
C Compilation Model

Comp-206 : Introduction to Software Systems
Lecture 9

Alexandre Denault
Computer Science
McGill University

Fall 2006

Midterm

■ Date: Thursday, October 19th, 2006
■ Time: from 16h00 to 17h30
■ Content: Everything we have seen in class up to C

pointers.
 Unix operating system
 Shell Scripting
 Python
 C (including pointers)

■ Exact content of the midterm will be discussed in a latter
class and posted on the web.

Servers - Sparcs

■ skinner.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-4
 CPUs: 4 x 400 MHz (sparcv9 processors)

■ willy.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-80
 CPUs: 4 x 450 MHz (sparcv9 processors)

■ nova.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-60
 CPUs: 2 x 450 MHz (sparcv9 processors)

■ mimi.cs.mcgill.ca
 Hardware/OS: SunOS 5.8 sun4u sparc SUNW,Ultra-250
 CPUs: 2 x 400 MHz (sparcv9 processors)

Servers - Intel

■ troy.cs.mcgill.ca
 Hardware/OS: Gentoo GNU/Linux running on a 2.6 kernel
 CPUs: 2 x 3.40 GHz (Intel Pentium 4 processors)

■ freebsd.cs.mcgill.ca
 Hardware/OS platform: FreeBSD 5.5-RELEASE-p3
 CPUs: 2 x 3.40 GHz (Intel Pentium 4 processors)

Quiz

■ Give a regular expression that will match on the
following:
 string “Quiz”
 line starting with string “Quiz”' or a digit
 line ending with string “Quiz”
 the string quiz, where the characters can be any case, e.g.,

QuIz, quiz, Quiz, etc.
 the string quiz, where it can be mis-spelled with K for Q and W

for U, e.g., kwiz, qwiz, etc.
 a string of at least 3 digits, starting with 7
 lines containing no non-numeric characters, but at least one

numeric character.
■ You have a directory containing a lot of files and

subdirectories, and you want to copy all of them except
for the directory called big_dir. How do you do it?

History of C

■ The C programming language was created as a
successor for B and BCPL.

■ It’s creation was parallel to the development of early
Unix operating systems (1969-1973).

■ At the time, one of C’s strength was it’s portability.
■ The first widely available description of the language

appeared in 1978,The C Programming Language (also
known as the white book).

■ One of C’s most popular successor is C++, release in
1986.

Hello World

■ Traditionally, Hello World is the first application you write
when starting with a new programming language.

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello World");
 return 0;
}

Programming in C

From the users perspective, building a C program can be
broken down in three steps:

■ Writing the source : Using an editor to write the source.
 You can use any text editor to write C code.
 Old-school C programmer often use Unix text editors such as

Vi or Vim.
 For large scale projects, an IDE (integrated development

environment) is preferable.
 Whatever editor you use, it should feature syntax highlighting

■ C programs are usually composed of several source files
(we will take a look at this latter).

Programming in C (cont.)

■ The next step is to compile the program to a format the
operating system can run.

■ A compiler is a program that translate a language to
another.
 – A C compiler translates C code to machine code.
 – A Java compiler translates Java code to byte code.

■ For this course, we will use the GNU cc compiler (also
known as gcc).

■ This compiler is installed on all the lab machines and
servers.

Programming in C (cont.)

■ By default, the gcc compiler produces an executable files
named a.out.

■ You can execute your program by running the a.out
file.
 Don’t forget that a.out must be chmod executable. The

compiler usually takes care of this.
■ Executable are compiled for specific architecture. If you

compile a program in the labs (Intel), it will not run on
Mimi (Sun).

C Compilation Processor

Preprocessor

Compiler

Linker

Source code

Executable code

Libraries
Assembler

Preprocessor

■ The preprocessor is the first step of the compilation
process.

■ It prepares the source files for the compiler.
■ The preprocessor is responsible for . . .

 Removing all the comments from the source files.
 Executing the preprocessor directives (#define and #include).

C Compiler

■ As previously mentioned, the compiler translate source
code from one language to another.

■ The gcc compiler translate C code to assembler.
■ Lets take the Hello World example.

