
Design Patterns, Singleton

Comp-303 : Programming Techniques

Lecture 17

Alexandre Denault

Computer Science

McGill University

Winter 2004

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 1



Last lecture . . .

• The purposes, goals and process of design.

• Between design and implementation, a systematic design

review should take place.

– Procedures

– Types

– Modules

• Before the implementation, several big decision must be made :

top-down vs. bottom-up.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 2



Origins of Design Patterns

• Years ago, an architect named Christopher Alexander asked

himself: ”Is quality objective?”

• This architect was looking to measure if an architectural design

is good.

• In other word, he wanted to find a way where beauty could be

measured through an objective basis.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 3



From Anthropology to Architecture

• Within a culture, individuals will agree to a large extend on

what is considered to be a good design.

• These behavior of a culture can be broken down in patterns.

• Thus, we only need to determine the patterns that people

consider good design.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 4



What are patterns?

• Christopher Alexander tried separating patterns into categories

of architectural structures.

• However, two structures (i.e porches) may appear structurally

different, yet both be of high quality.

• Instead, he looked at separating structure structures depending

on the problem they solve.

• By narrowing his focus this way, he discovered that he discern

similarities between designs that were high quality.

• He defined a pattern as a solution to a problem in context.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 5



From Architecture to Software

• In the early 1990s, some developers happened upon

Alexander’s work in patterns.

• They wondered if what was true for architectural patterns was

also true for software design.

• The answer was yes.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 6



The Design Pattern Bible

• In the 1990s, Gamma, Helm, Johnson and Vlissides published

what is known today as the bible of Design Patterns.

• Because of the success of this work, these four authors are

know as the gang of four.

• The book is a catalogue of 23 design patterns.

• It also provides a look into the usefulness of design patterns.

• The book also provides a standard of describing design

patterns.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 7



References

• For the next 6 or 7 classes, I will be relying heavily on these

three books:

– Design Patterns, Elements of Reusable Object-Oriented

Software; Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides; Addison Wesley; 1995

– Java Design Patterns, a Tutorial; James W. Cooper

Addison Wesly; 2000

– Design Patterns Explained, A new Perspective on Object

Oriented Design; Alan Shalloway, James R. Trott; Addison

Wesley; 2002

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 8



Why do we use Design Patterns?

• Design Patterns represent proven solutions to well known

problems.

• Design Patterns also allow us to have a common terminology.

• Design Patterns give you a higher level view of problems and

designs, thus allowing you solve them without immediately

going into details.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 9



Describing a Design Pattern

The description of a design pattern can be broken down into the

following sections:

• Pattern Name and Classification : The name of the pattern

and it’s classification.

– Creational: Patterns that deal with creating objects

– Structural: Patterns that deal with how we order/organize

our objects/classes

– Behavioral: Patterns that deal with how objects interact

• Intent : What does the pattern do? What problem does it

address?

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 10



Describing a Design Pattern

• Also Known As : Some patterns have other well-known name.

• Motivation : A scenario that describes the problem and shows

how it is solved.

• Applicability : When must we apply the pattern? How do I

recognize these situation.

• Structure : UML diagram of the pattern.

• Participants : Classes/objects participating in the design

pattern and their responsibilities.

• Collaborations : How participants collaborate.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 11



Describing a Design Pattern

• Consequences : What are the trade-offs and results of using

this pattern.

• Implementation : How do we build it?

• Sample Code : Example code on how to build the pattern.

• Known Uses : Examples of where the pattern can be found.

• Related Patterns : How are the other patterns related to this

one?

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 12



Which pattern will we look at?

• Previously: Iterator

• Today: Singleton

• March 16th: Factory / Abstract Factory

• March 18th: Adapter and Bridge

• March 23rd: Flyweight

• March 25th: Chain of responsibility

• March 30th: Command

• April 1st: Haven’t decided yet

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 13



Singleton

• Pattern Name : Singleton

• Classification : Creational

• Intent : Ensure a class only has one instance, and provide a

global point of access to it.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 14



Motivation

• Some classes should have only one instances.

• For example, a computer should only have one print spooler,

one window manager, etc.

