
Java 1.5

Comp-303 : Programming Techniques

Lecture 23

Alexandre Denault
Computer Science
McGill University

Winter 2004

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 1



Last lecture . . .

• The Command design pattern allows you to seperate the
Invoker from the Receiver, thus allowing you to create
parametrizable frameworks.

• The Command design pattern also allows you to do nifty
things like queing commands, undo, redo, transactions, etc.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 2



Why is it called J2SE?

• Because there exists three different types of Java:

– J2ME is the Java 2 Micro Edition that contains a reduce
core of Java classes for developers that code to portable
devices. Use this to write code for a PDA.

– J2SE is the Java 2 Standard Edition that contains the basic
core Java classes. Use this to to write your standard applets
and applications.

– J2EE is the Java 2 Enterprise Edition that contains the
extented core Java classes (such as Security API, Java Mail
API, XML Parsers etc.). Use this to write your server
components (such as Servlets).

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 3



Java Community Process

• Java is an open standard. Sun does not control the evolution of
the Java specification.

• The Java Community Process guides the development and
approval of Java technical specifications.

• Anyone can join the JCP and have a part in its process, and
you don’t even have to join to contribute as a public
participant.

• The work of the JCP helps to ensure Java technology’s
standard of stability and cross-platform compatibility:

– desktop computers

– consumer electronics

– industrial robots

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 4



Java Specification Requests

• Java Specification Requests (JSRs) are the actual descriptions
of proposed and final specifications for the Java platform.

• At any one time there are numerous JSRs moving through the
review and approval process.

• A JSR can take up to 200 days before it is approved by the
JCP.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 5



Life and Death of a JSR?

• JSR Review : A specification is initiated by community
members and approved for development by the Executive
Committee.

• Community Review : Once a JSR is approved, a group of
experts is formed to develop a first draft of the specification.

• Public Review : The JSR draft goes out for review by the
public where anyone with an Internet connection can read and
comment on the draft.

• Proposed Final Draft : The version of the draft specification
that will be used as the basis for the RI and TCK.

• Final Release : The leader of the Expert Group then sees that
the reference implementation and its associated Technology
Compatibility Kit are completed before sending the
specification to the Executive Committee for final approval.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 6



Executive Members of JCP for J2SE/J2EE

Apache Software Foundation Apple

BEA Systems Borland

Fujitsu Limited Hewlett-Packard

IBM IONA Technologies

Doug Lea Macromedia

Richard Monson-Haefel Nokia Networks

Oracle SAP

The SCO Group Sun Microsystems

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 7



Executive Members of JCP for J2ME

Ericsson Mobile Platforms IBM

Insignia Intel

Matsushita Motorola

Nokia Philips

Research In Motion Siemens

Sony Sony-Ericsson

Sun Microsystems Symbian

Texas Instruments Vodafone

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 8



Java 1.5

• Released February 2004, J2SE 1.5, code-named Tiger, is the
first major improvement to the Java programming language
since two years ago when version 1.4 was released.

• Improvements include:

– enumerated types

– metadata/autoboxing of primitive types

– enhanced for loops

– improved diagnostics and for the first time

– the use of generics

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 9



Metadata

• The Metadata feature in J2SE 1.5 provides the ability to
associate additional data alongside Java classes, interfaces,
methods, and fields.

• This additional data, or annotation, can be read by the javac
compiler or other tools, and depending on configuration can
also be stored in the class file and can be discovered at runtime
using the Java reflection API.

• For example:
@Overrides public boolean equals(Foo that) { ... }

• This annotation type allows the programmer to declare his
belief that a method declaration overrides a superclass method.

• The compiler checks whether method actually overrides a
superclass method, and reports an error if it does not, nipping
the problem in the bud.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 10



Generic Types

• Generic types enable an API designer to provide common
functionality that can be used with multiple data types and
which also can be checked for type safety at compile time.

