
Persistence in Massively Multiplayer Online Games

Kaiwen Zhang
McGill University
Quebec, Canada

kzhang9@cs.mcgill.ca

Bettina Kemme
McGill University
Quebec, Canada

kemme@cs.mcgill.ca

Alexandre Denault
McGill University
Quebec, Canada

adenau@cs.mcgill.ca

ABSTRACT
The most important asset of a Massively Multiplayer Online
Game is its world state, as it represents the combined efforts
and progress of all its participants. Thus, it is extremely im-
portant that this state is not lost in case of server failures.
Survival of the world state is typically achieved by making
it persistent, e.g., by storing it in a relational database. The
main challenge of this approach is to track the large vol-
ume of modifications applied to the world in real time. This
paper compares a variety of strategies to persist changes
of the game world. While critical events must be written
synchronously to the persistent storage, a set of approxima-
tion strategies are discussed and compared that are suitable
for events with low consistency requirements, such as player
movements. An analysis to better understand the possible
limitations and bottlenecks of these strategies is presented
using experimental data from an MMOG research frame-
work. Our analysis shows that a distance-based solution
offers the scalability and efficiency required for large-scale
games as well as offering error bounds and eliminating un-
necessary updates associated with localized movement.

1. INTRODUCTION
MMOGs or MMORPGs, short for Massively Multiplayer

Online (Role-Playing) Games, is a genre of online games
which has seen tremendous growth since the start of the
21st century with now over 11 million paying subscribers for
revenues exceeding $1 billion annually [8]. The games’ main
focus lies in creating vast worlds where players can interact
with each other and economies with real-life financial conse-
quences are developing on virtual property [15]. MMORPGs
typically have each client control a single character in the
world, referred to as the player. Characters can acquire and
improve skills, pick up items in their inventory, etc. Thus,
the state of the game world is constantly evolving as players
interact in the game. These games are meant to be played for
a long period of time, with users spending several months or
years playing on a single character. The games usually run

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames ’08 Worcester, MA, USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

on a client/server architecture, where clients control their
players, sending any actions to the game server. The server
serializes the actions, adjusts the game world, and sends
changes to all affected players (e.g., nearby players). The
client software then renders the new game state.

Since those games are designed to run continuously for
several years, the hardware supporting the game will in-
evitably fail or be forced to shut down. In those situations,
it is crucial that the game be restored to the last state it was
in. Therefore, persistence becomes an important element for
MMORPGs. If the game state is dynamically stored dur-
ing game play, it can be restored upon restart of a crashed
or failed server. It is usually a fairly simple task to issue a
complete snapshot of the world immediately before shutting
down the server. The difficulty arises when we consider the
case where termination is unpredictable (for instance, server
crash). Ideally, there should be no distinction between the
two cases: the stored state should be equivalent to the actual
game state in main memory at the time of shutdown/failure.
We will see that this ideal may not be realizable due to scal-
ability and efficiency reasons. Under that context, we define
the following goals for persistence in MMORPGs:

• The persistent data should, at the very least, be con-
sistent. In other words, it must form a state which is
plausible in the game. For instance, no unique item
should exist in two separate locations (duplicated).

• The solution must be efficient. MMORPGs are real-
time systems and clients expect fast responses to their
actions. The persistence layer inevitably adds overhead
to the server. The objective is to minimize the addi-
tional cost as felt by a client when executing an action.

• The solution must be scalable. MMORPGs typically
support thousands of simultaneous clients [7]. We must
support such capacity with persistence.

Basically all commercial MMORPGs provide some form
of persistence for recovery and maintenance purposes [10],
although available information about the technology used is
scarce. We are not aware of any work that approaches per-
sistence from a systematic viewpoint or analyzes persistence
options. This paper is a first step in this direction.

The choice of storage is an important decision. In this pa-
per we focus exclusively on a relational database. Since the
world itself is composed of different object types, the rela-
tional model is a good fit [17]. Primary keys and primary key
indices allow for efficient updates of objects. Furthermore,
the database provides benefits for other purposes, such as
fast querying for analytical reports and statistics. Other al-
ternatives include storing the data to a flat text file, such

53

as CSV or a memory-mapped file. However, persistence re-
quires constant updates on very specific parts, which cannot
be accommodated efficiently. A more interesting alternative
would be to only append changes to a log. This allows for
fast writes, but recovery is more cumbersome.

