
Requirement Analysis

Comp-303 : Programming Techniques

Lecture 15

Alexandre Denault
Computer Science
McGill University

Winter 2004

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 1



Last lecture . . .

• Testing is a way of validating correctness of your code.

• Black-box testing is generated from the specification. It always
remains, even when implementation changes.

– check boundary conditions

– check each path through the specifications

• Glass-box testing complements BB-testing by testing each path
in your code.

– all branches in a conditional

– 0,1,2 iterations

– 0 and 1 recursive call

• Debugging allows you to find and correct errors using the
scientific method.
(analyze data, formulate hypothesis, try to disprove)

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 2



The traditional software life cycle

Requirement Analysis

Design

Implementation & Test

Acceptance Test

Production

Modif. & Maintenance

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 3



Elements of the software life cycle

• Requirement Analysis: The customer desires some services.
Those service are analyzed. The result is the requirements
document.

• Design : The required program is broken down (decomposed)
into modules.

• Implementation & Test: Modules are then implemented.

– Individual modules are verified with unit tests.

– Multiple modules are verified with integration tests.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 4



Elements of the software life cycle

• Acceptance Test: We evaluate the program independently of
design. In other words, we test using the requirements
document. This is sometimes done by a 3rd party. A trial is
sometimes run un the real environment.

• Production : The program enters its useful life.

• Modification & Maintenance: Errors can still occur. We fix
them as we find them (maintenance). Requirements can also
change. These require modification of the existing program.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 5



Waterfall vs. Spiral

• Ideally, each phase is completed before next phase is started.
We can thus use the waterfall model.

• In practice, parts of a phase can be started before next.

• Breakdown a project into phases reduces overall development
time.

• However, errors may be found, forcing feedback and
backtracking to earlier phases.

• This fits the description of the Spiral model.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 6



Prototypes

• One way to detect errors in requirements early is to build a
prototype and give it to users as soon as possible (throw away
prototype, start over).

• We can iterate through the requirement, design,
implementation and acceptance phases.

• Advantages:

– Errors in requirements will become obvious once the
prototype is in the hands of customer.

• Disadvantages:

– In complex systems, prototypes costs more to implement.
They may be too valuable to throw away.

– Prototype may be poor basis for final development.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 7



Goals of requirements analysis

• Requirements provide a precise description of the needs of the
customer.

• A product may be developed before the customer exists. In
that case, a group in the organization plays the role of the
customer.

• A customer’s description of this needs might not be complete
or precise.

• The goal of requirements analysis is to gather complete and
precise description.

• Gathering requirements is a skill.

• In these scenario, the customer is king (or at least, thinks he
is).

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 8



Existing systems

• Usually a new product replaces an existing system.

• This system might be . . .

– . . . non-computerized.

– . . . a combination of programs and external process.

– . . . a program with unsatisfactory performance.

• The existing system might give you information on how to do
things.

– Methods for normal processing.

– How to deal with errors.

– Integration in organizational context.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 9



Existing systems

• The existing system might give you information on what needs
to be done.

– Missing parts (external process to be incorporated).

– Unsatisfactory parts which need better performance.

• Requirements analysis considers . . .

– . . . normal cases

– . . . user errors (often neglected)

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 10



Scenarios

• A scenario is a step-by-step walk-through of an interaction
with a system.

• Start with scenarios that capture typical interaction, assuming
the user does not make errors.

• Next, consider scenarios that cover user errors.

• If you want to properly document these scenarios, you need to
build Use Cases.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 11



Users errors

• Errors can be dealt with in a variety of ways:

– Design the user interface to prevent errors.
e.g. masks

– Recognize erroneous input and reject commands.
e.g. validations

• Some errors can not be detected immediately.
e.g. A bank clerk makes an error in the amount deposited in an
account. This error will not be detected until client examines
monthly statement.

– We need to provide recovery actions as part of requirements.

– Some Some recovery actions might require external action
e.g. A check bounces because of bank error. An action is
required on the part of bank such as a phone call.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 12



System errors

• Most scenario’s describe system responses when the system is
working properly.

• This does not help us to define behavior when the system fails.

• The analyst must decided the amount of effort spent to detect
and handle software errors.

– Limit the scope by checking critical modules for reasonable
results and shut down on failure.

– Restart in a clean state.

– Always log information about failures to preserve
information about errors.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 13



Hardware errors

• Analyst must decide what to do and how to prevent hardware
failures.

• High availability: system is up and running all the time
(failures are infrequent). This requires use of redundant
software or hardware
(e.g. RAID: Redundant Array of Inexpensive Disks).

• High reliability: if the system fails, no information is lost
(failures are recoverable).
(e.g. a daily incremental backup system using tapes stored
off-site)

• Availability and reliability are often confused. For example, a
RAID does not increase reliability. You still need backups.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 14



Performance requirements

• Performance requirements consist of both space (resource) and
time requirements (one is traded off for the other).

• First find out if there are hard limits in either dimension

– Programs may have to run on a microcomputer with limited
memory.

– Flight controllers may have to calculate altitude of airplane
every 1/10th of a second.

• Time requirements may be broken down into two categories:

– Throughput: amount of data processed in time interval.

– Response time: time between interaction with system.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 15



Requirements affecting design

• Some requirements are not part of the finished product but do
affect the design phase.

• Modifiability: which parts of the system are likely to change in
the near future. The design can be shaped to simplify certain
changes.

• Reusability: which parts of the system are likely to be reused
in future versions or similar systems. The design can be shaped
to enable reuse.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 16



Constraints on delivery schedule

• The system may be needed very soon.

• This affects the design by trading off performance for simplicity
of implementation.

• Some parts of the system may be needed earlier.

