
Model-based Design of Computer-Controlled
Game Character Behavior

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe
McGill University, Montreal, QC H3A 2A7, Canada

{Joerg.Kienzle, Alexandre.Denault, Hans.Vangheluwe}@mcgill.ca

Abstract. Recently, the complexity of modern, real-time computer games
has increased drastically. The need for sophisticated game AI, in particu-
lar for Non-Player Characters, grows with the demand for realistic games.
Writing consistent, re-useable and efficient AI code has become hard. We
demonstrate how modeling game AI at an appropriate abstraction level
using an appropriate modeling language has many advantages. A variant
of Rhapsody Statecharts is proposed as an appropriate formalism. The
Tank Wars game by Electronic Arts (EA) is used to demonstrate our
concrete approach. We show how the use of the Statecharts formalism
leads quite naturally to layered modeling of game AI and allows model-
ers to abstract away from choices between, for example, time-slicing and
discrete-event time management. Finally, our custom tools are used to
synthesize efficient C++ code to insert into the Tank Wars main game
loop.

1 Introduction
Recently, global sales of the world’s computer game industry have grown higher
than those of the movie industry. Consequently, there is a growing demand for
technology which supports rapid, re-usable game development accessible to by
non software experts. Computer games can be roughly classified into two cate-
gories: turn-based games (such as board games, adventures, and some role play-
ing games) and real-time games (such as action or arcade games, and real-time
strategy games). The kind of artificial intelligence found in computer games is
different for turn-based and real-time games.

Board games are usually computerized versions of existing board games. Real
board games typically require 2 or more players, but in a computerized version
the computer can play the opponent. A good example of a board game that
has seen many successful computerized implementations is Chess [6]. In turn-
based games and particularly in board games, an artificial intelligence component
that plans the moves of a player typically uses advanced search algorithms and
heuristics to evaluate many possible future game situations. It then chooses as
the current move the one that maximizes the likelihood of winning the game in
the future. Timing is not that critical. Since the game is turn-based, the state of
the game does not change until a player makes a move. Usually, waiting several
seconds for an artificial intelligence component to make a move is acceptable.

Real-time games are very different in nature. The state of the game changes
continuously (or in tiny increments), and the screen is continuously updated

to present the new game state to the player. Modern computer games usually
provide at least 30 frames-per-second updates. In real-time games (with the
exception of real-time strategy games) the player usually controls one character
(or a small number of characters), and plays within a game environment against a
set of computer controlled characters (or in multiplayer games against characters
controlled by other players).

In such games, the term artificial intelligence is used to designate the algo-
rithms that specify the behavior of computer-controlled game characters, often
also called non-player characters (NPC). The ultimate goals is to make the
NPCs’ own actions and reactions to game events seem as intelligent and natural
as possible. For example, a guard protecting a building might walk back and
forth in front of the main door. If ever he hears shots nearby, he should not sim-
ply continue this behavior, but for instance seek cover and call for backup. In
its simplest form, such AI can be specified with scripts or rules that specify the
NPC’s behavior case by case. More realism can be achieved if the NPC has the
ability to analyze a situation and evaluate different options, taking into account
even the game history.

We believe that the specification of such advanced real-time AI should not
be done within a programming language, but at a higher level of abstraction
using visual modeling formalisms. Since the main focus of the models is to de-
fine reactions to game events, an event-based formalism seems to be the most
natural choice. We decided to use our own variant of Rhapsody statecharts [5],
a combination of state diagrams and class diagrams, for our experiments.

Our paper is structured as follows. Section 2 describes our approach to mod-
eling game AI, and explains the details by designing a game AI that controls
the behavior of a tank. Section 3 shows how we used our model to generate code
that executes within the EA Tank Wars environment. Section 4 presents some
related work and section 5 discusses the benefits of our approach and concludes.