The design of a persistence solution must be optimized for
updates rather than reads, as during normal operation, the
only interaction with the persistence layer is usually to write
the game state. We approach this challenge by using a game-
aware approach. First, we propose a very general database
design that suits many games, can be adjusted dynamically
during game play, and allows for a fast tracking of changes
at a low granularity in order to handle the large volume of
updates. Secondly, we analyze typical game semantics and
show how we can divide the properties of the world into dif-
ferent levels of priorities, each with different options for stor-
age strategies. Finally, we look specifically at saving player
positions. Position changes are by far the most common
event in MMOGs. Thus, providing efficient storage mecha-
nisms for player positions is of utmost importance. Player
positions have relatively weak consistency requirements and
it is likely enough to capture the approximate position of a
player on stable storage. This allows for ample optimiza-
tions, and opportunities to scale. We propose and analyze
a set of approximation strategies specifically designed for
position updates. We have validated and analyzed the pro-
posed approaches by integrating them into the Mammoth
research prototype [1]. We show that by using appropriate
approximation strategies the persistent layer is able to scale
to thousands of players without being a bottleneck.

2. DATABASE DESIGN
There are several database design alternatives. As a first

option, the granularity of persistence can be very coarse,
e.g., at the game level. That is, the entire game state is
simply stored in a BLOB attribute of a simple table. Then,
each write operation has to serialize the entire game state
and write it to the BLOB attribute. A finer granularity can
defines the game world as a set of objects. The database
has then one relation table where each row represents one
object. Each row has an object identifier as indexed primary
key attribute and as second attribute the object state in
binary form (e.g., serialized from the corresponding main
memory object). An event changing the game state then
only has to serialize and write the object(s) affected by the
event [14]. At the other extreme, storage can be at a very
fine granularity such as the attribute level. In this case,
the database would contain a relation for each object class,
whereby each attribute of the class is mapped to an attribute
of the corresponding table. For example, the database will
likely contain a table Player with attributes such as player
id, name, position, level, etc. A change only needs to write
the attribute values that have been changed. Figure 1 shows
these three possible levels of granularity.

2.1 Granularity and game knowledge
As we can see, there is a direct relationship between the

database’s knowledge of the game and its granularity. A
game-aware design has the advantage that each update can
be very specific, minimizing the size of the operation. If the
storage unit is the entire game, each update needs to write
the whole world whereas if storage is at the attribute level
we only need to update specific attributes of the affected

Figure 1: World, object and attribute levels.

object(s). The object level needs to serialize entire objects,
which could be expensive for objects with many attributes.

But having a specialized database has its disadvantages,
too. For each object and attribute, we need special write
operations (though object-relational mappers can be used).
The fact that the database is designed specifically for a par-
ticular game not only limits its support for other games, but
also for other versions of the same game. MMORPGs typi-
cally undergo frequent changes to keep the games attractive
for players. Every time the structure of the world is altered,
the database tables might need to be adjusted. However,
any altering of existing tables is expensive and can lead to
problems. Not all changes and adjustments may be compat-
ible with the previous database design, leading to complex,
long, and high-risk redesigns. Both storage at the game and
object level do not have such problem.

2.2 Two-layered database structure
Our solution splits the database into a game-agnostic ob-

ject layer and a game-aware attribute layer. A single table
Object stores each object of the game in serialized form
(with a key attribute for fast search). Furthermore, for each
attribute of an object class that can be updated dynamically
– we say the attribute is mutable – we can create a special
table with two attributes, one being the primary key of the
object, the other the mutable attribute itself. Typical muta-
ble attributes would be player position, money, etc. Having
separate tables for these attributes allows for fast updates
since the size of each row is small and only the attributes that
were really changed are retrieved and overwritten. Note that
it is only necessary to create tables for mutable attributes
that are often updated, since our design also allows any at-
tributes to change through the Object table. In those cases,
the entire object has to be serialized and the corresponding
row in the Object table has to be overwritten.

