Course Introduction and O.0. Programming

Comp-303 : Programming Techniques

Lecture 1

Alexandre Denault

Computer Science
McGill University
Winter 2004

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 1

Course Description

As found on Minerva ...

Software architecture, design patterns, object-oriented
programming concepts, profiling and optimization. Students will

implement a significant programming project.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 2

Course Content

Comp-303 is ...

e How does Java object orientated programming work and why

is it useful?
e How do I build Java code that can be easily extended?
e How do I build Java code that is easy to understand?
e How do I manage a large Java project (large amounts of code)?
e How do I deal with problem code or problems in code?

e How do I gather project requirements and properly design my

applications?
e Is there any proven techniques I use when designing software?

e How do I use Java object orientated programming to make

reusable components?

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 3

Course Content (cont.)

Comp-303 is not ...
e How do I improve my running time by 14% ?
e How do I profile my program?
e How do I build a GUI in Java?
e How do I use Java feature X 7
e How do I implement program X 7
e How do I program in C++ 7

e How do I sort a list in O(n log n) time?

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 4

Instructor and Teacher’s Assistant

e Instructor:
Alexandre Denault - alexandre.denault@adinfo.qc.ca

— Office: McConnell 322 (cubicle in the back)

— Office Hours:
— Tuesday & Thursday 1h00 - 2h30

— or send me an email ...

e Teacher’s Assistant:
Sokhom Pheng

— Office: TBD
— Office Hours: TBD

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 5

Lecture Schedule and Prerequisites

e [.ectures:

— Tuesday and Thursday, 4h05-5h25
— Trottier Building 0070

e Prerequisites:
— COMP 206
— COMP 251
— COMP 302

Restriction Note: Open only to students registered in a Core
Group™ or Mathematics Group™ program, or the Minor in
Computer Science. * as defined in the SOCS section,

Undergraduate Programs Calendar.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 6

Workload and Grade Distribution

e This course has a very heavy workload (it’s a 4 credit course).

e You will be require to put in practice the material learned in
class, both in the assignments and in the final project.

e Warning: Do not take more than 2 classes requiring you to

complete a large project per term.
e Grade Distribution
— Homework Assignments (3) : 30%
— Midterm (2) : 20%
— Project : 50%

— Design Doc : 3%
— Status Meeting: 2%
— Final Product: 45%

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 7

Assignments

e Allows you to practice the material seen in class.
e Allows me to evaluate what you have learned.
e BEach assignment is worth 10% of your grade.

e Tentative dates:
— Assignment 1 : January 20th - February 3rd
— Assignment 2 : February 10th - March 2nd
— Assignment 3 : March 9th - March 23rd

e You have a buffer of 3 late days (to use as you wish)

e If you want to use a late day, simply mention it in your readme
file.

e Assignments will be handed in paper format (in class) and on
WebCT.

e The T.A. will correct the assignments.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 8

Midterm

e Short midterms to allow me to see if you understand the

material.
o If we didn’t see it in class, it’s not in the midterm.
e Tentative dates:

— Midterm 1 : Thursday, February 19th
— Midterm 2 : Thursday, April 8th

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 9

Project

e Non-trivial project that allow you to use the material seen in

class.
e The project must be completed in teams of 3 or 4.

e The project must have a high level of complexity (+/- 20

classes per student).
e Games (i.e. board games) have always been a popular topic.

e Milestones and Deadlines:

— Requirement and Specification Doc. : Thursday, January
29th

— Interview with T.A. : Week of March 1st

— Final product (with some documentation) : Thursday, April
8th

— Interview with Teacher/T.A. : Week of April 19th

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 10

Textbook

Required Textbook:

e Program Development in Java: Abstraction, Specification, and
Object-Oriented Design
by Barbara Liskov and John Guttag, Addison Wesley 2001

Other good textbooks:

e Design Patterns Explained: A New perspective on
Object-Oriented Design
by Alan Shalloway and James R. Trott, Addison Wesley 2002

e Java Design Patterns: A Tutorial
by James W. Cooper, Addison Wesley 2000

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 11

Slides

e Why use slides?
— Because my handwriting is horrible on the board.

— Because it help me to not forget material.

e Why do the slides look weird?
— Because I'm learning to use TEX.

— Because learning [&TEXis as intuitive as learning to skate by

yourself.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 12

Decomposition

e Divide a large tasks in smaller components.
e Easier to complete smaller components individually.
e When programming, divide a project in smaller modules with

little interaction.

— Different people can implement different modules

independently.
— Maintain and modify in a controlled manner with limited
effect (no spaghetti code)
e Dividing into subproblems
— Subproblems approximately same level of detail.
— Subproblems can be solved independently.

