
Thread Programming

Comp-303 : Programming Techniques

Lecture 11

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 1

Announcements

• We have a big lecture ahead of us today.

• You’re getting back the Project Req&Spec Document.

• You’re getting back Assignment 1.

• Assignment 2 will be handed out today.

• The midterm is next week.

• Valentine’s day is Saturday.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 2

Project Req&Spec

• No changes in any project.

• Stapling the sheets together is a MINIMUM!

• Here are the class projects.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 3

Assignment 1

• Read the specification (largerThan is not greaterThan)

• A BigInt powers 0 gives 1.

• Code reuse was important.

• Immutable means the properties are read only.

• Storing larger numbers was OK.

• Scripts used to correct are available on the course website.

• Questions about grades are to be directed to the T.A. (office
hours)

• T.A.’s policy: No paper copy, no grades

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 4

Assignment 2

In this assignment, you must implement the BigIntSet data
abstraction using the BigInt abstraction you built in your first
assignment.

BigIntSet can store a collection of large integer numbers (BigInts).
Users can arbitrary add and remove BigInt from the set. Using the
Adder interface, users can calculate in various ways the sum of
elements in this set. Users can also use the Comparator interface to
define an order in the set and obtain a sorted iterator.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 5

Assignment 2

To solve this assignment, you will need a BigInt class. You are free
to use either your solution or the T.A.’s solution (found on the
course webpage). Please note that the T.A.’s solution is not
guaranteed to be free of bugs, thought it has been extensively
tested. If you do find a bug, it is up to you to fix it (this is just
one of the quirks of working with somebody else’s code).

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 6

Assignment 2

• Modify the BigInt class so it can implement the Comparable
interface.

• Modify the BigInt class so it can implement the Cloneable
interface.

• Fill in the bodies of the methods of class BigIntSet.
(constructors, add, choose, elements, isIn, remove, sort and
sum)

• Add methods ”String toString()” and ”boolean equals(Object
o) with specifications.

• Build a generator class for the BigIntSet iterator function (see
elements).

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 7

Assignment 2

• Build a CollectionHasChangedException class extending the
Runtime Exception class. You are free to add any methods you
think are appropriate.

• Build the following object using the Adder interface:

– BigIntAdder: This object will simply add two BigInt and
return the result as a BigInt.
i.e. return o1+o2

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 8

Assignment 2

• Build the following two objects using the Comparator interface.

– BigIntCompare: Compares two BigInt object in the
following way:

– if o1 is larger than o2, return a positive number
– if o1 is equal to o2, return 0
– if o1 is smaller than o2, return a negative number

– BigIntInverseCompare: Compares two BigInt object in the
following way:
– if o1 is larger than o2, return a negative number
– if o1 is equal to o2, return 0
– if o1 is smaller than o2, return a positive number

• Create the appropriate test code to test all of these
functionalities.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 9

Assignment 2

This assignment must be submitted on WebCT and in paper
format (drop off box in McConnell). You must submit all the Java
files the T.A. will need to correct your assignment (that means
don’t forget to resubmit your modified BigInt class).

Make sure you respect the specifications. This means that a
method without REQUIRES specifications should accept all inputs
(Total implementation), and that a method with REQUIRES specs
should preserve those specs.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 10

Last lecture . . .

• Polymorphic abstractions provide a way to abstract from the
types of parameters.

• Procedures, Iterators and data abstractions can benefit from
polymorphic abstraction.

• A polymorphic abstraction usually requires certain methods to
apply to the parameters.

• In the element subtype approach, an interface defines these
methods which take a parameter object as receiver (define a
supertype).

• In the related subtype approach, an interface defines a new
object type which has these methods that take parameter
objects as arguments.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 11

Sorting Game

Sort order: As, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 12

References and additional material

• This course is heavily inspired from the Sun’s Thread Tutorial
(i.e. a lot of material was taken directly from the tutorial):

http://java.sun.com/docs/books/tutorial/essential/threads/index.html

• A good (but advanced) book on concurrency would be:

Multithreaded, Parallel, and Distributed Programming

Gregory R. Andrews

Addison Wesley

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 13

Sequential Programming

• Every programmer knows how to program sequentially.

• These programs have a beginning, an execution sequence and
an ending.

• At any given point, there is only one point of execution.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 14

Use of threading

• Threading is often used without us recognizing it :

– In a Web Browser, you can scroll a webpage while it is
being loaded.

– In a Word Processor, you mistakes are highlighted while you
type.

– In an Email client, new emails are retrieved while you read
older messages.

– In XCode, your program is being compiled as you write it.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 15

What are threads

• A thread is similar to a real process . . .

– Both have independent flow of control.

– Both are time-shared (and scheduled) on single CPU
machines.

• However, threads lack several features of real processes . . .

– Threads within a process share resources (memory, file
descriptors, etc).

– Since less resources are allocated to threads, the context
switch between them is much faster.

• Sometimes, the names lightweight process or execution context
are used to describe a thread.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 16

Building a thread

• The execution of a thread is defined by a run method.