When during game (re-)design a new object class is cre-
ated or an existing class is changed, the game designer has
to indicate which mutable attributes are frequently updated.
The persistence layer then automatically creates the appro-
priate tables. When a new object instance is created, it is
inserted into the Object table and the initial values of its
mutable attributes are inserted into the corresponding mu-
table tables, if present. Object changes usually only affect
the frequently updated attributes, and therefore only the
corresponding attribute tables need to be updated.

The purpose of each layer is therefore different: the ob-
ject layer must ensure it contains complete information, no
matter how outdated it is, about every object of the world,
while the attribute layer must ensure it contains the most
recent information about the specific attributes it has been
assigned to. Loading after a shutdown or failure then first
retrieves all objects from the Object table, and then recon-

54

structs the latest persistent state by reading the values from
the mutable tables of the attribute layer.

This structure retains the flexibility of object level design
and the efficiency of attribute level design. If the structure
of an object were to change, this change is automatically re-
flected in the object layer and the database can still support
the game. Most updates are made on frequently updated
mutable attributes and thus at the attribute layer, which
can support efficient updates for specific attributes. Still,
even if attributes are not tagged as frequently updated, their
changes can be reflected, although at a higher cost.

2.3 Database design for Mammoth
We have used the database design for Mammoth, a mas-

sively multiplayer online research framework written mostly
in Java [1]. Mammoth stores the initial state of the world in
a XML file called a“map”. Whereas the map holds both mu-
table and immutable objects, our database only holds mu-
table objects, i.e., objects that have at least one attribute
that may be updated. Our Object table stores the entire in-
formation about each object in XML format. Although not
used currently, the XML format allows for a direct querying
and updating of individual parts of the object, in case the
database system provides XQuery functionality [4]. Then
mutable tables are added for mutable attributes that change
frequently. The loading phase first retrieves immutable ob-
jects from the map file. Then, mutable objects are rebuilt
from the XML entries in the database. Finally, the objects
are updated using the entries of the attribute tables.

3. STORING PERSISTENCE
Saving is the most crucial aspect of persistence as it occurs

while clients are playing and therefore has a direct impact
on them. It is therefore of utmost importance to ensure that
saving the state of the game incurs little overhead. Earlier,
we established that persistence should ideally keep an exact
image of the world at any time. However, this might prove
to be too expensive. Thus, we can relax the initial cost of
persistence by sacrificing exactitude on certain properties.

3.1 Consistency categories
Indeed, an exact image is not required to maintain con-

sistency. We have identified three priority categories that
require different levels of exactitude.

At the lowest level, we have properties which do not need
to be stored at all (no consistency). This could be immutable
objects, such as non-interactive objects and the environment
(walls, trees, etc.). It could also be immutable attributes of
mutable objects (name of a player) or inferred attributes
(the weight of the content of an inventory). It could also
be an attribute which has little or no impact on gameplay
or which can be modified to the correct value at any time.
For instance, the orientation of a player-controlled charac-
ter does not need to be logged because it is usually only a
graphical effect and can be changed at any time.

At the highest priority level, we have properties which
are critical to the integrity of the game and must be stored
exactly (exact consistency). The state of an item in the
game is generally one such property. The state could, for
instance, refer to whether an item is laying on the ground or
inside a certain player’s inventory. Items can be picked up
by players and it is important that players always retain pos-
session of their belongings. Trading is another example. It

not only requires strong consistency, but has the additional
requirement that the set of update operations be atomic in
order to ensure that none of the players trading end up with
all the items of a trade. Changes that affect high priority
properties should be stored synchronously, i.e., the changes
are only committed at the game and the results sent to the
players when the changes have been made persistent.

In between, we have properties which are logged but need
not be exact (low consistency). An example is the position
of a player in the world. It is likely sufficient to log a position
that is within an acceptable range of the true position. This
class of properties is the most interesting because it allows
for strategies with a trade-off between exactitude and effi-
ciency. In general, changes can be sent to the storage system
asynchronously, and thus, persistence does not have a direct
impact on the response time perceived by the players.