• Before
ArrayList list = new ArrayList();

list.add(0, new Integer(42));

int total = ((Integer)list.get(0)).intValue();

• After
ArrayList<Integer> list = new ArrayList<Integer>();

list.add(0, new Integer(42));

int total = list.get(0).intValue();

• You can’t use a primitive as a type variable for your generic
collection.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 11



Autoboxing

• Converting between primitive types, like int, boolean, and their
equivalent Object-based counterparts like Integer and Boolean,
can require unnecessary amounts of extra coding.

• The autoboxing and auto-unboxing of Java primitives produces
code that is more concise and easier to follow.

• Before
ArrayList<Integer> list = new ArrayList<Integer>();

list.add(0, new Integer(42));

int total = (list.get(0)).intValue();

• After
ArrayList<Integer> list = new ArrayList<Integer>();

list.add(0, 42);

int total = list.get(0);

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 12



Enhanced for loop

• The Iterator class is used heavily by the Collections API.

• It provides the mechanism to navigate sequentially through a
Collection.

• The new enhanced for loop can replace the iterator when
simply traversing through a Collection.

• Before
ArrayList<Integer> list = new ArrayList<Integer>();

for (Iterator i = list.iterator(); i.hasNext();) {

Integer value=(Integer)i.next();

}

• After
ArrayList<Integer> list = new ArrayList<Integer>();

for (Integer i : list) { ... }

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 13



Enumerated types

• This type provides enumerated type when compared to using
static final constants.

public enum StopLight { red, amber, green };

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 14



Static Import

• The static import feature, implemented as import static,
enables you to refer to static constants from a class without
needing to inherit from it.

• Instead of BorderLayout.CENTER each time we add a
component, we can simply refer to CENTER.

import static java.awt.BorderLayout.*;

getContentPane().add(new JPanel(), CENTER);

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 15



Formatted Output

• Developers now have the option of using printf type
functionality to generated formatted output.

• This will help migrate legacy C applications, as the same text
layout can be preserved with little or no change.

• Most of the common C printf formatters are available, and in
addition some Java classes like Date and BigInteger also have
formatting rules.

System.out.printf("name count\n");

System.out.printf("%s %5d\n", user,total);

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 16



Formatted Input

• The scanner API provides basic input functionality for reading
data from the system console or any data stream.

• The Scanner methods like next and nextInt will block if no
data is available.

• If you need to process more complex input then there are also
pattern matching algorithms, available from the
java.util.Formatter class.

• The following example reads a String from standard input and
expects a following int value.

Scanner s = Scanner.create(System.in);

String param = s.next();

int value = s.nextInt();

s.close();

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 17



Varargs

• The varargs functionality allows multiple arguments to be
passed as parameters to methods.

• It requires the simple ... notation for the method that accepts
the argument list and is used to implement the flexible number
of arguments required for printf.

void argtest(Object ... args) {

for (int i=0;i <args.length; i++) {

}

}

argtest("test", "data");

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 18



Concurrency Utilities

• The concurrency utility library is a special release of the
popular concurrency package into the J2SE 1.5 platform.

• It provides powerful, high-level thread constructs, including
executors, which are

– a thread task framework

– thread safe queues

– Timers

– locks (including atomic ones)

– other synchronization primitives.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 19



Concurrency Utilities : Semaphores

• A semaphore can be used to restrict access to a block of code.

• Semaphores are more flexible and can also allow a number of
concurrent threads access, as well as allow you to test a lock
before acquiring it.

final private Semaphore s= new Semaphore(1, true);

//for non-blocking version use s.acquire()

s.acquireUninterruptibly();

balance=balance+10; //protected value

s.release(); //return semaphore token

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 20



Scalability and Performance

• The 1.5 release promises improvements in scalability and
performance with a new emphasis on startup time and memory
footprint to make it easier to deploy applications running at
top speed.

• One of the more significant updates is the introduction of class
data sharing in the Hotspot JVM. This technology not only
shares read-only data between multiple running JVMs but also
improves startup time as core JVM classes are pre-packed.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 21



Monitoring and Manageability

• The JVM Monitoring & Management API specifies a
comprehensive set of JVM internals that can be monitored
from a running JVM.