• By implementing this run method, you define the behavior of
that thread.

• There are two ways of implementing a run method for a thread

– Subclassing Thread and Overriding run

– Implementing the Runnable Interface

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 17

Subclassing Thread and Overriding run

public class SimpleThread extends Thread {

private String name;

public SimpleThread(String str) {

this->name = str;

}

public void run() {

for (int i = 0; i < 8; i++) {

System.out.println(i + " " + this->name);

try {

sleep((long)(Math.random() * 1000));

} catch (InterruptedException e) {}

}

System.out.println("DONE! " + this->name);

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 18

Using our new thread

public class TwoThreadsDemo {

public static void main (String[] args) {

Thread firstThread = new SimpleThread("Apple");

Thread secondThread = new SimpleThread("Orange");

firstThread.start();

secondThread.start();

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 19

And the results . . .

0 Apple

0 Orange

1 Orange

1 Apple

2 Apple

2 Orange

3 Orange

3 Apple

4 Apple

4 Orange

5 Apple

5 Orange

6 Apple

6 Orange

7 Orange

DONE! Orange

7 Apple

DONE! Apple

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 20

Implementing the Runnable Interface

public class SimpleThread extends Objects implements Runnable {

private String name;

public SimpleThread(String str) {

this->name = str;

}

public void run() {

for (int i = 0; i < 8; i++) {

System.out.println(i + " " + this->name);

try {

Thread.sleep((long)(Math.random() * 1000));

} catch (InterruptedException e) {}

}

System.out.println("DONE! " + this->name);

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 21

Using the Runnable object

public class TwoThreadsDemo {

public static void main (String[] args) {

Thread firstThread = new Thread(new SimpleThread("Apple"));

Thread secondThread = new Thread(new SimpleThread("Orange"));

firstThread.start();

secondThread.start();

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 22

Thread VS Runnable

• There are good reasons for using either (thread groups, coding
style, abstraction, etc).

• Rule of Thumb: If your class must subclass some other class
(the most common example being Applet), you should use
Runnable.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 23

The life and dead of a thread

New Thread

Running

Runnable Not Runnable

Dead

Yield

Start
Sleep

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 24

The Birth of a Thread

Runnable newProject = new Project();

Thread projectThread = new Thread(newProject);

firstThread.start();

• When a Thread object is created (after calling new), it is in the
New Thread state.

• Once the start method is called, the thread is transferred in the
Runnable state.

• Resource needed to run the thread are only allocated when the
start method is called.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 25

Making a Thread Not Runnable

• A thread becomes Not Runnable when one of these events
occurs:

– Its sleep method is invoked.

– The thread calls the wait method to wait for a specific
condition to be satisfied.

– The thread is blocking on I/O.

• For each entrance into the Not Runnable state, there is a
specific and distinct escape route that returns the thread to the
Runnable state.

– If a thread has been put to sleep, then the specified number
of milliseconds must elapse.

– If a thread is waiting for a condition, then another object
must notify the waiting thread of a change in condition.

– If a thread is blocked on I/O, then the I/O must complete

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 26

Stopping a Thread

• A thread arranges for its own death by having a run method
that terminates naturally (like the main method).

• We usually control the life and death of a thread through a
while loop.
public void run() {

while (booleanFinished == false) {

\\ Do thread stuff here

}

\\End of the thread

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 27

Understanding Thread Priority

• In theory, threads should run concurrently.

• In practice, this isn’t true.

• Most computer have only one CPU, true cannot run two
threads concurrently.

• We can create the illusion of concurrency through scheduling.

• By alternating the running thread, the JVM gives the
appearance of concurrency.

• Java supports a deterministic scheduling algorithm known as
fixed priority scheduling.

• This algorithm schedules threads based on their priority
relative to other runnable threads.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 28

Thread priority

• A thread inherits its priority from the thread that created it.

• Users can modify a thread’s priority at any time after its
creation using the setPriority method.

• Thread priorities are integers ranging between
MIN PRIORITY and MAX PRIORITY (constants defined in
the Thread class).

• The higher the integer, the higher the priority.

• When multiple threads are ready to be executed, the runtime
system usually chooses the runnable thread with the highest
priority for execution.

• In the JVM specification, the actual implementation of this
scheduling algorithm is loosely defined.

• You should avoid thread priority if you can.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 29

Rule of thumb

At any given time, the highest priority thread is running. However,
this is not guaranteed. The thread scheduler may choose to run a
lower priority thread to avoid starvation. For this reason, use
priority only to affect scheduling policy for efficiency purposes. Do
not rely on thread priority for algorithm correctness.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 30

Selfish Threads

public class SimpleThread extends Thread {

public int tick = 1;

public void run() {

while (tick < 10000000) tick++;

}

}

• The following thread implements a selfish behavior.

• The while loop in the run method is in a tight loop.

• In other words, the thread will not stop until the loop is
finished.