2 Modeling Game AI
In games or simulations, a character perceives the environment through his senses
or sensors, and reacts to it through actions or actuators. For instance, a charac-
ter might observe an obstacle with his eyes, and subsequently decide to turn left.
Our AI modeling framework follows this control-inspired philosophy. The trans-
formation from sensor input to actuator output is described by means of simple
components. Each component’s structure is modeled by a class, and its behavior
by a statechart. The main mechanism of communication between the compo-
nents is the asynchronous sending/receiving of events. This lowers the coupling
between components and hence makes reconfiguration and reuse easier. In some
situations, a component may also synchronously invoke an operation of another
component.

The architecture of our AI models is described in Fig. 1. The first level con-
tains components that represent the sensors that allow the character to observe
the environment as well as its own state. The sensors filter the abundant informa-
tion and send events of interest on to the next levels. The second level contains
components that analyze or correlate the events from individual sensors, which

might lead to the generation of further events. The memorizer components keep
track of the history of events. The strategic decider components are conceptu-
ally at the highest level of abstraction. They have to decide on a strategy for
the character based on the current state and memory. At the next level, the
tactical deciders plan how to best pursue the current strategy. The executors
then translate the decisions of the tactical components to low-level commands
according to the constraints imposed by the game or simulation. Coordinator
components understand the inter-relationships of actuators and might refine the
low-level commands further. Finally, the actuators perform the desired action.

Sensors

Analyzers

Memorizers

Strategic Deciders

Tactical Deciders

Executors

Coordinators

Actuators

E
v
e

n
t F

lo
w

L
o
w

 H
ig

h
 L

o
w

L
e
v
e
l
o
f
A

b
s
tr

a
c
ti
o
n

Fig. 1. AI Model Architecture

To illustrate the power of our approach, we
show in the following sections how we modeled
the AI of a computer-controlled tank.

2.1 Modeling the State of a Tank
A tank is a heavy armored fighting vehicle car-
rying guns and moving on a continuous artic-
ulated metal track. When developing a model
of a real-world object such as a tank, the mod-
eler abstracts away certain details depending
on the context in which the model is going to
be used.

Some games actually model game objects such as vehicles and their physi-
cal interactions with the environment in great detail. These games are typically
called simulators, such as flight simulators, helicopter simulators and tank simu-
lators. Simulating the physics of a tank requires a detailed model of the physical
components of a tank (physical shape, material, mass) and equations describing
the physical interactions of these components.

Our interest in this paper is to reason about the behavior of a tank pilot.
Therefore we can model a tank at a much higher level of abstraction (see Fig. 2).
In the particular game that our AI is going to be playing, a tank has a given
physical size, approximated by a bounding rectangle. The gun is mounted on
a rotating turret anchored in the middle of the tank. A tank also has a set of
sensors that relay information about the state of the tank and the surrounding
environment to the pilot. The instruments in the cockpit tell the driver the
position of the tank, in which direction the tank is facing, what speed it is going
at, and at what angle the turret is currently positioned. A fuel indicator shows
the current fuel level of the tank, and a status indicator reports on the current
damage. Finally, two radars, one mounted in the front of the tank, and the other
one on the turret, scan the environment for enemies and obstacles. The tank has
also an advanced weapon detection system, which informs the pilot when the
tank is under attack, and from what position the enemy attack is originating.

The above mentioned state of a tank can naturally be modeled using class
diagrams as shown in Fig. 3. Each sensor of the tank, such as the radar, can be
modeled as a stand-alone class. The composition association is then used to con-
nect the different components together to form the complete state of a particular
tank. The advantage of using hierarchical composition is easy to see: models of

Turret R
adar

Range 40 meters

Front Radar

R
ange 60 m

eters

W
id
th

 2
0

m
et

er
s

W
id

th
 2

0
 m

e
te

rs

 5 meters

3
 m

Fig. 2. Tank and it’s Abstraction

position
direction
speed
damageLevel

Tank

underAttack
attackPosition

WeaponDetectionSystem

direction
range

Turret

radarData
range

Radar
1

1

1

frontRadar

fuelLevel
FuelTank1

myTank

1 turretRadar

Fig. 3. Modeling the State of a Tank with Class Diagrams

tanks with different components, for example with 2 turrets, can easily be con-
structed by combining the individual components in different configurations.

