
How does Java work?

Comp-303 : Programming Techniques

Lecture 2

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 1



Announcements

• The course webpage is now up and available at the correct
address:

http://www.cs.mcgill.ca/~cs303/

• Notes should be posted soon on the course webpage.

• Because of a new McGill policy I discovered, the date to the
second midterm will probably change.

• A regular event from 2h30 to 4h00 has been added to my
schedule every Tuesday/Thursday. That means I might be 5
minutes late to class sometimes. I apologize for the
inconvenience.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 2



Last lecture . . .

• Decomposition and abstraction are techniques to construct
large programs that are easy to understand, maintain and
modify.

• Abstraction allows us to ignore details and treat different
objects as thought they were the same.

• Parameterization generalizes to wider applicability

• Four kinds of abstraction:

– Procedural abstraction

– Data abstraction

– Iteration abstraction

– Type hierarchy

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 3



What is object-oriented programming?

Object-oriented programming (OOP) is a computer
programming paradigm that emphasizes the following
aspects:
• The use of objects - objects are used extensively to

modularize and structure the computer program.

• Abstraction - combining multiple smaller operations
into a single unit that can be referred to by name.

• Encapsulation - separating implementation from
interfaces.

• Polymorphism - using the same name to invoke different
operations on objects of different data types.

• Inheritance - defining objects data types as extensions
and/or restrictions of other object data types.

(from Wikipedia.org)

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 4



Why use objects?

• The common answer to this is modularity and data hiding.

• Though this answer is correct, the true reasons to use objects
are much more elaborate.

• Requirements, by definition, have a tendency to change. This is
especially true on the work market.

• When building your design, you must not only account for
current features, but you build for the future.

• This means you must be able to safely modify your code with
each new feature.

• Object-oriented programming allows you to do this by shifting
responsibility.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 5



Why use objects? (cont.)

• Shifting responsibility is best explained with an example:

You are asked to program an application that will
simulated the behavior of students going to class Before
each class, the locations of each classroom is posted on a
board.

• If you had to program this in a procedural programming
language, you could build a switch statement that would check
the schedule of each student to find their classroom.

• This solution be compared to having a hall monitor check the
schedule (switch statement) and direct each student to their
class.

• The more intuitive solution would be to ask each student to
check the schedule themselves.

• This can easily be done with Object-Oriented programming.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 6



Why use objects? (cont.)

• In a O.O. solution, each student could be represented by an
object. Before class, each object would receive the schedule (or
a reference to it) and figure out where it needs to go.

• The behavior of each student is encapsulated within the object.

• If the specification were changed:

A new type of student must be added to the simulator:
”the visiting student”. This student has the same
behavior as a typical student, but might be required
(depending on classroom) to pick up an evaluation form
before class.

• In our procedural solution, the program must modify the large
switch to integrate this behavior.

• In the O.O. solution, the programmer can extend the student
object and add this new behavior to the visiting student object.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 7



Why use objects? (cont.)

• In our example, the responsibility of finding the class is shifted
from the scheduler to the student.

• The behavior of our student is encapsulated into the object.

• The original student object remains untouched, which can
represent an important saving in debugging time.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 8



Building blocks for abstraction

• Procedural abstraction – Method declaration

• Data abstraction – Property/Class declaration

• Type hierarchy – Class declarations Inheritance

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 9



Abstract Classes

• Java provides a mechanism for defining prescriptive classes by
placing the keyword abstract in front of a class.

• The abstract class cannot be instantiated. However, subclasses
of abstract classes can be instantiated.

• The abstract class can define abstract methods which
subclasses must implement to be concrete (can be instantiated).

• The abstract class can define methods and attributes which all
subclasses inherit.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 10



Abstract class example: Point

• The classic example of an object is the Point class.

• Their are numerous ways to store position over a 2D plane.

• The abstract Point class allows to define the methods a class
must have to inherent from Point.

– x() and y() are abstract

– only the method signature is specified

– a concrete subclass must provide an implementation

• It also allows us to define functions that should be common
among all Points.

– distance(Point other) is concrete

– the implementation defines the notion of Euclidean distance,
independent of the actual implementation of x() and y()

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 11



Code for abstract class Point

public abstract class Point {

public abstract float x();

public abstract float y();

public float distance(Point other) {

// Effect: Returns the Euclidian distance between two points

float dx = other.x() / this.x();

float dy = other.y() / this.y();

return sqrt(dx*dx + dy*dy);

}

}

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 12



Code for subclass CartesianPoint

public class CartesianPoint extends Point {

private float _x, _y;

public CartesianPoint (float x, float y) {

_x = x;

_y = y;

}

public float x() { return _x; }

public float y() { return _y; }

}

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 13



Code for subclass PolarPoint

public class PolarPoint extends Point {

private float _rho, _theta;

public PolarPoint (float rho, float theta) {

_rho = rho;

_theta = theta;

}

public float x() { return _rho * cos(_theta); }

public float y() { return _rho * sin(_theta); }

}

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 14



Abstraction in Point

• x() y() distance() provide abstraction by specification: all
Points have these methods.

• distance() provides parameterization abstraction:
implementation applies to all Points.

Point c = new CartesianPoint(2.5,-3);

Point p = new PolarPoint(2,3.14);

c.distance(p) ?

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 15



Abstract Classes

• Tell the implementor of sub classes which functionality should
be realized

• Tell the user which functionality is supported by concrete sub
classes

• Serve as a contract : defines the interface a user can count on

• Implement functionality which all sub classes have in common
(concrete methods)

• Use abstract super class when subclasses only re-uses part of
the implementation

• Use concrete super class when a subclass is a true extension: +
fields + methods

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 16



Why extend a class ?

