How does Java work”

Comp-303 : Programming Techniques

Lecture 2

Alexandre Denault

Computer Science
McGill University
Winter 2004

February 16, 2004

Lecture 2 — Comp 303 : Programming Techniques

Page 1

Announcements

The course webpage is now up and available at the correct
address:

http://www.cs.mcgill.ca/"cs303/
Notes should be posted soon on the course webpage.

Because of a new McGill policy I discovered, the date to the
second midterm will probably change.

A regular event from 2h30 to 4h00 has been added to my
schedule every Tuesday/Thursday. That means I might be 5
minutes late to class sometimes. I apologize for the

lnconvenience.

February 16,

2004 Lecture 2 — Comp 303 : Programming Techniques

Page 2

Last lecture . ..

e Decomposition and abstraction are techniques to construct
large programs that are easy to understand, maintain and
modify.

e Abstraction allows us to ignore details and treat different
objects as thought they were the same.

e Parameterization generalizes to wider applicability

e Four kinds of abstraction:
— Procedural abstraction
— Data abstraction
— Iteration abstraction

— Type hierarchy

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 3

What is object-oriented programming?

Object-oriented programming (OOP) is a computer
programming paradigm that emphasizes the following
aspects:

e The use of objects - objects are used extensively to

modularize and structure the computer program.

o Abstraction - combining multiple smaller operations

into a single unit that can be referred to by name.

e FEncapsulation - separating implementation from

interfaces.

e Polymorphism - using the same name to invoke different

operations on objects of different data types.

e [nheritance - defining objects data types as extensions

and /or restrictions of other object data types.

(from Wikipedia.org)

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 4

Why use objects?

e The common answer to this is modularity and data hiding.

e Though this answer is correct, the true reasons to use objects

are much more elaborate.

e Requirements, by definition, have a tendency to change. This is
especially true on the work market.

e When building your design, you must not only account for
current features, but you build for the future.

e This means you must be able to safely modify your code with

each new feature.

e Object-oriented programming allows you to do this by shifting
responsibility.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 5

Why use objects? (cont.)

e Shifting responsibility is best explained with an example:

You are asked to program an application that will
simulated the behavior of students going to class Before

each class, the locations of each classroom is posted on a
board.

e If you had to program this in a procedural programming
language, you could build a switch statement that would check
the schedule of each student to find their classroom.

e This solution be compared to having a hall monitor check the
schedule (switch statement) and direct each student to their

class.

e The more intuitive solution would be to ask each student to
check the schedule themselves.

e This can easily be done with Object-Oriented programming.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 6

Why use objects? (cont.)

e In a O.0. solution, each student could be represented by an
object. Before class, each object would receive the schedule (or
a reference to it) and figure out where it needs to go.

e The behavior of each student is encapsulated within the object.

e If the specification were changed:

A new type of student must be added to the simulator:
”the visiting student”. This student has the same
behavior as a typical student, but might be required
(depending on classroom) to pick up an evaluation form
before class.

e In our procedural solution, the program must modify the large
switch to integrate this behavior.

e In the O.0. solution, the programmer can extend the student
object and add this new behavior to the visiting student object.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 7

Why use objects? (cont.)

e In our example, the responsibility of finding the class is shifted
from the scheduler to the student.

e The behavior of our student is encapsulated into the object.

e The original student object remains untouched, which can

represent an important saving in debugging time.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 8

Building blocks for abstraction

e Procedural abstraction — Method declaration
e Data abstraction — Property/Class declaration

e Type hierarchy — Class declarations Inheritance

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 9

Abstract Classes

e Java provides a mechanism for defining prescriptive classes by

placing the keyword abstract in front of a class.

e The abstract class cannot be instantiated. However, subclasses

of abstract classes can be instantiated.

e The abstract class can define abstract methods which

subclasses must implement to be concrete (can be instantiated).

e The abstract class can define methods and attributes which all

subclasses inherit.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 10

Abstract class example: Point

The classic example of an object is the Point class.

Their are numerous ways to store position over a 2D plane.
The abstract Point class allows to define the methods a class
must have to inherent from Point.

— x() and y() are abstract

— only the method signature is specified

— a concrete subclass must provide an implementation

It also allows us to define functions that should be common
among all Points.

— distance(Point other) is concrete

— the implementation defines the notion of Euclidean distance,
independent of the actual implementation of x() and y()

February 16,

2004 Lecture 2 — Comp 303 : Programming Techniques Page 11

Code for abstract class Point

public abstract class Point {

public abstract float x();
public abstract float y(Q);

public float distance(Point other) {

// Effect: Returns the Euclidian distance between two points

float dx
float dy

other.x() / this.x();
other.y() / this.y();

return sqrt(dx*dx + dyx*dy);

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 12

Code for subclass CartesianPoint

public class CartesianPoint extends Point {
private float _x, _y;
public CartesianPoint (float x, float y) {

X = X;

-y =Y

public float x() { return _x; }
public float y() { return _y; }

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 13

Code for subclass PolarPoint

public class PolarPoint extends Point {
private float _rho, _theta;
public PolarPoint (float rho, float theta) {
_rho = rho;
_theta = theta;

public float x() { return _rho * cos(_theta); }

public float y() { return _rho * sin(_theta); }

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques

Page 14

Abstraction in Point

e x() y() distance() provide abstraction by specification: all

Points have these methods.

e distance() provides parameterization abstraction:
implementation applies to all Points.
Point ¢ = new CartesianPoint(2.5,-3);

Point p = new PolarPoint(2,3.14);

c.distance(p) 7

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 15

Abstract Classes

e Tell the implementor of sub classes which functionality should

be realized

e Tell the user which functionality is supported by concrete sub

classes
e Serve as a contract : defines the interface a user can count on

e Implement functionality which all sub classes have in common

(concrete methods)

e Use abstract super class when subclasses only re-uses part of
the implementation

e Use concrete super class when a subclass is a true extension: +
fields + methods

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 16

Why extend a class 7

T'wo reasons:

e interface of sub class includes interface of super class
— subclass looks like super class from the outside

— used anywhere the super class is used

e implementation of sub class is similar to super class
— re-use implementation code

— inherit fields + method implementations

What if you don’t re-use implementation ?