2.2 Sensors – Generating Important Game Events
During a game or simulation, the state of the tank and the states of its com-
ponents evolve (according to the game rules or laws governing the simulation).
As mentioned in the introduction, a tank pilot (or a computer player) pursues a
specific high level goal and performs actions that work towards the achievement
of that goal. High level goals usually remain the same as long as no significant
changes in the tank’s state or in its environment occur.

We suggest to explicitly model the generation of significant events using state
diagrams. The state diagrams are attached to the class that has access to all the
state needed to generate the event, either by inspecting the values of its own
attributes, or by looking at attributes of other classes associated by composition
relationships.

A simple example is shown in Fig. 4. The FuelTank class encapsulates an
attribute that stores the current fuel level of the tank. Fuel is essential for the
tank to function, but the exact fuel level is not of great importance. Hence
we abstract from the continuous fuel level to two discrete states, FuelLevelOK
and FuelLow. Only when the fuel is low, the tank pilot should take appropriate
measures. We can model the generation of a fuelLow event in case the fuel level
crosses a certain threshold by attaching a state diagram to the FuelTank class.
Note that this simple behavior introduces hysteresis: once the fuel level drops
below 10%, the FuelLow state is entered, to only be exited once the level reaches
100% again.

A more complicated example is shown in Fig. 5. In this case, the Radar
component wants to signal EnemySighted and EnemyLost event when an enemy
enters/exits the radar surveillance zone. This behavior is described in the first or-
thogonal component of the statechart Announcements. Analyzing the radar data
for enemy presence, and calculating the enemy position are both operations that

fuelLevel

FuelTank
FuelLevelOK

MonitorTank [fuelLevel < 10%] / fuelLow

<<behavior>>
FuelLow

[fuelLevel = 100%] / fuelFull

Fig. 4. Generating FuelLow and FuelFull Events

boolean enemyPresent()
position getEnemyPos()
boolean enemyInFront()
distance enemyDistance()
boolean obstaclePresent()
position[] getObstacles()

radarData myData
range myRange
direction myDirection
position myPosition

Radar Announcements

<<behavior>>

AnnouncingEnemyAndObstacles

NoEnemy EnemySighted

[enemyPresent()] / enemySighted(getEnemyPos())

[not enemyPresent()] / enemyLost

Checking Waiting

[obstaclePresent()] / wallSighted

after(1)

Fig. 5. Generating Events based on Simple Computations

require a small computation. They can be modeled as simple operations such as
getEnemyPos() attached to the Radar class. The state diagram attached to the
Radar class can use these operations to trigger the transition that sends the de-
sired EnemySighted and EnemyLost events. The orthogonal AnnounceObstacles
component also shown in Fig. 5 performs similar event generation for detected
obstacles.

2.3 Analyzers – Correlating Sensor Events
Some significant events can only be detected or calculated based on the state of
several tank components. For instance, to determine if the enemy is in range,
information from the turret as well as the turret radar is needed. The InRangeDe-
tector state diagram shown in Fig. 6 takes care of this. While in the Seeking state,
if the front radar ray of the turret radar detects an enemy, and the distance is
smaller than the turret range, then the ReadyToShoot event is sent.

2.4 Memorizers – Modeling Memory
A tank pilot does not only react to current events, but also makes decisions
based on events/state from the past. In order to remember interesting state or
events for future strategical decisions, we need to add state to the model that
acts as the tank pilot’s “memory”.

Occurrences of events can be remembered using boolean or enumeration
fields, or states in a statechart. An example of the latter is shown in Fig. 7,
which depicts an EnemyTracker class that contains an enemyPosition field that
remembers at what position the enemy has last been seen, even if the enemy is
not within range of one of the radars anymore.

