
Data Structures, Midterm Answers

Comp-206 : Introduction to Software Systems
Lecture 14

Alexandre Denault
Computer Science
McGill University

Fall 2006

Data Structures in C

■ To better understand the importance of pointers, let's
take a look at two data structures.
 Linked List
 Binary Trees

■ The source code for these examples is on the web, in
the Supplemental Notes section.

Linked List

Head 8 6 10 3

Link List Node

/* Node for the link list */
typedef struct ll_node {
 int value;
 struct ll_node* next;
} llnode, linkedlist;

Creating a node

/* Create a link list */
linkedlist* createLinkedList() {

 llnode* head;

 // Our implementation of linklist has a
// dummy node at the head.

 head = (llnode *)malloc(sizeof(llnode));
 head->value = 0;
 head->next = NULL;

 return head;
}

Adding a Node

/* Add a value to the linklist. */
void addToLinkedList(linkedlist* list, int value) {

 llnode* freeSpot;
 llnode* newNode;

 // Find a free spot at the end to add the value
 freeSpot = list;
 while(freeSpot->next != NULL) {
 freeSpot = freeSpot->next;
 }

 newNode = (llnode *)malloc(sizeof(llnode));
 newNode->value = value;
 newNode->next = NULL;
 freeSpot->next = newNode;
}

Pretty Print

/* Pretty print the list. */
void printLinkedList(linkedlist* list) {

 if (list->next != NULL) {
 printf("Content of list is :");
 printLLNode(list->next);
 } else {
 printf("List is empty.");
 }

 printf("\n");

}

Printing A Node

void printLLNode(llnode* my_node) {

 printf(" %i ", my_node->value);
 if (my_node->next != NULL) {
 printLLNode(my_node->next);
 }
}

Binary Tree

8

6 10

3

Binary Tree Node

/* Node in our binary tree */
typedef struct bt_node {
 char* value;
 struct bt_node* left;
 struct bt_node* right;
} btnode, binarytree;

Creating the Tree

binarytree* createBinaryTree(char* value) {

 return createBTNode(value);
}

Creating a Node

binarytree* createBTNode(char* value) {

 btnode* new_node;

 new_node = (btnode*)malloc(sizeof(btnode));
 new_node->value = (char *)malloc(strlen(value) + 1);
 new_node->left = NULL;
 new_node->right = NULL;

 strcpy(new_node->value, value);

 return new_node;
}

Adding a Node

void addToBinaryTree(binarytree* tree, char* value) {

 // In order travel of the tree, until we hit a left.
 if (strcmp(tree->value, value) > 0) {
 if (tree->left != NULL) {
 addToBinaryTree(tree->left, value);
 } else {
 tree->left = createBTNode(value);
 }
 } else {
 if (tree->right != NULL) {
 addToBinaryTree(tree->right, value);
 } else {
 tree->right = createBTNode(value);
 }
 }
}

Freeing the Tree

void unallocateBinaryTree(binarytree* tree) {

 if (tree == NULL) return;

 // First dellocate the child nodes.
 unallocateBinaryTree(tree->left);
 unallocateBinaryTree(tree->right);

 // Deallocate the node's content
 // and the node itself

 free(tree->value);
 free(tree);

}

Midterm

■ Average 72.3%
 54 students took the midterm
 4 students got 90% or above
 20 students got 80% or above
 34 students got 70% or above
 44 students got 60% or above

Question 1

■ Average: 7.57 / 8 : 95%
■ GUI: Provides a visual interface with ready-made

components (buttons, text boxes, etc / widgets) to
interact with the computer.

Question 2

■ Average : 3.83 / 4 : 96%
■ Time Sharing / Time Slicing

 All the processes share the CPU in turn. Each turn is called a
time slice

Question 3

■ Average : 3.54 / 4 : 88%
■ Close to 20% of the class answered all 4 questions.
■ a) An OS is closed (or proprietary) when it owned by a

single company.
 It is often designed to work on a single kind of hardware

Question 4

■ Average : 3.24 / 4 : 81%
■ a) /home/bob/homework/main.c
■ b) ../../tmp/assignment.log

Question 5

■ Average : 5.94 / 8 : 74%
■ The “>” and “>>” symbols enable redirection of output on

STDOUT to a file.
■ If a file already exists, “>” will overwrite the file while “>>”

will append the new output to it.
■ The “<” enables redirection of a text file to STDIN (input).

Question 6

■ Average : 13.59 / 24 : 57%
■ Key elements in the answer included:

 #!/bin/sh at the start of the script
 Testing to see if a second argument was passed
 Finding the user (either using $USER or whoami)

➔ Note : whoami and who am i are two different commands
 Finding the date (either using set `date` or date +%d-%m-%Y)
 Building the proper name for the output
 Looping over the files in the directory
 Testing the files to see if binary (either with test or file)

➔ With test, automatically get points, regardless of option
➔ With file, needed to test for both “text” and ASCII

 Properly using Tar

Question 7

■ Average : 3.22 / 4 : 80%
■ a) A line will match if it contains the word “Tea” or “tea”.
■ b) A line will match if it starts with the letter b or a word

that start with the letter b.

Question 8

■ Average : 2.06 / 8 : 26%
■ a) ^(([a-zA-Z]+){9}[a-zA-Z]+)$

 Does your solution require 10 spaces to work?
 Did you include the ^ and $

■ b) [^.-][1-9][0-9][0-9]
 Did you consider 069?
 Did you consider 0.999?
 Did you conisder -999?

Question 9

■ Average : 4.31 / 5 : 86%
■ In Python, scope is defined thought indentation.

if (x > 10) :
if (x > 20) :

print “Larger than 20”
else

print “Larger that 10”

Question 10

■ Average : 2.93 / 5 : 59 %
■ When coding in Python, you don't need to give variables

a type.
■ Types are only checked at runtime.

Question 11

■ Average : 7.44 / 8 : 93 %
■ Many types to choose from :

 char : ASCII character, 1 byte
 byte : natural number, 1 byte
 short : natural number, 2 bytes
 int : natural number, size depends on platform

➔ Bad example of definition : Int hold integers
 long : natural number, 4 bytes
 float : real number, 4 bytes
 double : real number, 8 bytes

■ Signed variable can be +/-, unsigned variable can only
be +, but have a larger range.

Question 12

■ Average : 8.39 / 10 : 84%
■ The C Programming languages uses a single-pass

compiler.
■ This means variables and functions must be defined

before being used.
 Not before necessarily before main.

■ Function prototyping it the declaration of those functions.
■ To declare a function, simply include the signature of

that function at the top of your file.

Question 13

■ Average : 3.67 / 4 : 92%
■ Through the malloc function.
■ Because used memory is never automatically freed and

you can eventually run out of memory.
 Memory leak are a consequence of not freeing up memory.
 By themselves, are not catastrophic.
 However, too allocating too much memory over time without

freeing it, that crashes the process.

Question 14

■ Average : 2.65 / 4 : 66%
■ Only the value of d was important.

 All or nothing.
■ a 6 b 8 c 6 d -1075896576

