
Structures and Pointers

Comp-206 : Introduction to Software Systems
Lecture 11

Alexandre Denault
Computer Science
McGill University

Fall 2006

Note on Assignment 1

■ Please note that handin does not allow you to hand in a
file whose name starts with a period
 ex: .bash_profile

■ You will have to rename that file before handing it in
 ex: bash_profile

Pass by reference, pass by value

■ Primitives (such as int, short, long, float, etc) are passed
by value. This means you can change their value in a
function and they will not be affected.

■ Arrays are passed by value. This means that if you
change the values in an array, it will affect the whole
application.

■ Pointers, which we will see in a couple of lectures,
complicate this even more.

void testFunction(int a, int myArray[]) {
a = 10; // No effect to rest of application
myArray[0] = 10; // Affects rest of app.

}

Structures

■ Structures are a data type composed of several other
data types.
 Think of it as a container, a variable that has variables inside it.

■ You can define new structures using the struct
keyword.

struct course {
int number_of_students;
char[100] name_professor;
char[100] location_building;
int location_room;

}

Using a structure

■ To use a structure, you need to instantiate a copy of it.
■ All you need to do is to declare the variable for the

instance.
struct course cs206;

■ You can then fill it with data.
cs206.number_of_student = 60;
cs206.name_professor = “Alex”;
cs206.location_building = “MacDonald”;
cs206.location_room = 328;

■ With structures, you can declare the variable and
initialize it with data in one command.
struct course cs206 = {60, “Alex”, “MacDonald”,
328);

typedef and struct

■ You can use typedef to define the structure as a new
type.

typedef struct course {
int number_of_students;
char[100] name_professor;
char[100] location_building;
int location_room;

}

■ When creating a variable of this type, you no longer
need to specify the struct keyword.

struct course cs206;

Coercion or Type-Casting

■ Coercion : forcing one variable of one type to be another
type.

■ Sometimes, type-casting is implicit :
 int a = 2;
 float b = a; // b = 2.0

■ Most of the time, it's safer to specify it:
 float a = 3.1415;
 int b = (int)a; // b = 3

■ When in doubt, type cast:
 int a = 2;
 float b = 3 / a; // b = 1.0
 float c = 3 / (float)a; // c = 1.5

Enumerated Types

■ Enumerated types : contain a list of constants that can
be addressed in integer values.
 enum days {monday, tuesday, wednesday,
thursday, friday, saturday, sunday};

■ As with arrays first enumerated name has index value 0.
 So monday has value 0, tuesday 1, ...

■ We can also override the 0 start value:
 enum days {monday = 1, tuesday, wednesday,
thursday, friday, saturday, sunday};

■ Or simply assign different numerical values:
 enum days {monday = 10, tuesday = 20,
wednesday = 30, thursday = 40, friday = 50,
saturday = 60, sunday = 0};

Using Enumerations

■ Creating a variable of an enumeration is similar to a
structure:
 enum days week1;

■ If you typedef an enumerated type, you can use it
without the enum keyword.
 typedef enum days {monday = 1, tuesday,
wednesday, thursday, friday, saturday,
sunday};

 days week1;

Static Variables

■ Static Variable : variable local to particular function but
only initialized once (on the first call to function).
function int count() {

static int counter = 0;
counter++;
return counter;

}
■ The following function will count the number of time it is

called.
■ The same count have been done with a global variable,

but counter doesn't need global visibility.

Pointers

■ One of the most difficult feature of C.
■ Also one of the most fundamental and important feature.
■ Pointers exist of efficiency and flexibility reasons.
■ They are used explicitly with

 Functions
 Arrays
 Structures

What are pointers?

■ A pointer is a variable which contains the address in
memory of another variable.
 Think of it as an integer variable that points to a block of

memory.
■ We can have a pointer to any variable type.

Pointer operators

■ The unary or monadic operator & gives the “address of a
variable”.

■ The indirection or dereference operator * gives the
“contents of an object pointed to by a pointer”.

■ Pointers are declared using the indirection operator:
 int* a;

Simple Pointer Example

int a, b;
int* p;

a = 5;
b = 10;
p = &a; // p is pointing on a
*p = 6; // Value of a is now 6;
p = &b; // p is pointing on b
*p = 11; // Value of b is now 11;

Pointers and Functions

■ The following functions cannot be implemented without
pointers:
void swap(int a, int b) {

int temp = a;
a = b;
b = temp;

}

■ This function only alters the value of the local variables a
and b. The change is invisible to the calling function.
int a = 5, b = 10;
swap (a,b);

A look into memory

aa

b : 10

memory of function
calling swap

a : 5aa

b : 5

a : 10

memory of swap
function

Swap using pointers

The following function does work, because it uses pointers
to the integers.
void swap (int * pa, int * pb) {

int temp = *pa;
*pa = *pb;
*pb = temp;

}

■ When calling the swap function, the address the integers
must be provided:
int a = 5, b = 10;
swap (&a,&b);

Using pointers instead

aa

b : 5

memory of function
calling swap

a : 10aa

pb :

pa :

memory of swap
function

Pointers and Arrays

■ Arrays and pointers are very related in C.
■ In fact, when you create an array in C, you allocate a

block of memory and create a pointer to the first element
of that block of memory.
 int a[10];

a

Dynamic Memory Allocation

■ The malloc() function allocates a block of memory and
returns a pointer to that allocated memory.
 void *malloc(size_t size);

■ The size of the block must be specified.
■ That block memory is not initialized.

 It will contain whatever is currently in memory.
■ Be careful not to access memory outside what you

allocated.
 Nothing will prevents you from accessing outside that block of

memory.

Using the blocks of memory

■ Both malloc and calloc return a void pointer (void *).
■ In C, you use a void* when return a generic pointer.
■ This generic block of memory must be cast before it can

be used.
int *a = (int *) malloc(sizeof(int) * 40);

■ The sizeof() function simplifies the allocation of memory
by calculating the size of the provided data type.

Deallocating Memory

■ The free() function releases the specified memory space.
 void free(void *ptr);

■ The specified memory must have been returned by a
previous call to malloc(), calloc() or realloc().
 Otherwise, undefined behavior occurs.

■ Not releasing memory after finishing with it can create
memory leaks.
 This can be an especially serious problem if you continually

allocate memory.