• This will starve the other threads.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 31

How do we fix selfish behavior?

public void run() {

while (tick < 400000) {

tick++;

if ((tick % 50000) == 0)

System.out.println("Thread #" + num + ", tick = " + tick);

}

}

• In this example, the selfish behavior is avoided because of the
call to the println method.

• Since the println method does I/O, it forces the thread to yield
its position.

• We can force a thread to yield its position using the yield()
method.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 32

Synchronizing multiple threads

• Some section of code should never be executed concurrently.

• For example, you might not want two Threads sending
information to the Printer at the same time.

• These section of code are called critical section.

• The proper manipulation of these sections is much too large for
the scope of this class.

• However, Java does provide mechanism to handle these at a
rudimentary level.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 33

Locking an Object

• Java allows you to use the synchronized keyword

– In a method header / signature

– In a block

• To enter a synchronized section of code (or method), the
thread must obtain the lock for that object.

• Once obtained, the thread will not release the lock until it exits
the synchronized section.

• Proper use of synchronize blocks/methods can remove race
conditions.

In computer programming and electronics, a race condition
is the anomalous behavior due to unexpected critical
dependence on the relative timing of events. (Wikipedia)

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 34

Examples of Synchronized

public synchronized int get() {

...

}

or

public int get() {

...

synchronized {

...

}

...

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 35

Reentrant Locks

• The Java runtime system allows a thread to re-acquire a lock
that it already holds because Java locks are reentrant.

• If the locks were not reentrant, a call to a() would deadlock the
system.
public class Reentrant {

public synchronized void a() {

b();

System.out.println("here I am, in a()");

}

public synchronized void b() {

System.out.println("here I am, in b()");

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 36

Blocking Behavior

public class Box {

bool available;

Object contents;

public synchronized Object get() { // won’t work!

if (available == true) {

available = false;

return contents;

}

}

public synchronized void put(Object value) { // won’t work!

if (available == false) {

available = true;

contents = value;

}

}

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 37

Example: wait(), notify(), notifyAll()

public synchronized Object get() {

while (available == false) {

try {

// wait for User to put value

wait();

} catch (InterruptedException e) { }

}

available = false;

// notify User that value has been retrieved

notifyAll();

return contents;

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 38

Example: wait(), notify(), notifyAll()

public synchronized void put(Object value) {

while (available == true) {

try {

// wait for Consumer to get value

wait();

} catch (InterruptedException e) { }

}

contents = value;

available = true;

// notify Consumer that value has been set

notifyAll();

}

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 39

wait() method

• The wait() method allows us to stop a thread until a condition
is met.

• When wait() is called, the thread relinquished its locks of the
object.

• It will try regain that lock when it is notified. It cannot
continue without the lock.

• There are two variations to the wait method

– wait(long timeout) : Waits for notification or until the
timeout period has elapsed. timeout is measured in
milliseconds.

– wait(long timeout, int nanos) : Waits for notification or
until timeout milliseconds plus nanos nanoseconds have
elapsed.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 40

notify(), notifyAll() methods

• The notify() method will wake up one waiting thread.

• The notifyAll() method will wake up all waiting thread.

• The threads will compete to be the first to requires the lock.
The other will go back to waiting.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 41

sleep() method

• The sleep() method is quite similar to the wait() method.

• Both delay a thread for the requested amount of time.

• However, a sleeping thread cannot be awakened prematurely.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 42

Avoiding Starvation and Deadlock

• Starvation is caused when a thread is not allowed to run (other
threads are selfish).

• Deadlock is caused when multiple thread block trying to
reserve multiple resources.

• These problems are most often illustrated using the dining
philosophers problem.

• The tools Java provided will not protect you.

• It’s quite easy to deadlock in Java.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 43

Grouping Threads

• Threads can be grouped using ThreadGroups.

• These are outside the scope of this tutorial.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 44

Summary

• Java provides many tools to implement threading behavior.

• When implementing threads, you have the choice between
extending Thread and implementing Interface.

• Methods such as yield(), sleep(), wait(), notify() and
notifyAll() allow you to control the behavior of your threads.

• We have barely scratched the surface: timers, thread groups,
priorities, etc.

• There are many more issues you have to deal with when
programming concurrent behavior: race condition, atomicity,
sharing, etc.

• If you’re interested in learning more about concurrency, check
out Comp-409.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 45

Tool of the day: Java 2 SE 1.5

• Java 2 SE 1.5 is the newest version of the Java Environment.

• It is still Beta, so you shouldn’t be using for your project.

• It has many new features:

– Metadata: annotation which can be read by the javac
compiler or other tools

– Generic Types: or Templates, if you know C++

– Autoboxing and Auto-unboxing of Primitive Types

– Enhanced for loop: for loops that uses iterators

– Enumerated types: list of constants

– Formatted Output: printf strikes back

– Formatted Input: Easier way to read from streams

– Concurrency Utilities: Easier to shoot yourself in the foot

• We will take a detailed look at 1.5 at the end of the session.

February 16, 2004 Lecture 11 – Comp 303 : Programming Techniques Page 46