• One of the most useful features is a low memory detector or a
memory monitor.
import java.lang.management.*;

import java.util.*;

import javax.management.*;

public class MemTest {

public static void main(String args[]) {

List pools =ManagementFactory.getMemoryPoolMBeans();

for(ListIterator i = pools.listIterator(); i.hasNext();) {

MemoryPoolMBean p = (MemoryPoolMBean) i.next();

System.out.println("Memory type=" + p.getType() +

" Memory usage="+p.getUsage());

}}}

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 22



Improved Diagnostic Ability

• Generating Stack traces has been awkward if no console
window has been available.

• Two new APIs, getStackTrace and Thread.getAllStackTraces
provide this information programmatically.

StackTraceElement e[]=Thread.currentThread().getStackTrace();

for (int i=0; i <e.length; i++) {

System.out.println(e[i]);

}

System.out.println("\n"+Thread.getAllStackTraces());

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 23



Other Improvements

• Network:

– The InetAddress class now provides an API to allow testing
for the reachability of a host. This features provides a
ping-like capability in Java.

• Security:

– This release of J2SE offers significant enhancements for
security.

– Improvements for scalability (SSLEngine) and performance.

• Internationalization

– Character handling is now based on version 4.0 of the
Unicode standard.

• And many improvements/bug fix in Java Sound, AWT and
Swing.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 24



Desktop Client

• The Java Desktop client remains a key component of the Java
platform and as such has been the focus of many improvements
in J2SE 1.5.

• This Beta release contains some of the early improvements in
startup time and memory footprint.

• Not only is the release faster but the Swing toolkit enjoys a
fresh new theme called Ocean.

• And by building on the updates in J2SE 1.4.2, there are further
improvements in the GTK skinnable Look and Feel and the
Windows XP Look and Feel.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 25



JSR in Java 1.5

• 003 Java Management Extensions (JMX) Specification

• 013 Decimal Arithmetic Enhancement

• 014 Add Generic Types To The Java Programming Language

• 028 Java SASL Specification

• 114 JDBC Rowset Implementations

• 133 Java Memory Model and Thread Specification Revision

• 160 Java Management Extensions (JMX) Remote API 1.0

• 163 Java Platform Profiling Architecture

• 166 Concurrency Utilities

• 174 Monitoring and Management Specification for the Java Virtual Machine

• 175 A Metadata Facility for the Java Programming Language

• 200 Network Transfer Format for Java Archives

• 201 Extending the Java Programming Language with Enumerations,

Autoboxing, Enhanced for Loops and Static Import

• 204 Unicode Supplementary Character Support

• 206 Java API for XML Processing (JAXP) 1.3

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 26



Summary

• The JCP controls the evolution of the Java Specification.

• Java 1.5 introduces some interesting new improvements, most
of them focused at making life easier for the programmer.

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 27



Tool of the day: Eclipse

• The Eclipse Platform is designed for building integrated
development environments (IDEs) that can be used to create
applications as diverse as web sites, embedded Java programs,
C++ programs, and Enterprise JavaBeans.

• The Eclipse Platform is an IDE for anything, and for nothing
in particular.

• A plug-in is the smallest unit of Eclipse Platform function that
can be developed and delivered separately.

• Everything is built to be generic, even the User Interface tools.

• Proof by demonstration : Java Development Tooling

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 28



References

• J2SE 1.5 in a Nutshell
http://java.sun.com/developer/technicalArticles/releases/j2se15/

• Java 1.5 SDK Documentation
http://java.sun.com/j2se/1.5.0/docs/index.html

• Sun Lights Up Java 1.5 Beta
http://www.internetnews.com/dev-news/article.php/3309061

• Java Community Process http://www.jcp.org/en/home/index

April 1, 2004 Lecture 23 – Comp 303 : Java 1.5 Page 29


