
Command

Comp-304 : Command
Lecture 22

Alexandre Denault
Original notes by Marc Provost 

and Hans Vangheluwe 
Computer Science
McGill University

Fall 2007



Classic Example



Problem

■ User interface toolkit includes buttons and menus that 
carry out a request corresponding to user input.

■ The buttons and menus can't explicitly implement the 
action, because only an application knows what should 
be done on which object.
 GUIs only provide a button construct. It has no behavior.
 It's up to the programmer to give the button a behavior.

■ How do we encapsulate behavior?



Command Pattern

■ Encapsulate request as an object, thereby letting you 
parameterize clients with different requests, queue or log 
requests, and support undoable operation.



Motivation

■ Separates an operation from the object that executes it.
■ With the Command Pattern, it is possible to parametrize 

an object with an operation.
■ Support undo/redo
■ Possible to execute the request at a different time. By 

passing the command object to another process.



Participants



Why?

■ Each item in the menu is conceptually the same object.
■ The only difference is with the action that is taken when 

pressed.
■ Solution: parametrize the menu item object with a 

command.



Class Diagram of Example



Supporting Undo/Redo

■ Since a command is an object, it can hold a state.
■ A command object could store the information required 

to undo or redo itself.
■ Use an history list of commands objects.



Supporting Undo/Redo

■ Each command should know how to undo and redo itself 
(one level).

■ A command manager hold the history list of commands:
 [commandA; commandB; commandC; :::]
 Moving backward: undoing commands
 Moving forward: redoing commands

■ Let's go over an example...



Example



SetCells Command

■ 'SetCells' command, which acting on the previous 
hashtable is used to support undo/redo

■ The history list is stored directly in the setcells command. 
(Unique command)

■ Each time a set of cells is modified by the user, the 
difference between the previous state and the next state 
is added in the history list.



Example (cont.)



Undo



Consequences

■ Decoupling of the command and the invoker.
■ Commands are objects. They can be manipulated and 

sub-classed like any other object.
■ You can assemble commands into composites of 

commands.
■ New commands is easy and does not require the 

modification of existing code.



Hierarchy in Commands (Macro)



How else can it be used?

■ Transactional Behavior
■ Action Queuing / Progress Monitoring (bar)
■ Thread pools
■ Macro Recording
■ Networking / Dsitributed Actions



Other concerns

■ Error accumulation in Undo/Redo.
■ How smart should a command be?



Another Example: Path Finding

■ The Path Finding system in Mammoth uses a variation of 
the command pattern.

■ Imagine a game server that houses hundreds of NPC 
artificial intelligence agents.
 Each of these agents are moving independently
 Each of these agents are sending requests to the path finding 

engine.



Path Finding Engine?

■ The Path Finding Engine is the components that allows a 
player to go from point A to B, avoiding obstacles.

■ This is very CPU expensive.



So what is so special?

■ On a Mammoth server, you have multiple Path Finding 
coming in at the same time.

■ The server cannot stop to process each of them.
 The regular operations of the server is time critical.
 Spawning a new thread for each requests would flood the 

system.



Flooded with Threads?

■ This is not a new problem.
■ Web servers and application servers typically have this 

problem.
 They received a large number of simultaneous requests.

■ The solve this problem by using a thread pool.



Thread Pool Pattern

■ Although not an official pattern, a thread pool is a 
commonly used pattern to solve problems dealing will 
multiple simultaneous incoming requests.

■ A thread pool is a collection of threads. 
 Requests to the thread pool are queued.
 When a thread is available, a request is send to it.
 The request will then run on that thread.
 The response to the request is sent asynchronously.



Benefits

■ Requests are run asynchronously at a controlled rate.
 You never have more than N requests processed at one time.
 You don't lose the requests you can't deal with.
 The system is not adversely affected by a number of requests.
 Since N is a fix number, you can play with the number of 

threads.



Disavantage

■ Requests are run asynchronously at a controlled rate.
 Your system is now asynchronous.
 In cases of high demands, it might take a while until you get a 

response.



Back to Path Finding

■ Path Finding requests are queued, then sent to the 
Thread Pool.

■ Since the requests are objects, this is easy to do.
 Objects can be queued.
 Objects can be passed as parameters.

■ When a path finding request is sent, a Path object is sent 
back as a response.

■ When the request is executed, the path is slowly inserted 
inside the Path object.

■ Path Finding requests also have a cancel() method.
 If a player decides to go elsewhere, we should stop the 

request.


