
Objects, Types and Variables

Comp-303 : Programming Techniques

Lecture 3

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 1



Announcements

• The T.A.’s office hours will be posted on the web.

– Monday - Wednesday: 12:00 - 13:30

– McConnell 234 (Compilers Lab)

• Lectures from 1 to 8 have been posted on the web. However,
lectures I have not yet given are subject to change.

• The tutorial on Java GUI will be given Thursday, January 22th
at 18:15. The room will be announced shortly.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 2



Last lecture . . .

• O.O. Programming allows programmers to shift responsibility.

• Java has a rich set of abstraction building blocks:

– Abstract classes (concrete)

– Interfaces

– Overloading

– Overriding

• Design patterns are built from basic constructs.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 3



Program structure

Java programs consist of classes and interfaces.

• Classes

– Define collections of procedures

– Define new data types

• Interfaces

– Define new data types / parts of data types

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 4



Objects & Variables

• All data is accessed by means of variables.

• Local variables (of methods) reside on run-time stack.

• Each variable has a type declaration.

– Primitive types: values

3 false c

– All other types: objects

– References to object on heap.

– Predefined types in package java.lang (implicit import
java.lang).

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 5



Objects & Variables (cont.)

• Primitive Variable

int i = 6;

• Uninitialized Primitive Variable

int j;

• Array of 5 primitives

int [] a = {1,3,5,7,9};

• Empty Array of 3 primitives

int [] b = new int[3];

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 6



Objects & Variables (cont.)

• Reference to String Object

String t; or String t = null;

• String object

String s = new String("abcde");

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 7



Assignment (The = symbol)

• Every object has an identity that is distinct from any other
object.

• Assignment: copies values (primitive) or references.

j = i; // copy value

b = a; // copy reference

t = s; // copy reference

• Reference assignment makes variables share objects.

• The symbol == checks if two variables contain the same value
(or reference).

• If objects become unreachable, storage will be reclaimed by the
garbage collector.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 8



Mutability

• The state of a mutable object can change.

– Example: Arrays are mutable

a: {1,3,5,7,9}

a[2] = 9;

a: {1,9,5,7,9}

• The state of immutable objects never changes.

– Example: Strings are immutable

t: String object of value "abcde"

t = t + ’f’

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 9



Mutability

t: New string object of value "abcdef"

– In other words, a new string object is created and
referenced by t.

– The old string object is discarded and will eventually be
garbage collected.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 10



Method Call Semantics

• Let us take the example:

myBook.readChapter(x, y, ...);

• First, we evaluate myBook for the class of the object whose
method is being called (using dispatch).

• Then, we evaluate the expressions x,y,. . . for actual parameter
values.

• Then, we create an activation record on the run time stack
containing:

– formal parameters

– local variables

• Then, we transfer control to first statement of target method.

• If myBook is null, we get a NullPointerException.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 11



Type Checking

• Java is Strongly Typed

– The compiler checks that every assignment and every
method call is type correct.

– Variable declarations give type of variables.

– Method headers define signatures: the set of argument and
result types.

• Java is type-safe

– Declarations and headers allow the compiler to determine
the apparent type of any expression.

– All array accesses are checked to be within bounds.

• Type mismatches cannot occur at run time (unlike C,C++
with union types & explicit deallocation).

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 12



Type Substitutability

• If S is a subtype (subclass) of T, then objects of type S are
usable anywhere where T is usable.

– S has all methods that T has (enforced by compiler).

– The methods in S must behave the same way as the
methods in T (un-enforceable).

• All types are subtypes of Object and understand:

– boolean equals (Object o)

– String toString ()

• The actual type of an object (defined by creation) is
guaranteed to be a subtype of the apparent type of the variable
to which the object is assigned.

Object o1 = "abc"; // String

Object o2 = {1,2,3}; // Array

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 13



Type Substitutability

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 14



Type Checking

• Compiler always works with apparent types:

Object o1 = "abc"; // actual type String

Object o2 = {1,2,3}; // Array

• Therefore:

if (o1.equals("abc")) // legal

if (o2.equals("abc")) // legal

if (o1.length()) // illegal

String s = o1; // illegal

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 15



Type Checking

• You can get around this by type-casting:

if ((String) o1.length()) // legal

String s = (String) o1; // legal

• Is safe because type-check occurs at run time (not like C).