Seeking

InRangeDetector [turretRadar.enemyInFront() &&

turretRadar.enemyDistance <= turret.range] / readyToShoot

<<behavior>> InRange

after(1)]

InRangeDetector

Radar

1 turretRadar

Turret

1 turret

Fig. 6. Generating Events based on the State of Several Components

EnemyPosKnown

boolean enemyMoved()
enemyPosition

EnemyTracker

<<behavior>>

NoEnemy

TrackEnemy

enemySighted

Tracked
By1Radar

enemyLost

Tracked
By2Radars

enemySighted

[enemyMoved] /

enemyPosChanged
EnemyPos
Unsure

H
enemy

Lost

enemySighted

position getEnemyPos()
...

...
Radar

2

Fig. 7. Remembering the Position of the Enemy

While the enemy is in range of at least one of the radars (# received ene-
mySighted events > # received enemyLost events), the enemyMoved operation
compares the enemy position of the EnemyTracker with the position obtained
from the two radars. If the positions differ by a significant amount, the stored
position is updated and an enemyPosChanged event is sent.

Remembering complex state, for instance geographical information, is less
trivial, and usually requires the construction of an elaborate data structure that
stores the state to be remembered in an easy-to-query form. This is done in
the ObstacleMap class shown in Fig. 8. It reacts to the WallDetected events
sent by the radars and updating the map data structure accordingly. The actual
algorithm is not shown here, but abstracted within the updateMap() operation.

2.5 Strategic Deciders – Deciding on a High-Level Goal

Now that we have the event generation (based on environment sensors, current
state of the tank and memory) in place, it is possible to model the high level
strategy of the tank pilot. This is depicted in Fig. 9. At the highest level of
abstraction, a tank pilot switches between different operating modes based on
events. He starts in Exploring mode, and switches to Attacking mode once the
enemy position is known (and there is still enough fuel). If at any point in time
the sustained damage is too high, then, if the location of the repair station is
known, he switches to Repairing mode. Otherwise, Fleeing is the best strategy.
In the event that the fuel is low, if the location of the fuel station is known, the
tank pilot chooses to switch to Refueling mode. Otherwise, it is best to continue
Exploring, hoping to find a fuel station soon. When the fueltank is full, the pilot
switches back to whatever he was doing before he was interrupted.

The mode changes are announced by sending corresponding events: when
Exploring is entered, the explore event is sent, when Attacking is entered, the
attack event is sent, etc.

updateMap()
position[] obstacles

ObstacleMap

Idle

wallSighted / updateMap()

UpdateMap

<<behavior>>

position[] getObstacles()
...

...
Radar

2

Fig. 8. Creating a Map of the World

EnoughFuel

NormalOperation

PilotStrategy

Attacking Repairing

damageHigh

repaired

Fleeing

[repairTracker.

repairPosKnown]

[not repairTracker.

repairPosKnown]

[repairTracker.

repairPosKnown]

Exploring

fuelLow Refueling fuelFull

H*

[enemyTracker.enemyPosKnown &&

not fuelTank.lowFuel]

!!!!!!!!!!!!!!!!!!!!!!![not fuelTracker.fuelPosKnown]

[fuelTracker.fuelPosKnown]

Fig. 9. The Tank Pilot Strategy

2.6 Tactical Deciders – Planning how to Achieve the Goal
The high-level goals sent by the pilot strategy component have to be translated
into lower-level commands that can be understood by the different actuators
of the tank, such as the motor and the turret. This translation is not trivial,
since it can require complex tactical planning decisions to be made. In addition,
the planning should take into account the history of the game, i.e. consult the
memorizers for important game state or events that happened in the past.