#include <stdio.h>

int main(int argc, char *argv[]) {
 printf("Hello World");
 return 0;
}

Intel Assembly

main:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
andl $-16, %esp
movl $0, %eax
subl %eax, %esp
subl $12, %esp
pushl $.LC0
call printf
addl $16, %esp
movl $0, %eax
leave
ret

Sparc Assembly

main:
save %sp, -112, %sp
st %i0, [%fp+68]
st %i1, [%fp+72]
sethi %hi(.LLC0), %o1
or %o1, %lo(.LLC0), %o0
call printf, 0
nop
mov 0, %i0
ret
restore

Assembler

■ The assembler takes assembly code and transforms it
into object code.

■ Although object code is mostly composed of machine
code, it cannot be executed by the operating system.
 Object code does not have the necessary references to

external functions and libraries to properly operate.

Linker

■ A linker takes the various outputs of a compiler and
combines them to create an application.
 Sources files are compiled separately by the compiler.
 Those sources might reference a function that exists

elsewhere.
 The compiler leaves empty references to those functions.
 The linker fills those references using the compiled output of all

the files and the libraries available on the system.
■ Once all the empty references have been resolved, the

linker combines all the compiler output to create an
executable.

Libraries

■ C itself is a relatively small programming language.
■ Most of it’s functionalities is provided through function

libraries.
 C provides a library for read/write to files and the screen.
 C provides a library to handle complicated math functionalities.
 C provides a library to retrieve the current time from the OS.

■ • A programmer is free (and encouraged) to use these
libraries.

■ • The linker takes care to resolve references to library
calls.

Gcc

■ As previously mentioned, Gcc is the Gnu C Compiler.
■ Gcc encapsulates all the different step of the compilation

process.
 Create main.i, the preprocessed version of main.c
gcc -E main.c

 Create main.s, the assembler code of main.c
gcc -S main.c

 Create main.o, the object code of main.c
gcc -c main.c

 Create a.out, the compiled executable of main.c
gcc main.c

Gcc options

■ -o filename : allows you to specify the name of the output
executable (instead of a.out).

■ - v : enable verbose mode (more output information).
■ -w : suppresses warning messages (bad idea)
■ -W : extra warning messages (good idea)
■ -Wall : all warning messages (best idea)
■ -O1 : Optimize code for size and speed.
■ -O2 : Optimize even more.

C vs Java - Similarities

■ C and Java have very similar syntax.
 Variable / function declarations
 Variable types : char, int, long, float, double
 Conditional statements : If, For, While

■ The notion of visibility is similar
 Variables declared in functions only exists in functions

C vs Java - Difference

■ C programming is much more low level
 Pointers and memory allocation

■ C is not object oriented
 No classes, no static methods, no interfaces.
 Libraries are completely different (no LinkedList, etc).
 Structures allow to group data together

■ C doesn't have Strings or boolean
 Strings are replaced by character arrays.
 boolean simply doesn't exist.

■ C is a single pass compiler
 Need to declare functions
 Header files

■ C has a preprocessor

C Functions

■ A C function has the same syntax as a Java function.

type function_name (parameters)
{
 local variables

 C Statements

}

■ Functions have a return type, just like Java.
■ However, unlike Java, they are not part of a class.
■ In C, all functions behave as they were static.

Variables

■ Two types of variables exists in C
 Primitives
 Pointers

■ C primitives are very similar to Java primitives
 Char (1 byte, -127 to 128)
 Unsigned char (1 byte, 0 to 255)
 Short (2 bytes, -32768 to 32767)
 Int (4 bytes, -291 to 291 – 1)
 Float (4 bytes, ...)
 Double (8 bytes, ...)

■ An unsigned variable is a numerical variable without a
negative bit (thus allowing for larger numbers).

■ Notice there are no booleans or strings!

Global Variables

■ Variables not declared in a function are reference to as
global.

■ Global variables can be accessed by any function in the
program.

■ Global variables are very similar to static variable, only
one copy exist.

■ Global variable should be avoided
 Since any functions can access global variable, it's difficult to

control access to those variable (an complicate debugging).
 They are not considered clean.