3.2 Relationship with game consistency
The level of priority is closely linked to game consistency.

Although each client may perceive the world slightly dif-
ferently, a consistent world ensures that certain critical el-
ements are uniform across all clients and the server. Such
elements therefore also belong to the highest level of priority
for persistence. For instance, two clients may not perceive
the same item in their own inventory. On the other hand,
elements that can be divergent (e.g., different clients might
perceive slightly different positions for a given player) belong
to lower levels of priorities [12, 13]. In this case, the persis-
tent data should constitute a possible state. In other words,
the persistence engine can be treated as a client whose view
on the world may differ from the actual world, but the dif-
ferences are within the limits generally tolerated by clients.

3.3 Storage strategies
Persistence can be achieved using an event-based approach.

Data is written when certain events occur, e.g., when the
state of a certain object has changed. For high priority
events, an event-based strategy can immediately store the
change, ensuring that the persistence data is always exact.
However, for lower level properties which trigger a lot of
events, the event-based strategy will be flooded with notifi-
cations. It must be able to handle all these notifications and
possibly restrict what exactly is sent to the database.

On the other hand, the server could decide independently
of events when to store, for instance by taking snapshots.
Timestamping such snapshots allows us to determine how
recent the persistent data is. There is no need to keep track
of game events. The disadvantage is that it may not store
critical updates fast enough. For instance, the server may
crash after a player picked up an item and before this event
was recorded on the database, thus losing this information.
However, for low priority properties which change frequently
such a strategy may be an effective option.

4. STORING PLAYER POSITION
The change of a player’s position is usually the most fre-

quent event in MMORPGs. Game worlds are typically built
on a continuous plane. Figure 2 shows a player walking in a
game world. When a player clicks on a destination point (ar-
row in the figure), the player’s movement is represented by a
series of small successive position changes towards the target
destination, denoted as thin or thick dots in the figure. As
position updates are very frequent but have low consistency

55

Figure 2: Position Updates

requirements, it is possible and desirable to have approxi-
mate logging mechanisms for them that keep the overhead
at an acceptable level. In this section we discuss a set of
storage strategies for the storage of player positions. The
strategies can also be used for storing the positions of other
objects in the game that can displace on their own.

4.1 Naïve solution
The first solution is the simplest implementation of an

event-based strategy, dubbed the “näıve solution”. This so-
lution stores every position change by sending an update to
the database with the new coordinates. Storage can be syn-
chronous, that is, players only observe the movement after
it is stored in the database. It could also be asynchronous
and players are informed about the change concurrently to
propagating the update to the database. In Figure 2, this
strategy would store each of the dots. While this strategy
maintains exact positions, it is also very expensive.

4.2 Timed snapshot
Our second solution is not event-based. The server takes

a snapshot containing the position of all players and writes
it to the persistence layer. The time between snapshots can
be chosen dynamically in order to not overburden the server
or the persistence layer. One problem is that writes occur
in bursts and the database is not evenly used. Also, the
strategy does not take into account that different players
have different activity patterns and stores all positions with
the same interval. It is more desirable to dedicate more
resources to moving players and none to passive ones.

4.3 Fractional storage
Fractional storage is a generalization of the näıve solution.

Instead of storing every position change, we store only a
fraction of it. This can be done by having each player store
a counter which triggers an update for the database at every
x position events affecting this player. In contrast to the
snapshot solution, fractional storage takes a player’s activity
into account and updates the position of a player relative to
the frequency of movements. It also updates on a continuous
basis, avoiding burstiness. In contrast to the näıve solution,
fractional storage can easily avert overload by dynamically
adjusting the fraction parameter. In Figure 2, if the fraction
parameter is set to 1/5, only thick dots would trigger writing
the position to stable storage.

Fractional storage is a game-agnostic improvement over
the näıve and snapshot solutions. However, taking game
semantics into account, one can do better. If movement
is localized, i.e., the player moves around within a small

area, it is enough to keep one of these positions in stable
storage as the error remains small. In this case, fractional
storage performs unnecessary updates. Furthermore, if a
player used an action which caused a position change at a
large distance (such as teleportation), fractional storage may
not store the new position instantly. If a crash occurs after
the movement but before its storage, the player will restart
at its old position, which may be far from the real position.