Each strategy of the pilot should have a corresponding planner component.
Fig. 10 illustrates how the AttackPlanner decides to carry out an attack: when-
ever the tank is ready to shoot, a shoot event is sent. The movement strategy is
also simple: the planner chooses to move the tank to the position of the enemy.
Whenever the enemy position changes, it sends out a newDestination event.

The Pathfinding component, shown in Fig. 11, knows how to perform obstacle
avoidance. It translates the newDestination event into a list of waypoints by
analyzing the current world information obtained from the Map. The Pathfinding
component then announces the first waypoint by sending an event. Whenever
the tank reaches a waypoint, the next waypoint is announced.

2.7 Executors – Mapping the Decisions to Actuator Commands
The executors map the decisions of the tactical deciders to events that the actu-
ators can understand. The mapping of events is constrained by the rules of the
game or simulation. There is typically one executor for each actuator.

In our case the Steering component shown in Fig 12translates the waypoints
into events that the MotorControl understands. Every second, depending on
whether the waypoint is ahead of, left of, right of or behind the tank, the cor-
responding command event is sent to the MotorControl. A more sophisticated
Steering component would take into account the dynamics of the tank such as
speed, mass, and acceleration.

MovementAimingAndShooting

AttackPlanner

Follow
Enemy

<<behavior>>

 enemyPosChanged /

newDestination(enemyTracker.getEnemyPos()); aimAt(..)

Idle

Ready Shooting

readyToShoot / shoot

after(timeToReload)

attack /

newDestination(enemyTracker.

getEnemyPos()); aimAt(...)explore

AttackStrategy

Fig. 10. Attack Movement Strategy

setDestination()
calculatePath(position)
boolean moreWaypoints()

position[] waypoints
position destination

Pathfinder

Idle

newDestination(p) / calculatePath(p)PathFinder

<<behavior>>

Map

1

/ newWaypoint

obstacleAhead / calculatePath(destination)

waypointReached

 [moreWaypoints()]

/ newWaypoint

 [not moreWaypoints()]

/ destinationReached

Fig. 11. Pathfinding

2.8 Coordinators – Resolving Undesired Actuator Interactions
For modularity and composability reasons, executors individually map tactical
decisions to actuator events. This mapping can result in inefficient and maybe
even incorrect behavior when the effects of actuator actions are correlated. In
such a case it is important to add an additional coordinator component that
deals with this issue.

For example, while attacking, the turret should turn until it is facing the
enemy tank and then shoot. However, the optimal turning strategy depends
on whether the tank itself is also turning or not. Fig. 13 illustrates a Turret-
TankMovementCoordinator class that performs this coordination step. The cal-
culations required to determine if it is faster to turn right or turn left based on the
current turning decisions of the motor are done in the operations reachTurnLeft()
and reachTurnRight().

2.9 Actuators – Signaling the Action to the Game
At our level of abstraction, the tank actuators are very simple. A tank pilot
can decide whether to advance or move the tank backwards at different speeds,
and whether to turn left or right. Likewise, a turret can be turned left or right,
and shots can be fired at different distances. Finally, commands can be given to
refuel or repair, if the tank is currently located at a fuel or repair station. We
suggest to model each actuator as a separate Control class.

Fig. 14 shows the MotorControl class, an actuator that controls the move-
ment of the tank. The state diagram shows how the motor reacts to turnLeft,

*

 [wpAhead()]

/ forward

boolean wpReached()
boolean wpAhead()
boolean wpLeft()
boolean wpBehind()
boolean wpRight()

position destWaypoint
Steering Forward

Backward

SteeringStrategy

<<behavior>>

Left
Right

Wait
AndSee

Idle

 [wpBehind()]

/ backward

[wpLeft()]

 / turnLeft

[wpRight()]

 / turnRight

* = [not wpLeft() and not wpRight()] / stopTurn

after(1)

[wpReached()]

/ waypointReached

newWaypoint

Fig. 12. Steering the Tank

boolean facingDest()

time reachTurnLeft()

time reachTurnRight()

!

