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Course Description

As found on Minerva ...

Software architecture, design patterns, object-oriented
programming concepts, profiling and optimization. Students will

implement a significant programming project.
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Course Content

Comp-303 is ...

e How does Java object orientated programming work and why

is it useful?
e How do I build Java code that can be easily extended?
e How do I build Java code that is easy to understand?
e How do I manage a large Java project (large amounts of code)?
e How do I deal with problem code or problems in code?

e How do I gather project requirements and properly design my

applications?
e Is there any proven techniques I use when designing software?

e How do I use Java object orientated programming to make

reusable components?
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Course Content (cont.)

Comp-303 is not ...
e How do I improve my running time by 14% ?
e How do I profile my program?
e How do I build a GUI in Java?
e How do I use Java feature X 7
e How do I implement program X 7
e How do I program in C++ 7

e How do I sort a list in O(n log n) time?
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Instructor and Teacher’s Assistant

e Instructor:
Alexandre Denault - alexandre.denault@adinfo.qc.ca

— Office: McConnell 322 (cubicle in the back)

— Office Hours:
— Tuesday & Thursday 1h00 - 2h30

— or send me an email ...

e Teacher’s Assistant:
Sokhom Pheng

— Office: TBD
— Office Hours: TBD
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Lecture Schedule and Prerequisites

e [.ectures:

— Tuesday and Thursday, 4h05-5h25
— Trottier Building 0070

e Prerequisites:
— COMP 206
— COMP 251
— COMP 302

Restriction Note: Open only to students registered in a Core
Group™ or Mathematics Group™ program, or the Minor in
Computer Science. * as defined in the SOCS section,

Undergraduate Programs Calendar.
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Workload and Grade Distribution

e This course has a very heavy workload (it’s a 4 credit course).

e You will be require to put in practice the material learned in
class, both in the assignments and in the final project.

e Warning: Do not take more than 2 classes requiring you to

complete a large project per term.
e Grade Distribution
— Homework Assignments (3) : 30%
— Midterm (2) : 20%
— Project : 50%

— Design Doc : 3%
— Status Meeting: 2%
— Final Product: 45%
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Assignments

e Allows you to practice the material seen in class.
e Allows me to evaluate what you have learned.
e BEach assignment is worth 10% of your grade.

e Tentative dates:
— Assignment 1 : January 20th - February 3rd
— Assignment 2 : February 10th - March 2nd
— Assignment 3 : March 9th - March 23rd

e You have a buffer of 3 late days (to use as you wish)

e If you want to use a late day, simply mention it in your readme
file.

e Assignments will be handed in paper format (in class) and on
WebCT.

e The T.A. will correct the assignments.
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Midterm

e Short midterms to allow me to see if you understand the

material.
o If we didn’t see it in class, it’s not in the midterm.
e Tentative dates:

— Midterm 1 : Thursday, February 19th
— Midterm 2 : Thursday, April 8th

February 16, 2004  Lecture 1 — Comp 303 : Programming Techniques Page 9



Project

e Non-trivial project that allow you to use the material seen in

class.
e The project must be completed in teams of 3 or 4.

e The project must have a high level of complexity (+/- 20

classes per student).
e Games (i.e. board games) have always been a popular topic.

e Milestones and Deadlines:

— Requirement and Specification Doc. : Thursday, January
29th

— Interview with T.A. : Week of March 1st

— Final product (with some documentation) : Thursday, April
8th

— Interview with Teacher/T.A. : Week of April 19th
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Textbook

Required Textbook:

e Program Development in Java: Abstraction, Specification, and
Object-Oriented Design
by Barbara Liskov and John Guttag, Addison Wesley 2001

Other good textbooks:

e Design Patterns Explained: A New perspective on
Object-Oriented Design
by Alan Shalloway and James R. Trott, Addison Wesley 2002

e Java Design Patterns: A Tutorial
by James W. Cooper, Addison Wesley 2000
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Slides

e Why use slides?
— Because my handwriting is horrible on the board.

— Because it help me to not forget material.

e Why do the slides look weird?
— Because I'm learning to use TEX.

— Because learning [&TEXis as intuitive as learning to skate by

yourself.
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Decomposition

e Divide a large tasks in smaller components.
e Easier to complete smaller components individually.
e When programming, divide a project in smaller modules with

little interaction.

— Different people can implement different modules

independently.
— Maintain and modify in a controlled manner with limited
effect (no spaghetti code)
e Dividing into subproblems
— Subproblems approximately same level of detail.
— Subproblems can be solved independently.