4.4 Distance-based
A fourth strategy is to take into account the distance a

player traveled, as opposed to the frequency of its move-
ments. A distance-based strategy only stores the position
of a player to the database if the distance between the cur-
rent position and the last stored position is greater than a
set threshold. This strategy has the advantage of avoiding
unnecessary updates, since local movements do not increase
the distance, and have an error bound (as defined by the
threshold). It might require more computation overhead
than fractional storage since it has to check distances.

While distance-based storage takes game semantics into
account, it is not completely game-aware. Thus, it cannot
track situations where distance is not the important factor.
For instance, when a player moves from one region to an-
other (e.g., climbing up a mountain), the distance between
the two regions might not warrant an update, but the prop-
erties of the regions might require one. In similar spirit, the
movement might be associated with other changes that run
at a higher priority level. For instance, a player might cross
a bridge paying a fee. While the distance travelled might be
too short to trigger an update, the money exchange will be
stored synchronously. To avoid inconsistencies, such crucial
movements must be made high priority properties.

5. IMPLEMENTATION AND ANALYSIS
We have implemented a persistence engine into the Mam-

moth prototype using the database design presented in Sec-
tion 2.3. The engine provides the storage strategies listed
above. Mammoth possesses a well-defined system of listen-
ers for every event in the game. The persistence engine
registers listeners on every object in the game in order to re-
alize its event-based strategies. When a corresponding event
occurs, the listener gets the control and can perform the ac-
cording actions. In our synchronous solution, the listener
only returns after the necessary changes have been written
to the database. In the asynchronous solution, the listener
only writes the changes into a main memory buffer and then
returns. The changes in the buffer are then processed and
written to the database asynchronously in the background.
Our performance analysis focuses on storing position up-
dates since they constitute the vast majority of events in
Mammoth. In our testbed, the database is on a separate
machine as the game server and the DBMS is MySQL.

5.1 Overhead distribution
In our first experiment, we analyze the delay incurred by

the event-based strategies. For each event, the server over-
head consists of analyzing the change and adding it to a
main memory buffer, if necessary. The database overhead
consists of propagating the change to the database.

At the server, the näıve strategy has an overhead of 21
µs. The fractional storage has a delay of 25µs when it adds
the change to the buffer, and only 1.5µs when it decides

56

Figure 4: Approx. strategies:

worst-case

Figure 5: Approx. strategies: ran-

dom

Figure 6: Approx. strategies: “pick

item”

Figure 3: Näıve strategy & rate of position changes

to not make the update persistent. The corresponding val-
ues for the distanced-based strategy are 26µs and 4µs. The
database overhead for each propagated change is 420µs.

Generally, the overhead at the server is small and toler-
able. Thus, event-based strategies are feasible. The extra
overhead for approximation strategies, namely increment-
ing a counter or calculating distance, is negligible. As they
add less changes to the buffer, they have less overall server
overhead than the näıve strategy. What is really expensive
is the database access. It shows the importance of keep-
ing the number of changes that are actually sent to the
database small. Furthermore, given the long delay, the in-
teraction with the database should remain an asynchronous
background process whenever the game semantics do not
require strong consistency.

5.2 Worst-case analysis
In this section, we want to determine the maximum rate of

position updates the persistence engine can handle. Clients
are simulated by NPCs (non-playing characters). Those
NPCs are designed to wander around the world uninterrupt-
edly, since moving without pause generates the most events
in the game. In our setting, a NPC sends approximately
50 position updates per second to the server. This scenario
represents a worst-case scenario in terms of position updates
created but also in terms of locality, since these random play-
ers usually do not remain in a confined area.

