
Unix Shell

Comp-206 : Introduction to Software Systems
Lecture 3

Alexandre Denault
Computer Science
McGill University

Fall 2006

Robert Kaplow

Wednesday, 12h00 to 14h00
T.A. room, Trottier, 3rd floor

CSGames

The Computer Science Games (CS Games) is a
competition for undergraduate students in computer

science. For three days, participants from
everywhere in North America will be challenged

individually and by team in many different computer
science fields. The competition covers many

domains, from programming to video games without
forgetting algorithm and logic.

Is CS Games a local event?

CSGames needs you!

For more information on CSGames, check out
www.csgames.org.

For people interested in helping organize the event, contact
Miriam Zia at mzia2@cs.mcgill.ca

Do permissions overlap?

■ Given the permission “------rwx“ of a file I own, can I
read the file?
 You will not be able to read the file.
 People in the group owner will not be able to read the file.
 Other people will be able to read the file.

Quiz: Can I read, write, execute?

Can user “Bob” of group “Student” read, write or execute
the following files?

■ rwxr--r-- Cathy Frosh file1.sh
■ r-x------ John Student file2.txt
■ rwxrwxr-- Bell Student file3.txt
■ rwxrwxrwx GeorgeTeacher file4.c
■ rwx------ Bob Student file5.s
■ rw-rw-r-x Norm Admin file6.doc
■ rwxrwx--- all all file7
■ ------rwx Bob Student file8.doc
■ ---rwx--- Bob Student file9.txt
Bonus: Which write does root have on these files?

How to change permissions

To use the chmod command, you need to know the
following abbreviations:

Who
■ u : The user who owns the file (this means “you.”)
■ g : The group the file belongs to.
■ o : The other users
■ a : all of the above (an abbreviation for ugo)
Permission
■ r : Permission to read the file.
■ w : Permission to write (or delete) the file.
■ x : Permission to execute the file, or, in the case of a

directory, search it.

chmod

■ The syntax of the command is as follows:
chmod who=permission files

■ Here are a few examples of the chmod command:
Give read permission to group
chmod g=r file.txt
Give read/write/execute permission to you (user)
chmod u=rwx file2.txt
Remove all permissions from others
chmod o= file3.txt
Give read/write permission to user and group
chmod ug=rw file4.txt

Directories

■ Directories use the same permission system as files.
■ The root directory is denoted by a slash (/).
■ As already mentioned, the home directory of a user is

denoted by the tild (˜).
■ A common UNIX system has the following base directory

structure.
 /etc : Contains configuration files and passwords
 /bin : Contains executable related to the OS
 /usr : Installation directory for application
 /opt : Other installation directory for application
 /dev : Contains the device files for all the hardware connected

to the computer.
 /var : Contains system files that change a lot (logs, printer

spool, mail spool, etc).

Relative Paths vs Absolute Paths

■ Absolute : An absolute path contains all the directory
structure starting from the root to the file.
 For example, the path to the file containing user information is

/etc/passwd
■ Relative : A relative path to a file changes depending on

the current directory.
 If my current directory is /etc, then the relative path is ./passwd
 If my current directory is the root (/), then the relative path is

etc/passwd or ./etc/passwd
 If my current directory is /usr, then the relative path is

../etc/passwd
■ When we take a closer look at File I/O, we will compare

the advantages and disadvantages of relative vs
absolute paths.

Relative or Absolute

Find the corresponding absolute path:
■ “adenau/file1.txt” if my current directory is “/home”
■ “file2.sh” if my current directory is “/usr/lib”

Find the corresponding relative path if my current path is
“/home/adenau”:

■ “/home/adenau/test/file3.c”
■ “/etc/config/file4.sh”

Shell

■ A shell is an application that allows you to relay
commands to the Operating System.

■ These commands are executed by the Operating System
and the output is sent back to the shell.

■ Most often, shells are used to execute commands.
■ Most shells also include a simple programming

language, often known as a scripting language.
 The first popular shell was the Bourne shell (sh). It remains at

the core of most UNIX OS.

Script (Batch)

■ Scripts are collections of commands, grouped in a file
and sequentially execute.

■ Scripts are not compiled programs, they are interpreted.
■ Scripts run from top to bottom, with little control flow

(does not have the complexity of a piece of software).
■ System administrators use script to automate complex

tasks.

Command line and parameters

■ The command line is the prompt that allows you to enter
text commands.

■ You can enter simple commands.
ls

■ You can allow use switches (additional parameters) to
alter the behavior of a command.
ls -l

■ The number of parameters you can use depends of the
command itself.
ls -l -a -F
ls -laF

Current Directory

■ At any moment, a shell always has a current directory.
■ This current directory is used to resolve relative paths.
■ After login in, the current directory is usually the user’s

home directory.
■ The pwd (print working directory) displays the current

directory.
■ The cd (change directory) allows a user to change their

current directory.
 The current directory is local to the instance of the shell.
 Changing the current directory in one shell will not affect other

shells.

Directory Content

■ The ls command is used to display the content of a
directory.

■ To get more information, use the -l argument (ls -l).
■ By default, ls does not display hidden files. To include

hidden files in the listing, use the -a argument (ls -a).
 File names and directory names that start with a period ¨.¨ are

considered hidden under Unix.
■ The ls command displays the complete list of files,

without stopping. To display a page by page list, you
need another command.

Man Pages

■ The man command allows you to access the on-line
manual pages of the various command available on the
shell.
 These pages are often referred to as Man pages.

■ The man pages are your first source of information when
working in the shell.

■ To access a man page, simply type man and the name
of the command.
man ls

Redirection

■ Previously, we mentionned that normal output goes to
the STDOUT channel.
 When the ls command is executed, its output is sent to

STDOUT.
 STDOUT is then displayed by the shell.

■ • Output sent to STDOUT can be redirected.
 By using the > sign, STDOUT can be redirected to a file.

Ex: ls -la > list.txt
 By using the >> sign, STDOUT can be appented to a file.

Ex: ls -la >> list.txt
 By using the | sign, STDOUT can be redirected to another

application.
Ex: ls -la | more

cat, tail, more or less

■ cat [options]
 file concatenate (list) a file

■ echo [text string]
 echo the text string to stdout

■ head [-number] file
 display the first 10 (or number of) lines of a file

■ more [options] file
 page through a text file

■ less [options] file
 browse (navigate) through a text file

■ tail [options] file
 display the last few lines (or parts) of a file

Redirection for ls

■ The previous commands can easily be combined with
the ls command.
 ls -la | more will present a paginate list of files.
 ls -la | head will present only the first 10 files.
 ls -la | tail will present only the last 10 files.
 cat `ls *.log | tail -n5` >> text.out

concatenate the last 5 log files in the current directory and write
them to the text.out file.

