute the request at a different time. By
passing the command object to another process.

y

Participants

Invalker o> = Command
+execuie()
Receiver = ConcreteCommand

+action() +execute() {receiver.action()}

' Why?

B Fach item in the menu is conceptually the same object.

® The only difference is with the action that is taken when
pressed.

B Solution: parametrize the menu item object with a
command.

y

Class Diagram of Example

Application
+add{doc: Document)

<> jl
M enu <] Menultem
+add(item: Menultem) command. Command = Command
+Clicked() {command.execute()} +executs()
+unexecute()
Document

:EEZZ'% < PasteCommand

TCU() -document: Document

+capy() +execute() {document paste()}

+paste() +Uunexecute()

' Supporting Undo/Redo

B Since a command is an object, it can hold a state.

B A command object could store the information required
to undo or redo itself.

m Use an history list of commands objects.

y

' Supporting Undo/Redo

B Fach command should know how to undo and redo itself
(one level).

B A command manager hold the history list of commands:
+ [commandA; commandB; commandC; :::]
« Moving backward: undoing commands
+ Moving forward: redoing commands

B | et's go over an example...

y

Example

DSheet <observing subject 1> 0.85
File Edit I
D1 ' 03:14
A B c C E F = F_{
; - HashTable:
3
. MG ¢ Vg Cell("A1", "=5+C4")
5 b n n n ll_ 11
7 450 B7 Cell("B7", "=45")
8
g "C4" Ce"(ncq_u’ u=10r|)
10
11
12
13
14
15
16 /
| | =

y

' SetCells Command

m 'SetCells' command, which acting on the previous
hashtable is used to support undo/redo

B The history list is stored directly in the setcells command.
(Unique command)

B Fach time a set of cells is modified by the user, the
difference between the previous state and the next state
IS added in the history list.

SetCells .
recelver

-stack
CellTable
+execute(setOfCells) > Il I

|
+unexecute() |

+reexecute() I

N

Example (cont.)

File

Edit

DSheel <observing subject 1> 0.85

00O ~] Ch Ln &= W D

et ol Bt R R e B
ol oln | B)| BRI o= O

150

450

D1

100

|
History: !—J

[[Cell"B7", ™), Cell("B7", "=45")]]

[[Cell"A1", ™), Cell("A1", "=5+C4")]]

[[Cell("C4", ™), Cell("C4", "=10")]]

(71
|

y

' Undo

DSheet <observing subject 1> 0.85

Fle Edit |
G7 47:22
i B & D E F ¢ [N
1 150
| !
3
; 100 ~ History:
5
? :CE"("B7", llll)’ CE”("B7", ||=45ll)]]
}3 _
5 | s :CE"("A].“, ""), CE"(”A].“, "=5+C4")]]
10
E | [Cell("C4", ™), Cell("C4", "=10")]]
13
14
15
I~--.J,m_l

y

' Consequences

B Decoupling of the command and the invoker.

® Commands are objects. They can be manipulated and
sub-classed like any other object.

® You can assemble commands into composites of
commands.

B New commands is easy and does not require the
modification of existing code.

y

Hierarchy in Commands (Macro)

Command
texecutef)
+unexecute() *
A
CommandA MacroCommand [<K>——
+execuiE() +execuiz()
Hunexecute() Hunexecute()

' How else can it be used?

Transactional Behavior

Action Queuing / Progress Monitoring (bar)
Thread pools

Macro Recording

Networking / Dsitributed Actions

' Other concerns

B Error accumulation in Undo/Redo.
B How smart should a command be?

' Another Example: Path Finding

B The Path Finding system in Mammoth uses a variation of
the command pattern.

B |[magine a game server that houses hundreds of NPC
artificial intelligence agents.

« Each of these agents are moving independently
« Each of these agents are sending requests to the path finding

engine.

Path Finding Engine?

ne Path Finding Engine is the components that allows a
ayer to go from point A to B, avoiding obstacles.

nis is very CPU expensive.

6
3
4
3
2
1
2
3
4
3

Sl | W WO]

' So what is so special?

® On a Mammoth server, you have multiple Path Finding
coming in at the same time.

®m The server cannot stop to process each of them.
« The regular operations of the server is time critical.

« Spawning a new thread for each requests would flood the
system.

y

' Flooded with Threads?

B This is not a new problem.

B \Web servers and application servers typically have this
problem.

« They received a large number of simultaneous requests.
B The solve this problem by using a thread pool.

y

' Thread Pool Pattern

m Although not an official pattern, a thread pool is a
commonly used pattern to solve problems dealing will
multiple simultaneous incoming requests.

m A thread pool is a collection of threads.

+ Requests to the thread pool are queued.

« When a thread is available, a request is send to it.

+ The request will then run on that thread.

« The response to the request is sent asynchronously.

y

' Benefits

B Requests are run asynchronously at a controlled rate.
« You never have more than N requests processed at one time.
« You don't lose the requests you can't deal with.
« The system is not adversely affected by a number of requests.

« Since N is a fix number, you can play with the number of
threads.

y

' Disavantage

B Requests are run asynchronously at a controlled rate.
« Your system is now asynchronous.

« In cases of high demands, it might take a while until you get a
response.

y

' Back to Path Finding

B Path Finding requests are queued, then sent to the
Thread Pool.

B Since the requests are objects, this is easy to do.
« Objects can be queued.
« Objects can be passed as parameters.

® \When a path finding request is sent, a Path object is sent
back as a response.

® \When the request is executed, the path is slowly inserted
iInside the Path object.

®m Path Finding requests also have a cancel() method.
+ If a player decides to go elsewhere, we should stop the

request. |