Two reasons:

• interface of sub class includes interface of super class

– subclass looks like super class from the outside

– used anywhere the super class is used

• implementation of sub class is similar to super class

– re-use implementation code

– inherit fields + method implementations

What if you don’t re-use implementation ?

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 17



Interfaces

• Interfaces are like abstract classes, but

– without any concrete methods (all methods are public and
abstract)

– without any fields other than static final fields (constants)

– use keyword implements instead of extends

• A class can extend only one class, but can implement multiple
interfaces

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 18



Point as Interface

public interface Point {

public float x();

public float y();

public float distance(Point other);

}

public class CartesianPoint implements Point { ...

public class PolarPoint implements Point { ...

• No longer any default implementation for distance(Point other).

• However, unrelated classes can provide Point functionality.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 19



Multiple Interfaces

public interface WeightedObject {

public float weight();

}

public interface ColoredObject {

public float red();

public float green();

public float blue();

}

public class CartesianPoint implements Point, WeightedObject,

ColoredObject {...

public class PolarPoint implements Point, WeightedObject,

ColoredObject {...

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 20



Interfaces vs. Abstract Classes

• Abstract classes define a hierarchical relationship:

– class B is a special type of class A

– B has all of A’s fields and methods

• Interfaces define a form of behavior:

– Class B behaves as specified by interface A

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 21



Why avoid multiple inheritance?

• Diamond problem:

– A inherits from B and C

– B and C both inherit from D

– Does an object of type A have one or two versions of the
field defined in D ?

• Method dispatch ambiguity:

– A inherits from B and C

– B and C both define method foo()

– Which method is executed on A.foo()?

• Any proposed solution has its problems

– huge objects in C++

– obfuscated control flow

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 22



Method Overriding

• New definition for method in a subclass: same parameter
numbers, type and order.

• Appropriate method is called by dynamic binding: determine
run time class of receiver object.

• Can not be determined at compile time:

A and B inherit from C;

C someObject;

if (mouseClicked) {

someObject = new A();

} else {

someObject = new B();

}

someObject.foo()

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 23



Method Overloading

• Methods with same name but different parameters:

– different number

– different type

– different order

• Appropriate method is invoked based on the declared type of
parameters.

• This can be determined at compile time.

• Method Overloading is considered syntactic sugar.

Syntactic sugar is a term coined by Peter J. Landin for
additions to the syntax of a language that do not affect its
expressiveness but make it sweeter for humans to use.

(Wikipedia.org)

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 24



Quiz time: What is printed ?

class A {

void foo (A a) {System.out.println("Class A Function A");}

void foo (B b) {System.out.println("Class A Function B");}

}

class B extends A {

void foo (A a) {System.out.println("Class B Function A");}

void foo (B b) {System.out.println("Class B Function B");}

}

public class madness {

public static void main (String args[]) {

A aa = new A();

A ab = new B();

B bb = new B();

aa.foo(aa); aa.foo(ab); aa.foo(bb);

ab.foo(aa); ab.foo(ab); ab.foo(bb);

bb.foo(aa); bb.foo(ab); bb.foo(bb);

}

}

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 25



Confusion

A aa = new A;

A ab = new B;

B bb = new B;

aa.foo(aa); aa.foo(ab); aa.foo(bb);

ab.foo(aa); ab.foo(ab); ab.foo(bb);

bb.foo(aa); bb.foo(ab); bb.foo(bb);

• For parameters, only consider the declared type.

• For receiver, care only about the instantiated type.

• To avoid confusion, don’t mix overloading with overriding.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 26



Example of responsible overloading

public abstract class Document {

public print () {

this.print(defaultPrinter)

}

// print this document

public abstract print (Printer p);

}

public class pdfFile extends Document {

public print (Printer p) {}

}

public class psFile extends Document {

public print (Printer p) {}

}

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 27



An other example of abstraction

Building a drawing program, the object-oriented way.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 28



Design Patterns

• By using these basic components, we can construct software
architectures with re-usable components.

• Design patterns are

– collections of data abstractions

– programming tricks

– common usage of object-oriented constructs

– similar to architectural standards (living room)

– a common language for software architectures

• Iteration abstraction is a design pattern.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 29



Summary

• O.O. Programming allows programmers to shift responsibility.

• Java has a rich set of abstraction building blocks:

– Abstract classes (concrete)

– Interfaces

– Overloading

– Overriding

• Design patterns are built from basic constructs.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 30



Tool of the day

• When I have the opportunity, I want to introduce new tools
related to Java.

• It could be a JVM, a compiler, an editor, or any tool related to
(or built in) Java.

• If you ever have a suggestion for the tool of the day, please feel
free to send me an email.

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 31



jEdit

• jEdit is an open source programmer’s text editor.

• It’s built in Java, so you can use it on any platform : Windows,
Unix, Mac-OS, Os/2, etc

• It’s a mature project (over 5 years old) and it is built to be
extended.
(The following list was taken from the program webpage).

– Built-in macro language; extensible plugin architecture.
Dozens of macros and plugins available.

– Plugins can be downloaded and installed from within jEdit
using the ”plugin manager” feature.

– Auto indent, and syntax highlighting for more than 80
languages.

• You can download jEdit at:
http://www.jedit.org/

February 16, 2004 Lecture 2 – Comp 303 : Programming Techniques Page 32


