
Quality of Design (cont.)

Comp-304 : Quality of Design (cont.)
Lecture 17

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007

Tutorial

Two tutorials will be held today.

16h30-17h30
18h30-19h30

McConell 103

CSGames

The 2007 CS Games have returned home to McGill University and we
are looking for volunteers. (www.csgames.org)

The CS Games are an annual competition between North American
universities with computer science oriented events such as

debugging and scripting, including other competitions like LAN
gaming and a scavenger hunt.

We will need help putting together all of the events and converting
Trottier into our competition hall for the weekend. A background in
computer science is not necessary. The games will be held on the
weekend of March 9-11. If interested, please contact the volunteer
coordinator Chris at volunteer@csgames.org. Please include your

availability and major.

If you've got friends who are not in computer science, or even at
McGill, they are more than welcome to help out as well!

Not-So-Simple Example

Low/High Encumbrance

■ A foundation class should have low encumbrance.
■ An application class should have high encumbrance.
■ A good indication of a problem in the design is:

 High indirect encumbrance in the Foundation domain.
 Low indirect encumbrance in an Application domain.

Law of Demeter

■ The Law of Demeter limits the size of direct class
reference sets.

■ It states that if an object o1 refers to a object o2 through
some method m of o1, then o2 must be:
 the object itself (so o2 is actually o1)
 an object referred to by the arguments of m
 an object referred to by a variable of of o1
 an object created by m
 an object referred to by a global variable

■ In summary, an object should only send messages to
objects it can directly reference.

Only talk to your immediate friends!

Example

String employeeStreet = this.office.getAddress().getStreet();

Example Fixed

String employeeStreet = this.office.getStreet();

Cohesion

■ Measure of interrelatedness of features (attributes and
methods) in an external interface of a class.

■ Low (bad) cohesion
 set of features that don't belong together

■ High (good) cohesion
 set of features that all contribute to the implementation

Three types of Cohesion

■ Mixed-Instance Cohesion
 Really really bad!

■ Mixed-Domain Cohesion
 Really bad!

■ Mixed-Role Cohesion
 Bad!

Mixed-Instance Cohesion

A class with mixed-instance cohesion has some features
that are undefined for some objects of the class.

■ Suppose you work at a company that has managers and
non-managers.

■ Managers receive a ManagerSalary and other
employees receive a RegularSalary.

■ Imagine employees are implemented using a Person
class.
 That class has a getManagerSalary() and a getRegularSalary()

method which returns both types of salary.
■ For each Person instance, we have features that won't

be used.
 Thus, Person is too broad

How to solve this?

■ Usually means that there is a class hierarchy missing.
 in our case, we should have classes Manager and Employee

that inherit from a superclass Person.
■ Now we won't have any unused features.

Extrinsic vs Intrinsic

■ The class B is extrinsic to A if A can be fully defined with
no notion of B.
 For example, Dog is extrinsic to Person, because in no sense

does “Dog” capture some characteristic of Person.
■ B is intrinsic to A if B captures some characteristic

inherent to A.
 For example, Dog is intrinsic to DogOwner, because “Dog”

captures some characteristic of DogOwner.

Mixed-Domain Cohesion

A class with mixed-domain cohesion contains an element
that directly encumbers the class in an extrinsic class of

a different domain.

■ In other words, a class should only encumber classes in
other domains if they are intrinsic.

■ For example, Invoice and Currency are two classes that
exist in different domains.

■ Since Currency is intrinsic to Invoice, there is no mixed-
domain cohesion.

■ However, Invoice and Printer, which also exist in
different domains, would present mixed-domain cohesion
since Printer is extrinsic to Invoice.

Mixed-Role Cohesion

A class C with mixed-role cohesion contains an element
that directly encumbers the class with an extrinsic class

that lies in the same domain as C.

■ In other words, a class should only encumber classes if
they are intrinsic.

■ Lets go back to our example with Dog and Person.
■ Although both classes exist in the same domain, they

are not intrinsic
■ As such, Dog should not encumber Person.
■ Although this is the less serious cohesion problem, you

must take it into account when designing for reusability.

