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' Problem

B User interface toolkit includes buttons and menus that
carry out a request corresponding to user input.

B The buttons and menus can't explicitly implement the
action, because only an application knows what should
be done on which object.

« GUIs only provide a button construct. It has no behavior.
+ It's up to the programmer to give the button a behavior.

® How do we encapsulate behavior?
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' Command Pattern

B Fncapsulate request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operation.
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' Motivation

B Separates an operation from the object that executes it.

® \Vith the Command Pattern, it is possible to parametrize
an object with an operation.

®m Support undo/redo

m Possible to execute the request at a different time. By
passing the command object to another process.

y



Participants

Invalker o> = Command
+execuie()
Receiver = ConcreteCommand

+action() +execute() {receiver.action()}




' Why?

B Fach item in the menu is conceptually the same object.

® The only difference is with the action that is taken when
pressed.

B Solution: parametrize the menu item object with a
command.
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Class Diagram of Example

Application
+add{doc: Document)

<> jl
M enu <] Menultem
+add(item: Menultem) command. Command = Command
+Clicked() {command.execute()} +executs()
+unexecute()
Document

:EEZZ'% < PasteCommand

TCU() -document: Document

+capy() +execute() {document paste()}

+paste() +Uunexecute()




' Supporting Undo/Redo

B Since a command is an object, it can hold a state.

B A command object could store the information required
to undo or redo itself.

m Use an history list of commands objects.
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' Supporting Undo/Redo

B Fach command should know how to undo and redo itself
(one level).

B A command manager hold the history list of commands:
+ [commandA; commandB; commandC; :::]
«  Moving backward: undoing commands
+ Moving forward: redoing commands

B | et's go over an example...
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Example
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' SetCells Command

m 'SetCells' command, which acting on the previous
hashtable is used to support undo/redo

B The history list is stored directly in the setcells command.
(Unique command)

B Fach time a set of cells is modified by the user, the
difference between the previous state and the next state
IS added in the history list.

SetCells .
recelver

-stack
CellTable
+execute(setOfCells) > Il I

|
+unexecute() |

+reexecute() I
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Example (cont.)

File

Edit

DSheel <observing subject 1> 0.85

00O ~] Ch Ln &= W D

et ol Bt R R e B
ol oln | B )| BRI o= O

150

450

D1

100

|
History: !—J

[ [Cell"B7", ™), Cell("B7", "=45")] ]

[ [Cell"A1", ™), Cell("A1", "=5+C4")] ]

[ [Cell("C4", ™), Cell("C4", "=10")] ]

(71
|

y



' Undo
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' Consequences

B Decoupling of the command and the invoker.

® Commands are objects. They can be manipulated and
sub-classed like any other object.

® You can assemble commands into composites of
commands.

B New commands is easy and does not require the
modification of existing code.
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Hierarchy in Commands (Macro)

Command
texecutef)
+unexecute() *
A
CommandA MacroCommand [<K>——
+execuiE() +execuiz()
Hunexecute() Hunexecute()




' How else can it be used?

Transactional Behavior

Action Queuing / Progress Monitoring (bar)
Thread pools

Macro Recording

Networking / Dsitributed Actions




' Other concerns

B Error accumulation in Undo/Redo.
B How smart should a command be?




' Another Example: Path Finding

B The Path Finding system in Mammoth uses a variation of
the command pattern.

B |[magine a game server that houses hundreds of NPC
artificial intelligence agents.

« Each of these agents are moving independently
« Each of these agents are sending requests to the path finding

engine.



Path Finding Engine?

ne Path Finding Engine is the components that allows a
ayer to go from point A to B, avoiding obstacles.

nis is very CPU expensive.
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' So what is so special?

® On a Mammoth server, you have multiple Path Finding
coming in at the same time.

®m The server cannot stop to process each of them.
« The regular operations of the server is time critical.

« Spawning a new thread for each requests would flood the
system.
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' Flooded with Threads?

B This is not a new problem.

B \Web servers and application servers typically have this
problem.

« They received a large number of simultaneous requests.
B The solve this problem by using a thread pool.
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' Thread Pool Pattern

m Although not an official pattern, a thread pool is a
commonly used pattern to solve problems dealing will
multiple simultaneous incoming requests.

m A thread pool is a collection of threads.

+ Requests to the thread pool are queued.

« When a thread is available, a request is send to it.

+ The request will then run on that thread.

« The response to the request is sent asynchronously.
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' Benefits

B Requests are run asynchronously at a controlled rate.
« You never have more than N requests processed at one time.
« You don't lose the requests you can't deal with.
« The system is not adversely affected by a number of requests.

« Since N is a fix number, you can play with the number of
threads.
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' Disavantage

B Requests are run asynchronously at a controlled rate.
« Your system is now asynchronous.

« In cases of high demands, it might take a while until you get a
response.

y



' Back to Path Finding

B Path Finding requests are queued, then sent to the
Thread Pool.

B Since the requests are objects, this is easy to do.
« Objects can be queued.
« Objects can be passed as parameters.

® \When a path finding request is sent, a Path object is sent
back as a response.

® \When the request is executed, the path is slowly inserted
iInside the Path object.

®m Path Finding requests also have a cancel() method.
+ If a player decides to go elsewhere, we should stop the

request. |



