
Course Introduction and O.O. Programming

Comp-303 : Programming Techniques

Lecture 1

Alexandre Denault
Computer Science
McGill University

Winter 2004

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 1

Course Description

As found on Minerva . . .

Software architecture, design patterns, object-oriented
programming concepts, profiling and optimization. Students will
implement a significant programming project.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 2

Course Content

Comp-303 is . . .

• How does Java object orientated programming work and why
is it useful?

• How do I build Java code that can be easily extended?

• How do I build Java code that is easy to understand?

• How do I manage a large Java project (large amounts of code)?

• How do I deal with problem code or problems in code?

• How do I gather project requirements and properly design my
applications?

• Is there any proven techniques I use when designing software?

• How do I use Java object orientated programming to make
reusable components?

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 3

Course Content (cont.)

Comp-303 is not . . .

• How do I improve my running time by 14% ?

• How do I profile my program?

• How do I build a GUI in Java?

• How do I use Java feature X ?

• How do I implement program X ?

• How do I program in C++ ?

• How do I sort a list in O(n log n) time?

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 4

Instructor and Teacher’s Assistant

• Instructor:
Alexandre Denault - alexandre.denault@adinfo.qc.ca

– Office: McConnell 322 (cubicle in the back)

– Office Hours:
– Tuesday & Thursday 1h00 - 2h30
– or send me an email . . .

• Teacher’s Assistant:
Sokhom Pheng

– Office: TBD

– Office Hours: TBD

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 5

Lecture Schedule and Prerequisites

• Lectures:

– Tuesday and Thursday, 4h05-5h25

– Trottier Building 0070

• Prerequisites:

– COMP 206

– COMP 251

– COMP 302

Restriction Note: Open only to students registered in a Core
Group* or Mathematics Group* program, or the Minor in
Computer Science. * as defined in the SOCS section,
Undergraduate Programs Calendar.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 6

Workload and Grade Distribution

• This course has a very heavy workload (it’s a 4 credit course).

• You will be require to put in practice the material learned in
class, both in the assignments and in the final project.

• Warning: Do not take more than 2 classes requiring you to
complete a large project per term.

• Grade Distribution

– Homework Assignments (3) : 30%

– Midterm (2) : 20%

– Project : 50%
– Design Doc : 3%
– Status Meeting: 2%
– Final Product: 45%

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 7

Assignments

• Allows you to practice the material seen in class.

• Allows me to evaluate what you have learned.

• Each assignment is worth 10% of your grade.

• Tentative dates:

– Assignment 1 : January 20th - February 3rd

– Assignment 2 : February 10th - March 2nd

– Assignment 3 : March 9th - March 23rd

• You have a buffer of 3 late days (to use as you wish)

• If you want to use a late day, simply mention it in your readme
file.

• Assignments will be handed in paper format (in class) and on
WebCT.

• The T.A. will correct the assignments.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 8

Midterm

• Short midterms to allow me to see if you understand the
material.

• If we didn’t see it in class, it’s not in the midterm.

• Tentative dates:

– Midterm 1 : Thursday, February 19th

– Midterm 2 : Thursday, April 8th

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 9

Project

• Non-trivial project that allow you to use the material seen in
class.

• The project must be completed in teams of 3 or 4.

• The project must have a high level of complexity (+/- 20
classes per student).

• Games (i.e. board games) have always been a popular topic.

• Milestones and Deadlines:

– Requirement and Specification Doc. : Thursday, January
29th

– Interview with T.A. : Week of March 1st

– Final product (with some documentation) : Thursday, April
8th

– Interview with Teacher/T.A. : Week of April 19th

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 10

Textbook

Required Textbook:

• Program Development in Java: Abstraction, Specification, and
Object-Oriented Design
by Barbara Liskov and John Guttag, Addison Wesley 2001

Other good textbooks:

• Design Patterns Explained: A New perspective on
Object-Oriented Design
by Alan Shalloway and James R. Trott, Addison Wesley 2002

• Java Design Patterns: A Tutorial
by James W. Cooper, Addison Wesley 2000

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 11

Slides

• Why use slides?

– Because my handwriting is horrible on the board.

– Because it help me to not forget material.

• Why do the slides look weird?

– Because I’m learning to use LATEX.

– Because learning LATEXis as intuitive as learning to skate by
yourself.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 12

Decomposition

• Divide a large tasks in smaller components.

• Easier to complete smaller components individually.

• When programming, divide a project in smaller modules with
little interaction.

– Different people can implement different modules
independently.

– Maintain and modify in a controlled manner with limited
effect (no spaghetti code)

• Dividing into subproblems

– Subproblems approximately same level of detail.

– Subproblems can be solved independently.

– Solutions to subproblems can be combined to solve the
whole problem.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 13

Non-CS Example to Decomposition

• Renovating an old house can be a daunting project.