— Solutions to subproblems can be combined to solve the

whole problem.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 13

Non-CS Example to Decomposition

e Renovating an old house can be a daunting project.
e Many different aspects of the house may need repairs.

e The project will be easier to complete if the tasks are divided:
— Fix electric wiring
— Check plumbing and replace leaky pipes
— Fix holes in wall
— Refinish wooden floors

— etc ...

e Or the project can be decomposed another way ...
— Renovate Kitchen
— Renovate Bathroom

— etc ...

e The important thing is not to tackle the whole project at once.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 14

A CS Example to Decomposition

e An Instant Messaging application can be a challenging project.

e Fortunately, it is easy to decompose:
— Design Communication Protocol
— Build authentification engine
— Build connection tracking component
— Build messaging component
— Build chat component
— Build message transfer component
— Build audio component
— Build video component

— etc ...

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 15

Art of Decomposition

e It is easy to solve subproblems independently.

e The hard part is to combined them.

e Problem: Write a play using n writers.

e Nave decomposition: Each writer takes a character and goes off
to write the character’s dialog lines independent from other

writers.

— incoherent nonsensical result that is counter-productive

decomposition

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 16

Abstraction

e Decompose by changing the level of detail to be considered.

e It allows us to forget information and consequently to treat
things that are different as if they were the same.

e For example, on you harddisk, you will find hundreds of
different types of files (Spreadsheet, Binary, Text, etc).

e However, a file manager takes abstraction of this and treats all

file equally (move, copy, erase, etc).

e Another common example would be programming languages

and loops.

e When programming in C, we use while and for instructions to
build loops of all kinds.

e This is an abstraction to the dozen of machine code instruction

used to create loops.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 17

Non CS example to Abstraction

e Abstraction can be done at many different levels:

e [ish
— Shark

— Salmon

e Reptile
— Frog
— Snake

e Mammal
— Rodent
— Cetacean

— Primate

- Chimpanzee

- Human

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 18

Abstraction in Programming

As mentioned previously, abstraction is used in programming

languages.

In high-level programming languages, constructs are provided
to programmer. (For example, set operations)

Set a;
if (a.isIn(e)) {

z = a.index0f (e);

}

It is impossible to predict all the abstraction that could be
needed.

That is why programming languages provide tools for
abstraction.

February 16,

2004 Lecture 1 — Comp 303 : Programming Techniques

Page 19

Abstraction by parameterization

Abstract from the identity of data by replacing instances by

parameters.
Generalizes modules to be used in more situations.

For example ...

X * X + W * W,

...could be replaced by ...

sumsquares (x,w) ;

... Where sumsquares is a function that sums the square of

both of it’s parameters.

Functions can be used to describe an infinite number of

computations.

This is easy to realize in current programming languages.

February 16,

2004 Lecture 1 — Comp 303 : Programming Techniques

Page 20

Abstraction by specification

e Abstract from the computation described by a procedure to the
end that procedure was designed to accomplish.

e For example, my specification documentation describes a
function that returns an approximation of the square root of X

by ...

e An abstract to this description would be:

float ans x /2.0;

int 1 = 1;

while (i < 7) {
ans = (ans + coef / ans) / 2.0;
i++:

)

}

return ans;

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 21

Kinds of abstractions

Abstraction by parameterization and abstraction by specification
are tools to construct different kinds of abstraction:

e Procedural abstraction
e Data abstraction
e [teration abstraction

e Type hierarchy

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 22

Procedural abstraction

Procedural abstraction introduces new operations

Adds functionality to the machine defined by a high-level

language

Usetul if a problem can be decomposed into independent

functional units.

Uses both parameterization and specification

February 16,

2004 Lecture 1 — Comp 303 : Programming Techniques

Page 23

Data abstraction

e Data abstraction introduces new data types.
e Data objects are expressed as sets of operations that are
meaningful for those objects:
— create objects
— get information
— modify objects
e For example, MultiSets are sets that can store more than one
instance of the same element:
— insert
— delete
— numberOf

— size

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 24

[teration abstraction

e Iteration abstraction allows us to iterate over items in a
collection without revealing details of how the items are
obtained.

i = s.iteration();
while (i.hasMoreElements()) {
e = i.nextElement();

e.doSomething () ;
+

e The order in which the elements are visited is abstracted.

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 25

Type hierarchies

e Type hierarchies allow us to abstract from individual types to
families of related types.

e The common operations are defined in a supertype.

e Sub types define extra operations (and can themselves be
ancestors to a family of subtypes).

e Example: the following types can be read from ...

Stream
File
BinaryFile
TextFile
Keyboard
Socket

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 26

Summary

e Decomposition and abstraction are techniques to construct
large programs that are easy to understand, maintain and
modify.

e Abstraction allows us to ignore details and treat different
objects as thought they were the same.

e Parameterization generalizes to wider applicability

e Four kinds of abstraction:
— Procedural abstraction
— Data abstraction
— Iteration abstraction

— Type hierarchy

February 16, 2004 Lecture 1 — Comp 303 : Programming Techniques Page 27

