
Command

Comp-304 : Command
Lecture 22

Alexandre Denault
Original notes by Marc Provost 

and Hans Vangheluwe 
Computer Science
McGill University

Fall 2007



Classic Example



Problem

■ User interface toolkit includes buttons and menus that 
carry out a request corresponding to user input.

■ The buttons and menus can't explicitly implement the 
action, because only an application knows what should 
be done on which object.
 GUIs only provide a button construct. It has no behavior.
 It's up to the programmer to give the button a behavior.

■ How do we encapsulate behavior?



Command Pattern

■ Encapsulate request as an object, thereby letting you 
parameterize clients with different requests, queue or log 
requests, and support undoable operation.



Motivation

■ Separates an operation from the object that executes it.
■ With the Command Pattern, it is possible to parametrize 

an object with an operation.
■ Support undo/redo
■ Possible to execute the request at a different time. By 

passing the command object to another process.



Participants



Why?

■ Each item in the menu is conceptually the same object.
■ The only difference is with the action that is taken when 

pressed.
■ Solution: parametrize the menu item object with a 

command.



Class Diagram of Example



Supporting Undo/Redo

■ Since a command is an object, it can hold a state.
■ A command object could store the information required 

to undo or redo itself.
■ Use an history list of commands objects.



Supporting Undo/Redo

■ Each command should know how to undo and redo itself 
(one level).

■ A command manager hold the history list of commands:
 [commandA; commandB; commandC; :::]
 Moving backward: undoing commands
 Moving forward: redoing commands

■ Let's go over an example...



Example



SetCells Command

■ 'SetCells' command, which acting on the previous 
hashtable is used to support undo/redo

■ The history list is stored directly in the setcells command. 
(Unique command)

■ Each time a set of cells is modified by the user, the 
difference between the previous state and the next state 
is added in the history list.



Example (cont.)



Undo



Consequences

■ Decoupling of the command and the invoker.
■ Commands are objects. They can be manipulated and 

sub-classed like any other object.
■ You can assemble commands into composites of 

commands.
■ New commands is easy and does not require the 

modification of existing code.



Hierarchy in Commands (Macro)



How else can it be used?

■ Transactional Behavior
■ Action Queuing / Progress Monitoring (bar)
■ Thread pools
■ Macro Recording
■ Networking / Dsitributed Actions



Other concerns

■ Error accumulation in Undo/Redo.
■ How smart should a command be?



Another Example: Path Finding

■ The Path Finding system in Mammoth uses a variation of 
the command pattern.

■ Imagine a game server that houses hundreds of NPC 
artificial intelligence agents.
 Each of these agents are moving independently
 Each of these agents are sending requests to the path finding 

engine.



Path Finding Engine?

■ The Path Finding Engine is the components that allows a 
player to go from point A to B, avoiding obstacles.

■ This is very CPU expensive.



So what is so special?

■ On a Mammoth server, you have multiple Path Finding 
coming in at the same time.

■ The server cannot stop to process each of them.
 The regular operations of the server is time critical.
 Spawning a new thread for each requests would flood the 

system.



Flooded with Threads?

■ This is not a new problem.
■ Web servers and application servers typically have this 

problem.
 They received a large number of simultaneous requests.

■ The solve this problem by using a thread pool.



Thread Pool Pattern

■ Although not an official pattern, a thread pool is a 
commonly used pattern to solve problems dealing will 
multiple simultaneous incoming requests.

■ A thread pool is a collection of threads. 
 Requests to the thread pool are queued.
 When a thread is available, a request is send to it.
 The request will then run on that thread.
 The response to the request is sent asynchronously.



Benefits

■ Requests are run asynchronously at a controlled rate.
 You never have more than N requests processed at one time.
 You don't lose the requests you can't deal with.
 The system is not adversely affected by a number of requests.
 Since N is a fix number, you can play with the number of 

threads.



Disavantage

■ Requests are run asynchronously at a controlled rate.
 Your system is now asynchronous.
 In cases of high demands, it might take a while until you get a 

response.



Back to Path Finding

■ Path Finding requests are queued, then sent to the 
Thread Pool.

■ Since the requests are objects, this is easy to do.
 Objects can be queued.
 Objects can be passed as parameters.

■ When a path finding request is sent, a Path object is sent 
back as a response.

■ When the request is executed, the path is slowly inserted 
inside the Path object.

■ Path Finding requests also have a cancel() method.
 If a player decides to go elsewhere, we should stop the 

request.