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques

Page 17

Interfaces

e Interfaces are like abstract classes, but

— without any concrete methods (all methods are public and
abstract)

— without any fields other than static final fields (constants)

— use keyword implements instead of extends

e A class can extend only one class, but can implement multiple

interfaces

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 18

Point as Interface

public interface Point {
public float x();
public float y();
public float distance(Point other);

public class CartesianPoint implements Point { ...

public class PolarPoint implements Point {
e No longer any default implementation for distance(Point other).

e However, unrelated classes can provide Point functionality.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 19

Multiple Interfaces

public interface WeightedObject {
public float weight();

}

public interface ColoredObject {
public float red();
public float green();
public float blue();

public class CartesianPoint implements Point, WeightedObject,
ColoredObject {...

public class PolarPoint implements Point, WeightedObject,
ColoredObject {...

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 20

Interfaces vs. Abstract Classes

e Abstract classes define a hierarchical relationship:

— class B is a special type of class A

— B has all of A’s fields and methods

e Interfaces define a form of behavior:

— Class B behaves as specified by interface A

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 21

Why avoid multiple inheritance?

e Diamond problem:
— A inherits from B and C
— B and C both inherit from D
— Does an object of type A have one or two versions of the
field defined in D 7
e Method dispatch ambiguity:
— A inherits from B and C
— B and C both define method foo()
— Which method is executed on A.foo()?

e Any proposed solution has its problems
— huge objects in C++

— obfuscated control flow

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 22

Method Overriding

e New definition for method in a subclass: same parameter

numbers, type and order.

e Appropriate method is called by dynamic binding: determine

run time class of receiver object.

e Can not be determined at compile time:

A and B inherit from C;

C some(Object;

if (mouseClicked) {
someObject = new A(Q);

} else {

someObject = new B();

}
someObject.foo ()

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 23

Method Overloading

Methods with same name but different parameters:
— different number

— different type

— different order

Appropriate method is invoked based on the declared type of

parameters.
This can be determined at compile time.
Method Overloading is considered syntactic sugar.

Syntactic sugar is a term coined by Peter J. Landin for
additions to the syntax of a language that do not affect its

expressiveness but make it sweeter for humans to use.
(Wikipedia.org)

February 16,

2004 Lecture 2 — Comp 303 : Programming Techniques Page 24

Quiz time: What is printed 7

class A {
void foo (A a) {System.out.println("Class A Function A");}
void foo (B b) {System.out.println("Class A Function B");}
+
class B extends A {
void foo (A a) {System.out.println("Class B Function A");}
void foo (B b) {System.out.println("Class B Function B");}
+
public class madness {
public static void main (String args[]) {
A aa = new AQ);
A ab = new BQ);
B bb = new BQ);
aa.foo(aa); aa.foo(ab); aa.foo(bb);
ab.foo(aa); ab.foo(ab); ab.foo(bb);
bb.foo(aa); bb.foo(ab); bb.foo(bb);

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 25

Confusion

A aa = new A;
A ab = new B;
B bb = new B;
aa.foo(aa); aa.foo(ab); aa.foo(bb);
ab.foo(aa); ab.foo(ab); ab.foo(bb);
bb.foo(aa); bb.foo(ab); bb.foo(bb);

e For parameters, only consider the declared type.
e For receiver, care only about the instantiated type.

e To avoid confusion, don’t mix overloading with overriding.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 26

Example of responsible overloading

public abstract class Document {
public print () {
this.print(defaultPrinter)
}
// print this document
public abstract print (Printer p);

public class pdfFile extends Document {
public print (Printer p) {}

public class psFile extends Document {

public print (Printer p) {}

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 27

An other example of abstraction

Building a drawing program, the object-oriented way.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 28

Design Patterns

e By using these basic components, we can construct software

architectures with re-usable components.

e Design patterns are

collections of data abstractions

programming tricks

common usage of object-oriented constructs
similar to architectural standards (living room)

a common language for software architectures

e [teration abstraction is a design pattern.

February 16, 2004

Lecture 2 — Comp 303 : Programming Techniques

Page 29

Summary

e O.0. Programming allows programmers to shift responsibility.

e Java has a rich set of abstraction building blocks:
— Abstract classes (concrete)
— Interfaces
— Overloading
— Overriding

e Design patterns are built from basic constructs.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 30

Tool of the day

e When I have the opportunity, I want to introduce new tools

related to Java.

e It could be a JVM, a compiler, an editor, or any tool related to

(or built in) Java.

e If you ever have a suggestion for the tool of the day, please feel

free to send me an email.

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 31

iBdit

e jEdit is an open source programmer’s text editor.

e It’s built in Java, so you can use it on any platform : Windows,
Unix, Mac-OS, Os/2, etc

e It’s a mature project (over 5 years old) and it is built to be
extended.

(The following list was taken from the program webpage).

— Built-in macro language; extensible plugin architecture.

Dozens of macros and plugins available.

— Plugins can be downloaded and installed from within jEdit

using the ”plugin manager” feature.

— Auto indent, and syntax highlighting for more than 80
languages.

e You can download jEdit at:

http://www. jedit.org/

February 16, 2004 Lecture 2 — Comp 303 : Programming Techniques Page 32