• Many different aspects of the house may need repairs.

• The project will be easier to complete if the tasks are divided:

– Fix electric wiring

– Check plumbing and replace leaky pipes

– Fix holes in wall

– Refinish wooden floors

– etc . . .

• Or the project can be decomposed another way ...

– Renovate Kitchen

– Renovate Bathroom

– etc . . .

• The important thing is not to tackle the whole project at once.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 14

A CS Example to Decomposition

• An Instant Messaging application can be a challenging project.

• Fortunately, it is easy to decompose:

– Design Communication Protocol

– Build authentification engine

– Build connection tracking component

– Build messaging component

– Build chat component

– Build message transfer component

– Build audio component

– Build video component

– etc . . .

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 15

Art of Decomposition

• It is easy to solve subproblems independently.

• The hard part is to combined them.

• Problem: Write a play using n writers.

• Nave decomposition: Each writer takes a character and goes off
to write the character’s dialog lines independent from other
writers.

– incoherent nonsensical result that is counter-productive
decomposition

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 16

Abstraction

• Decompose by changing the level of detail to be considered.

• It allows us to forget information and consequently to treat
things that are different as if they were the same.

• For example, on you harddisk, you will find hundreds of
different types of files (Spreadsheet, Binary, Text, etc).

• However, a file manager takes abstraction of this and treats all
file equally (move, copy, erase, etc).

• Another common example would be programming languages
and loops.

• When programming in C, we use while and for instructions to
build loops of all kinds.

• This is an abstraction to the dozen of machine code instruction
used to create loops.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 17

Non CS example to Abstraction

• Abstraction can be done at many different levels:

• Fish

– Shark

– Salmon

• Reptile

– Frog

– Snake

• Mammal

– Rodent

– Cetacean

– Primate
- Chimpanzee
- Human

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 18

Abstraction in Programming

• As mentioned previously, abstraction is used in programming
languages.

• In high-level programming languages, constructs are provided
to programmer. (For example, set operations)

Set a;

if (a.isIn(e)) {

z = a.indexOf(e);

}

• It is impossible to predict all the abstraction that could be
needed.

• That is why programming languages provide tools for
abstraction.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 19

Abstraction by parameterization

• Abstract from the identity of data by replacing instances by
parameters.

• Generalizes modules to be used in more situations.

• For example . . .

x * x + w * w;

• . . . could be replaced by . . .

sumsquares(x,w);

• . . . where sumsquares is a function that sums the square of
both of it’s parameters.

• Functions can be used to describe an infinite number of
computations.

• This is easy to realize in current programming languages.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 20

Abstraction by specification

• Abstract from the computation described by a procedure to the
end that procedure was designed to accomplish.

• For example, my specification documentation describes a
function that returns an approximation of the square root of X
by . . .

• An abstract to this description would be:

float ans = x /2.0;

int i = 1;

while (i < 7) {

ans = (ans + coef / ans) / 2.0;

i++;

}

return ans;

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 21

Kinds of abstractions

Abstraction by parameterization and abstraction by specification
are tools to construct different kinds of abstraction:

• Procedural abstraction

• Data abstraction

• Iteration abstraction

• Type hierarchy

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 22

Procedural abstraction

• Procedural abstraction introduces new operations

• Adds functionality to the machine defined by a high-level
language

• Useful if a problem can be decomposed into independent
functional units.

• Uses both parameterization and specification

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 23

Data abstraction

• Data abstraction introduces new data types.

• Data objects are expressed as sets of operations that are
meaningful for those objects:

– create objects

– get information

– modify objects

• For example, MultiSets are sets that can store more than one
instance of the same element:

– insert

– delete

– numberOf

– size

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 24

Iteration abstraction

• Iteration abstraction allows us to iterate over items in a
collection without revealing details of how the items are
obtained.

i = s.iteration();

while (i.hasMoreElements()) {

e = i.nextElement();

e.doSomething();

}

• The order in which the elements are visited is abstracted.

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 25

Type hierarchies

• Type hierarchies allow us to abstract from individual types to
families of related types.

• The common operations are defined in a supertype.

• Sub types define extra operations (and can themselves be
ancestors to a family of subtypes).

• Example: the following types can be read from . . .

Stream

File

BinaryFile

TextFile

Keyboard

Socket

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 26

Summary

• Decomposition and abstraction are techniques to construct
large programs that are easy to understand, maintain and
modify.

• Abstraction allows us to ignore details and treat different
objects as thought they were the same.

• Parameterization generalizes to wider applicability

• Four kinds of abstraction:

– Procedural abstraction

– Data abstraction

– Iteration abstraction

– Type hierarchy

February 16, 2004 Lecture 1 – Comp 303 : Programming Techniques Page 27