— Solutions to subproblems can be combined to solve the

whole problem.
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Non-CS Example to Decomposition

e Renovating an old house can be a daunting project.
e Many different aspects of the house may need repairs.

e The project will be easier to complete if the tasks are divided:
— Fix electric wiring
— Check plumbing and replace leaky pipes
— Fix holes in wall
— Refinish wooden floors

— etc ...

e Or the project can be decomposed another way ...
— Renovate Kitchen
— Renovate Bathroom

— etc ...

e The important thing is not to tackle the whole project at once.
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A CS Example to Decomposition

e An Instant Messaging application can be a challenging project.

e Fortunately, it is easy to decompose:
— Design Communication Protocol
— Build authentification engine
— Build connection tracking component
— Build messaging component
— Build chat component
— Build message transfer component
— Build audio component
— Build video component

— etc ...
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Art of Decomposition

e It is easy to solve subproblems independently.

e The hard part is to combined them.

e Problem: Write a play using n writers.

e Nave decomposition: Each writer takes a character and goes off
to write the character’s dialog lines independent from other

writers.

— incoherent nonsensical result that is counter-productive

decomposition
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Abstraction

e Decompose by changing the level of detail to be considered.

e It allows us to forget information and consequently to treat
things that are different as if they were the same.

e For example, on you harddisk, you will find hundreds of
different types of files ( Spreadsheet, Binary, Text, etc).

e However, a file manager takes abstraction of this and treats all

file equally (move, copy, erase, etc).

e Another common example would be programming languages

and loops.

e When programming in C, we use while and for instructions to
build loops of all kinds.

e This is an abstraction to the dozen of machine code instruction

used to create loops.
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Non CS example to Abstraction

e Abstraction can be done at many different levels:

e [ish
— Shark

— Salmon

e Reptile
— Frog
— Snake

e Mammal
— Rodent
— Cetacean

— Primate

- Chimpanzee

- Human
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Abstraction in Programming

As mentioned previously, abstraction is used in programming

languages.

In high-level programming languages, constructs are provided
to programmer. (For example, set operations)

Set a;
if (a.isIn(e)) {

z = a.index0f (e);

}

It is impossible to predict all the abstraction that could be
needed.

That is why programming languages provide tools for
abstraction.
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Abstraction by parameterization

Abstract from the identity of data by replacing instances by

parameters.
Generalizes modules to be used in more situations.

For example ...

X * X + W * W,

...could be replaced by ...

sumsquares (x,w) ;

... Where sumsquares is a function that sums the square of

both of it’s parameters.

Functions can be used to describe an infinite number of

computations.

This is easy to realize in current programming languages.
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Abstraction by specification

e Abstract from the computation described by a procedure to the
end that procedure was designed to accomplish.

e For example, my specification documentation describes a
function that returns an approximation of the square root of X

by ...

e An abstract to this description would be:

float ans x /2.0;

int 1 = 1;

while (i < 7) {
ans = (ans + coef / ans ) / 2.0;
i++:

)

}

return ans;
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Kinds of abstractions

Abstraction by parameterization and abstraction by specification
are tools to construct different kinds of abstraction:

e Procedural abstraction
e Data abstraction
e [teration abstraction

e Type hierarchy
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Procedural abstraction

Procedural abstraction introduces new operations

Adds functionality to the machine defined by a high-level

language

Usetul if a problem can be decomposed into independent

functional units.

Uses both parameterization and specification
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Data abstraction

e Data abstraction introduces new data types.
e Data objects are expressed as sets of operations that are
meaningful for those objects:
— create objects
— get information
— modify objects
e For example, MultiSets are sets that can store more than one
instance of the same element:
— insert
— delete
— numberOf

— size
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[teration abstraction

e Iteration abstraction allows us to iterate over items in a
collection without revealing details of how the items are
obtained.

i = s.iteration();
while (i.hasMoreElements()) {
e = i.nextElement();

e.doSomething () ;
+

e The order in which the elements are visited is abstracted.
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Type hierarchies

e Type hierarchies allow us to abstract from individual types to
families of related types.

e The common operations are defined in a supertype.

e Sub types define extra operations (and can themselves be
ancestors to a family of subtypes).

e Example: the following types can be read from ...

Stream
File
BinaryFile
TextFile
Keyboard
Socket
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Summary

e Decomposition and abstraction are techniques to construct
large programs that are easy to understand, maintain and
modify.

e Abstraction allows us to ignore details and treat different
objects as thought they were the same.

e Parameterization generalizes to wider applicability

e Four kinds of abstraction:
— Procedural abstraction
— Data abstraction
— Iteration abstraction

— Type hierarchy
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