• This affects implementation schedule and design.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 17



Summary

• Functional requirements:

– How does a correctly functioning program respond to
correct and incorrect user interactions?

– How does the program respond to hardware and software
errors?

• Performance requirements:

– How fast must certain actions perform?

– What are the constraints on primary and secondary storage?

• Potential modifications:

– What are likely changes or extensions to the product?

• Delivery schedule:

– Which parts of the product need to be delivered early?

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 18



Midterm Results

• The average was 70%.

• Reading the questions will help you answer the question.

• The booklet has lines, use them.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 19



Question 1.1

What is abstraction? How does abstraction relate to
decomposition?

Abstraction is decomposition by changing the level of detail to be
considered. It allows us to forget information and consequently to
treat things that are different as if they were the same.

Success Rate: 77 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 20



Question 1.2

What is the difference between an abstract class and an interface?

An abstract class can contain code and can only be inherited once.
An interface cannot contain code and can be inherited multiple
times.

Success Rate: 77 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 21



Question 1.3

What is the difference between overloading and overriding?

Overloading allows multiple functions with the same name, but
taking different types, to be defined. Overriding allows a class to
replace the implementation of method that it has inherited from the
super-class.

Success Rate: 77 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 22



Question 1.4

What is a Java primitive?

Any variable that is not an object.

Success Rate: 73 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 23



Question 1.5

What is the difference between a total and a partial
implementation of a function?

A total implementation of a function will accept any input. The
partial implementation of a function will have a REQUIRES clause
and will limit the scope of the input that can be given to the
function.

Success Rate: 91 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 24



Question 1.6

What is minimal constraining?

When minimal constraining, specification should constrain details
of the procedure only to the extent necessary. In other words, we
should impose the minimum number of constrains on the input of a
function.

Success Rate: 73 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 25



Question 1.7

What is the difference between == and the equals method?

The == sign is built into the Java language and will compare
objects by reference. Equals() is a method defined at the object level
and should compare mutable objects by reference and immutable
objects by content.

Success Rate: 82 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 26



Question 1.8

What is the difference between declaring a function public and
declaring a function protected?

A protected function is visible only to classes inside the same
package and subclasses (even those outside the package). By
contrast a public function is visible everywhere and by all subclasses.

Success Rate: 32 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 27



Question 1.9

Why do most exceptions have the word Exception at the end of
their name?

It’s a convention. It makes it easier to recognize exceptions when
reading code.

Success Rate: 45 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 28



Question 1.10

What is the difference between an iterator and a generator?

The iterator is a procedure that returns a generator object. A
generator (implements java.util.Iterator) is an object that produces
the elements (that does the enumerations).

The iterator is also an interface in the Java library which defines
the behavior of the generator.

Success Rate: 45 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 29



Question 1.11

Why must Java do method dispatch at runtime?

Because the compiler does not know the real type of an object. It
only know the apparent type (which is not enough for method
dispatch).

Success Rate: 82 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 30



Question 1.12

What is the difference between the Comparable interface and the
Comparator interface.

Comparable allows an object to compare itself to another compatible
object. This is called the element subtype approach. Comparator is
used to compare two separate object with implementing it at the
level of the objects. This is called the related subtype approach.

Success Rate: 64 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 31



Question 1.13

Why would a programmer use the Runnable interface instead of
extending the Thread class?

Java only allows single inheritance. This means that if an object is
already extending another object, the programmer must use the
Runnable interface instead.

Success Rate: 50 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 32



Question 1.14

What is the difference between a Socket object and a ServerSocket
object?

The Socket object is the end-point for a TCP/IP communication.
The ServerSocket object only listens for new connections and
accepts them.

Success Rate: 64 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 33



Question 1.15

How do you make an object serializable? What method(s) do you
need to implement?

You only need to implement the Serializable interface. There are
NO methods you NEED to implement.

Success Rate: 50 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 34



Question 2.1

What will be printed to STDOut?

Class A Function A

Class B Function A

Class B Function B

Class B Function A

Class B Function A

Class B Function A

You lost 1 point per incorrect answer (maximum of 2).

Success Rate: 70 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 35



Question 2.2

Assuming memory has just been garbage collected and no dead
object remains, after the following two statements, how many dead
Poly objects does the heap have?

The following piece of code will create an object:

new Poly()

sub()

new Poly(5,2)

add()

add()

minus()

add()

new Poly(4,3)

minus

That makes 9 objects. Since there is only one reference, the 8 others

will be dead in the heap.

Success Rate: 68 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 36



Question 3

Draw a simple UML diagram (no methods or properties) to
describe the following game software.

LogicEngine

GameBoard

Tile
64

1

Treasure
0..*

1

TravelTileDangerTile BonusTiles

Trap
0..1

1

You got 1 point if you had less that 3 errors in your diagram.
Success Rate: 73 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 37



Question 4

Name one tool of the day we saw at the end of a class and explain
how it is related to Java and/or this class.

All of the following were valid tools of the day:

• Air Conditioners

• CVS

• Nokia 5100

• Dia

• jEdit

• Jikes

• JavaDoc

Success Rate: 95 %

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 38



Tool of the day: Jar files

• The JavaTM Archive (JAR) file format enables you to bundle
multiple files into a single archive file.

• Creating a Jar file is very similar to creating a Tar file (or Zip).

• The JAR file format provides many benefits :

– Packaging: You can bundle multiple files into a single.

– Security: You can digitally sign the contents of a JAR file.

– Compression: The JAR format allows you to compress your
files for efficient storage.

– Portability: The mechanism for handling JAR files is a
standard part of the Java platform’s core API.

March 10, 2004 Lecture 15 – Comp 303 : Requirement Analysis Page 39