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 16



Type Conversion

• Type casting changes the apparent type of an expression, but
does not compute or modify values.

• Type conversion changes a type into another type and typically
computes the new value.

• Java defines implicit conversions on primitive types:

– Chars are widened to numeric types:

char c = ’a’;

int n = c;

float f = n;

– int is widened to long

– long is widened to float

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 17



Overloading & conversion

• Method overloading : method with same name but different
signature.

static int comp (int, long) // definition 1

static int comp (long, int) // definition 2

static int comp (long, long) // definition 3

• Consider the following declarations:

int x;

long y;

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 18



Overloading & conversion

• The actual method called is the most-specific:

– comp (x,y) : definition 1

– comp (y,y) : definition 3

– comp (x,x) : compile-time error because neither definition 1
or 2 is most-specific

• All these rules apply to objects and subtypes.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 19



Method dispatch

• Consider this piece of code:

String t = "ab";

Object o = t + "c"; // concatenation

String r = "abc";

boolean b = o.equals(r);

• We want to find out whether b has the value abc.

• String defines equals(object o) to compare character per
character.

• However, the standard definition of equals(object o) in Object
compares object identity (==).

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 20



Method dispatch

• Fortunately, dispatch is based on actual type (of the receiver
object), not on apparent type.

• We get the correct result.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 21



Packages

Classes and Interfaces are grouped in Packages.

• To Declare:

package myPackage;

public class myClass01 {...

• To use:

... myPackage.myClass01...

• or :

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 22



Packages

import myPackage.*;

...myClass01...

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 23



Packages

• Provide encapsulation

– only public classes, interfaces, methods & fields are visible
outside the package

– all other declarations are only visible within the package

• Provide naming scope

– prevents naming conflicts between classes and interfaces
defined in different packages

• Permits naming hierarchy

import ourProject.numericalCode.myPackage.*

import ourProject.numericalCode.*

import ourProject.*

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 24



Packages

Each project team member is responsible for a package.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 25



Java-specific type: Vector

• Vector is a cross between a list (extensible) and an array
(index). It’s defined in java.util

– Elements are of type Object.

– If you put something in a Vector and take it out later, the
apparent type has widened to Object.

– Vector grows by adding to high end:

Vector v = new Vector(); // creates empty Vector

if (v.size() == 0) // true

v.add("abc"); // increases size by 1 and stores argument

– To access an element, a cast is necessary:

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 26



Java-specific type: Vector

String s = (String) v.get(0);

– Other operations on vectors:

v.remove(0); // removes 1st element (shifts remainder)

v.set(0,"abcd"); // changes existing element

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 27



Stream input/output

• Package java.io provides standard Input and Output (io).

• Input

// read an integer

BufferedReader in =

new BufferedReader (new InputStreamReader(System.in);

String s = in.readLine();

int i = Integer.parseInt(s);

• Output

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 28



Stream input/output

// write an integer

System.out.println(i);

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 29



Applications

• A java application starts with the main method of a specified
class:

java myClass a1 a2 ...

• Class with a main method:

public class myClass {

public static void main(String [] args) {

// args[0] == a1

// args[1] == a2

// start of program

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 30



Applications

}

}

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 31



Summary

• Values and objects

• Objects can be shared and mutable

• Java is strongly typed and type-safe

• Java provides automatic storage management

• All objects are subtypes of Object and understand toString()
equals()

• Primitive types are converted to other types

• All types can be cast to other types (no computation)

• Packages provide encapsulation and naming scope

• java.util provides Vector

• java.io provides standard input/output

• Executions starts at main() method

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 32



Tool of the day: CVS

• CVS is the Concurrent Versions System, an open-source
version control system.

– A version control system allows multiple programmers to
work on a project at the same time.

– It tracks changes and builds a history of those changes.

– It allows you to merge modification done on files.

– Works with SSH, so you don’t need a dedicated server to
use it. You can even use it on your CS account.

– More information on CVS is available at:

http://www.cvshome.org/

• Other version control system exist.

– Visual SourceSafe, the Microsoft solution, offers tight
locking controls.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 33



Tool of the day: CVS

– Subversion, the replacement for CVS, is slowly gaining
popularity.

February 16, 2004 Lecture 3 – Comp 303 : Programming Techniques Page 34