Näıve solution – Figure 3 indicates the number of po-
sition updates the server can handle per minute when we
increase the number of NPCs for a system without persis-
tence1 and one with persistence, both using the näıve solu-
tion in asynchronous mode. Without persistence, the rate
of updates linearly scales with the number of players as ex-
pected. With persistence, the throughput caps at around
90000 position updates per minute which represents the load
submitted by 30 players. This represents the maximum ca-
pacity the database can handle. Clearly, the näıve solution

1The persistence structure is still in place, but the changes
queued to the buffer are simply discarded.

cannot handle the thousands of players that we would like
to support. Thus, the aim of the approximate strategies
must be to not write more than 90000 position updates per
minute to the database while supporting a larger number
of players. For instance, assuming 4000 players, on average
22.5 updates per player per minute can be written. We ana-
lytically determine the parameters of the strategies in order
to support 4000 players for the worst-case scenario.

Snapshot strategy – Whenever a snapshot is taken, the
positions of all players are written to the database. Thus, n
players require n writes. The maximum capacity depends on
the delay between snapshots. With 4000 players, a snapshot
can be taken at most every 2.67 seconds and the data on
storage is therefore outdated by up to 2.67 seconds as well.

Fractional storage – The capacity of the fractional stor-
age depends on the fraction of position changes stored. As
we can store 90000 updates per minute that are equally dis-
tributed over all players (since they all move with the same
speed), then each player gets written 22.5 position updates
to stable storage, or one update every 2.67 seconds. Since a
player makes 3000 position changes per minute and only 22.5
get written, this represents a fraction of 0.0075. Note that
the performance is the same as with snapshot-based logging
due to the fact that all players make continuous movements.
Performance improves if players move intermittently.

Distance-based strategy – The distance-based strategy
depends on the distance threshold. In our experiment, a
NPC travels a distance of 1 in around 1 second. Thus, as-
suming that locality is minimalized, if we take a threshold
of 2.7 we again end up storing an update per player every
2.67 seconds, and we can support 4000 players.

Summary – With those parameters, all three strategies are
able to support 4000 players and have the same precision of
2.67 seconds. The experiment shown in figure 4 confirms the
analysis: they perform equally in the worst-case scenario.
The distance-based strategy performs slightly better due to
the fact that the NPCs do not exactly move in straight lines.
Thus, more locality is given and less updates are triggered.

5.3 Other scenarios
The difference between the strategies is more noticeable

when we relax the scenario. Fig. 5 shows the results us-
ing NPCs with randomized movement that does not enforce
worst-case locality. The parameter values are as before. In
this situation, the distance-based solution performs better
as it logs less updates per player and thus supports more
players. The other two strategies remain unaffected.

The next scenario involves NPCs which look for items and
move towards them to pick them up. While picking up ob-
jects, NPCs will stop for a moment to put the item in their

57

inventory (worst-case rate of position change is therefore not
enforced). In this situation, Figure 6 shows that the snap-
shot strategy does not yield improved performance, while
the others do perform much better. The distance-based so-
lution only performs slightly better than the fractional stor-
age because NPCs will actively wander around the map to
search for items. Thus, there is not a lot of locality.

We thus conclude that the performance of the strategies
largely depends on the scenario used. The worst-case sce-
nario is improbable; players usually only move across great
distances when they travel between major points of interest
(e.g., towns), and they usually stay at these hotspots for a
considerable time. Furthermore, since MMORPG worlds are
meant to be interacted with, it is unlikely that players only
move constantly in the game. Therefore, the last scenario
is the most realistic. In this sense, the snapshot strategy is
not preferable, even though it is as efficient as the others in
the worst-case. Amongst the other two, the distance-based
strategy is likely better than the fractional storage strategy
in most cases due to its efficiency in dealing with locality.

6. RELATED WORK
We are not aware of any work that analyzed persistence

in MMORPGs in detail despite the fact that persistence
is supported by basically all commercial MMORPGs [10,
18]. [16] presents a platform that logs activities of simulated
players in MMOGs for data mining purposes.

Mapping an object-oriented application to a relational
database is a common task in many business applications [3,
11, 2]. The mapping software typically automatically gener-
ates a relational schema for a given object-oriented model.
Systems such as J2EE then provide a persistence engine that
writes changes to the objects automatically to the database
at specific timepoints, e.g., transaction commit. The ap-
plication developer only uses the object model. Such map-
ping software and persistence layer could also be used for
persistence of game worlds. However, current solutions do
not allow for approximate solutions which are crucial for
MMORPGs given the large update volume. Furthermore,
changing the object model, and thus, the database schema,
would be very cumbersome. Our solution provides game-
aware approximation and dynamic adjustments.