• But how do we make sure that only one instance of a class can

be created.

• Globals are ugly, so we want to avoid them. Singletons can

actually replace global variables in many situations.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 15



Applicability

The Singleton pattern should be used when . . .

• . . . there must be exactly one instance of a class and it must be

accessible to clients from a well-known access point.

• . . . the sole instance should extensible by subclassing, and

clients should be able to use an extended instance without

modifying there code.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 16



Structure

Singleton

 static uniqueInstance

 singletonData

 static Instance()

 SingletonOperation()

 GetSingletonData()

return uniqueInstance

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 17



Participants

• The Singleton Object itself

– Defines an operation (Instance() ?) which returns an

instance of itself.

– May be responsible for it’s own creation.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 18



Collaborations

• Other objects can only use the single instance of that object.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 19



Consequences

• Controlled access to sole instance: Since Singleton is the sole

instance of that class, the programmer has complete control on

how and when the clients use it.

• Reduce name space: The use of singleton allows us to avoid

globals, which are ugly.

• Permits refinement of operations and representation: The

singleton can be subclassed.

• Permits a variable number of instance: You can easy modify a

singleton to allow a limited number of instance to be created.

Of course, you would need to modify the Instance() method.

• More flexible than class operations: In other words, they can

be implemented with static members.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 20



Implementation

• When implementing a singleton, the first thing we need to do is

to prevent the user from creating multiple instances.

• One strategy is to prevent the user from creating the object

himself.

• We can block of the default constructor by making it private.

• Then, we only need to provide a static method to allow the

user to retrieve the singleton.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 21



First Example

public class MySingleton{

private static MySingleton singleInstance;

private MySingleton() {

//Empty Constructor

}

public static MySingleton instance(){

if (singleInstance == null) {

singleInstance = new MySingleton();

}

return singleInstance;

}

public int methodX() P

// do something here

}

}

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 22



Using the First Example

...

MySingleton singleObject = MySingleton.instance();

int i = singleObject.methodX();

...

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 23



Good, but not perfect

• The previous example is fairly simple and will only allow one

instance of the class.

• If the user tries to create a MySingleton manually, it will fail

since all constructors are private.

• However, when the user calls instance(), he has no way of

knowing if the singleton already existed.

• This method also doesn’t survive subclassing unless you force

the user to re-implement the instance() method.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 24



Second Example

public class MySingleton{

static boolean instanceFlag = false;

public MySingleton() {

if (instanceFlag == true) {

throw new SingleException("Only one of this type allowed");

} else {

instanceFlag = true;

}

}

public int methodX() P

// do something here

}

}

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 25



Still not perfect

• This implementation is a little bit easier to subclass. However,

the subclass must call the constructor of the superclass.

• The second example also provides more flexibility with the

constructor.

• However, the user had no global visibility of the existing object.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 26



Known Uses

• The StringManager Class in Tomcat is a singleton.

• Each package in Tomcat has a StringManager object to

manage error messages.

• When an error message needs to be printed, the program must

get the handle for the StringManager of that package.

• It would be wasteful to create two StringManager for the same

package.

• Instead, if the StringManager object is already create, it will

be returned (instead of creating a new object).

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 27



Summary

• The origins of Design Patterns can be traced back to

Architecture.

• By using Design Patterns, we are re-using solutions to well

know problems.

• The Singleton pattern should be used when only one copy of an

object should be created.

• There are two ways to implement singletons in Java, each with

their own advantages.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 28



Tool of the day: Me and the T.A.

• Office Hours:

– Teacher : Tuesday & Thursday: 1h00 - 2h30

– T.A. : Monday & Wednesday: 12h00 - 13h30

• We are receiving very little visitors during our office hours.

• Only two teams have asked advice on the architecture of their

project.

• If you don’t ask us questions, we can’t help out.

• The correction for the project is very harsh and very

competitive.

• The only exception ... I don’t know Swing or AWT.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 29



Announcements

• Please be in class on times.

• The courses on design patterns are shorter, so getting to class

on time is important.

• Interview week for the project will be held after midterm 2.

March 16, 2004 Lecture 17 – Comp 303 : Design Patterns, Singleton Page 30


