
Shell Scripting (cont.)

Comp-206 : Introduction to Software Systems
Lecture 8

Alexandre Denault
Computer Science
McGill University

Fall 2006 



Quiz

■ Write a regular expression that matches on a string with 
two vowel followed by the letter “s' or “r”.

■ The following regular expression matches on what kind 
of string : '^[123456790]\{4\}$'

■ Why must a script start with the #! symbol?
■ What command is used to read data from STDIN?
■ When running a command, what variable contains the 

first argument of that command?
■ How does one test if two numbers are equal?
■ What services does an operating system provide?
■ What command prints out the current directory?



If statements

■ If statements have a syntax similar to Java, but without 
brackets.
if _condition_
then
   _code_
elif _condition_
then
   _code_
else
   _code_
fi



Example of If statement

■ The following example program can be used to add or 
subtract two numbers.
#!/bin/sh
if test $1 = add
then
   result=‘expr $2 + $3‘
elif test $1 = sub
then
   result=‘expr $2 - $3‘
else
   result=0
fi
echo "The result is $result \n"



Case statements

■ A case statement is similar to a Java switch statement.
case _condition_ in
   _condition1_) _action1_;;
   _condition2_) _action2_;;
   _condition3_ | _condition4_) _action3_;;
   *) _else_action_;;
esac



Examples of Case

■ The following example program is a remodeling of the if 
example, but with a case statement.
#!/bin/sh
case $1 in
add | addition) 

result=‘expr $2 + $3‘;;
sub | substraction) 

result=‘expr $2 - $3‘;;
*) 

result=0;;
esac
echo "The result is $result \n"



For loops

■ The for loop is similar to a Java iterator.
■ It allows you to iterate (loop) over a list strings.

for _var_ in _list_
do
   _action_
done



Example of a For loop

■ The following script executes the file command for each 
file in the specified path.

#!/usr/bin/sh
for i in ‘ls $1‘
do
   file $i;
done



While Statement

■ The last control statement we will need is the while 
statement.

■ Again, it is very similar to its Java equivalent.

while _condition_
_action_
[continue]
[break]
end



Using parameters

■ The following script will pad a file with zeros.

#!/usr/bin/sh

i=‘wc -c < $1‘;
while test $i -lt $2
do
   echo -n "0" >> $1;
   i=‘wc -c < $1‘;
done



Capturing Complex Output

■ Some commands, such as date, have output that require 
an extra bit of parsing to use.
Sun Aug 13 11:42:38 EDT 2006

■ • You can use the set command to capture and parse the 
output.
set ‘date‘

■ The output will be stored in $n ($1, $2, $3, etc).
■ Note that using set will erase any data you might already 

have in $n.



Example of set

■ The following script executes the date command and 
outputs the parsed result.
#!/usr/bin/sh
set ‘date‘
echo "Time: $4 $5"
echo "Day: $1"
echo "Date: $3 $2 $6"

■ The output would be as follows:
Time: 12:45:54 EDT
Day: Sun
Date: 13 Aug 2006



Uses of script files

■ Backup scripts
 archiving important files and saving them in a safe place.

■ Startup scripts
 application which require a complicated environment to run.

■ Scheduled scripts
 regularly rotating and archiving logs.

■ Maintenance scripts
 a script that creates a user or changes a password on multiple 

system, all in one command.



Changing ENV

■ When you login or start a shell, specific scripts are 
executed to configure your environment.

■ The specific script depends on which shell you are using.
 With Bash, ~/.bash_profile is executed on login. 
 With csh (and it’s derivative, like tcsh), the /.cshrc file is 

executed.
■ While customizing your account, you might want to set 

some variable, such as the PATH and the CLASSPATH.



Path and Classpath

■ The PATH is a set of directory a shell searches for 
executables.
 On Unix, it’s a colon ( : ) seperated list.
 On Windows, it’s a semi-colon ( ; ) seperated list.
 You can use the which command to figure out what file will be 

executed.
■ The CLASSPATH is the set of directory the JVM 

searches when loading classes.



Changing an environment variable

■ You can output an environment variable using echo.
■ Before something goes wrong, you might want to backup 

the old value.
TEMP_VAR_NAME=$VAR_TO_CHANGE

■ You can then set the new value.
VAR_TO_CHANGE=SomethingElse

■ This works in bash. In tcsh, you need to use setenv.
■ You can use any existing variables.

VAR_TO_CHANGE=$VAR_TO_CHANGE:SomethingElse
■ If something goes wrong, you can revert to the old value.

VAR_TO_CHANGE=$TEMP_VAR_NAME



Other startup things . . .

■ You can customize your command prompt by changing 
an environment variable.
 Check your shell’s documentation for information on how to do 

this.
■ You can use the alias command to set up shortcuts.

alias ll=’/usr/bin/ls -l’
■ You can set your default editor (CVS uses this).

EDITOR=vi
■ Some applications might require you to set up an 

environment variable.
PVM_ROOT=/usr/local



Public Key Cryptography

■ Public key cryptography 
is a form of cryptography 
which generally allows 
users to communicate 
securely without having 
prior access to a shared 
secret key.
 the private key is kept 

secret
 the public key may be 

widely distributed
Source: Wikipedia