Consistency has been widely discussed in the context of
distributed server architectures [6, 5] or peer-to-peer infras-
tructures[12, 9] but not in regard to the interaction between
a server and its back-end persistent storage system.

7. CONCLUSION AND FUTURE WORK
This paper proposes a persistence layer for MMORPGs.

We propose a two-layered database design that provides ef-
ficient writes and can be dynamically adjusted. We identify
three consistency categories for game events that have dif-
ferent priority in regard to persistence. For low consistency
events such as position changes, we propose a set of approx-
imate storage strategies with low overhead. Our implemen-
tation in the Mammoth prototype validates our approach.

We show that by making the persistence layer game-aware,
we can exploit unique game properties to considerably re-
duce the write load compared to game-agnostic checkpoint-
ing, and thus, can scale the system without the need to
increase the capability of the database itself.

We see this paper as a first step into developing an effi-

cient storage and recovery component for MMORPGs. In
future work we want to improve our current solution by fur-
ther analyzing the influence of algorithmic parameters such
as the storage fraction and the distance threshold, but also
engineering parameters such as the number of database con-
nections, or the impact of different database systems. We
also want to compare with other storage systems, such as
logging, where changes are written sequentially to disk. Fi-
nally, we want to look into recovery schemes for systems
where the load is distributed across an entire server cluster.

8. REFERENCES
[1] Mammoth - a multiplayer game research framework.

http://mammoth.cs.mcgill.ca/.

[2] S. W. Ambler. Mapping objects to relational
databases, AmbySoft. Inc. White Paper, 1997.

[3] D. K. Barry. Object-relational mapping articles and
products. www.service-architecture.com/
object-relational-mapping/, 2008.

[4] D. Chamberlin. XQuery: a query language for XML.
In ACM SIGMOD, 2003.

[5] A. Chandler and J. Finney. On the effects of loose
causal consistency in mobile multiplayer games. In
NetGames, 2005.

[6] J. Chen, B. Wu, M. DeLap, B. Knutsson, H. Lu, and
C. Amza. Locality aware dynamic load management
for massively multiplayer games. In PPOPP, 2005.

[7] W.-C. Feng, D. Brandt, and D. Saha. A long-term
study of a popular MMORPG. In NetGames, 2007.

[8] K. Graft. NPD: Online Subs Exceed $1 bln Annually.
www.next-gen.biz/index.php?option=com_

content&task=view&id=10377, May 2008.

[9] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In NetGames’04.

[10] D. James, G. Walton, B. Robbins, E. Dunin, G. Mills,
J. Valadares, J. Estanislao, S. DeBenedictis, and
J. Welch. IGDA persistent worlds whitepaper’04.

[11] A. M. Keller, R. Jensen, and S. Agrawal. Persistence
software: Bridging object-oriented programming and
relational databases. In ACM SIGMOD, 1993.

[12] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer games.
In IEEE Infocom, March 2004.

[13] F. W. Li, L. W. Li, and R. W. Lau. Supporting
continuous consistency in multiplayer online games. In
Int. Multimedia Conf., 2004.

[14] A. Riddoch and J. Turner. Technologies for building
open-source massively multiplayer games.
Worldforge.org, 2005.

[15] N. Robischon. Station exchange: Year one.
Whitepaper, 2007.

[16] A. Tveit, Ø. Rein, J. V. Iversen, and M. Matskin.
Scalable agent-based simulation of players in massively
multiplayer online games. In Scand. Conf. on AI, 2003.

[17] G. Wadley and J. Sobell. Using a simple MMORPG to
teach multi-user, client-server database development.
In MS Academic Days Conf. on Game Develop., 2007.

[18] W. M. White, C. Koch, N. G. 0003, J. Gehrke, and
A. J. Demers. Database research opportunities in
computer games. SIGMOD Record, 36(3):7–13, 2007.

58