TurretTank
MovementCoordinator

<<behavior>>

Motor

Turret

1 myMotor

1 myTurret

Turning
Left

[facingEnemy()] /

turretStopTurn

Stay

[reachTurnLeft() >

reachTurnRight()] /

turretTurnLeft

Turning
Right

[reachTurnLeft() >

reachTurnRight()] /

turretTurnRight

[facingEnemy()] /

turretStopTurn

TurretTankMovementCoordinator

Fig. 13. Coordinating and Controlling the Turret

turnRight, stopTurn, forward, backward and stop events. How this action is finally
executed within the game or simulation is going to be discussed in section 3.

2.10 Tank AI Model Summary
The detailed architecture that shows all the components of our tank AI is de-
picted in Fig. 15. Most communication is done using events, and hence the indi-
vidual components are only loosely coupled. Only when conceptually necessary,
i.e. when a component’s functionality depends on data from another component,
synchronous communications must occur. In this case, the dependency between
the involved classes is shown with directed associations.

Fig. 16 shows a possible sequencing of events in case the PilotStrategy compo-
nent decides to attack. The AttackPlanner (concurrently) sets a new destination
and tells the turret to aim at the enemy. The Pathfinder calculates new way-
points by consulting the ObstacleMap and instructs the Steering component to
move towards the first waypoint. The Steering component instructs the Motor
to move in the appropriate direction. Simultaneously, the TurretSteering com-
ponent instructs the turret to turn by an absolute angle to face the enemy. The
turning is coordinated with the tank movement by the TurretTankMovementCo-
ordinator. In our example, the tank is moving left (maybe to avoid an obstacle),
and the turret turns right to compensate and then stops.

The following events could interrupt the current movement at any time:

• A waypointReached event sent by the WaypointDetector component
when it detects that the tank reached its current waypoint causes the
Pathfinder to announce the next waypoint.

MotorControl

MotorControl

<<behavior>>

MotorState

Turning
Left

stopTurn

Going
Straight

turnLeft

Turning
Right

turnRight

stopTurn

Moving
Forward

stop

Stopped

forward

Moving
Back

backward

stop

Fig. 14. The Motor Actuator

Sensors

Analyzers

Memorizers

Strategical Deciders

Tactical Deciders

Executors

Coordinators

Actuators

Tank

Turret

Radar

FuelTank

WeaponDetectionSystem

InRangeDetector

EnemyTracker FuelStationMap ObstacleMapRepairStationMap

PilotStrategy

AttackPlanner RefuelPlanner RepairPlanner

ExplorePlannerEscapePlanner

Pathfinder

Steering

TurretTankMovementCoordinator

MotorControl TurretControl

TurretSteering

ObstacleDetector WaypointDetector

Fig. 15. The Tank AI Components

• An obstacleAhead sent by the ObstacleDetector causes the Pathfinder
to calculate a new path and announce the first waypoint.

• A fuelLow event sent by the FuelTank causes the PilotStrategy to tran-
sition into the refueling state and send the refuel event, which causes
the RefuelPlanner to announce the position of the fuel station as the
new destination.

• Similarly, a damageHigh event sent by the Tank can cause the pilot to
decide to repair.

3 Mapping to an Execution Platform

3.1 The EA Tank Wars Simulation Environment
In 2005, Electronic Arts announced the EA Tank Wars competition [2], in which
Computer Science students compete against each other by writing artificial in-
telligence (AI) components that control the movements of a tank. EA released
a simulation environment written in C++, prepared to compile on Windows,

:TurTankMoC:ObstMap :PilotStrateg : TurretSteer :MotorCtrl:AttackPlan :Pathfinder :Steering

attack

newDestination(p)

getObstacles()

newWaypoint(w)

forward

left

par

aimAt(p)
turnTo(angle)

turretRight

:TurretCtrl

turretStop

Memorizer
Strategical

Decider

Tactical

Deciders
Executors Coordinators Actuators

Fig. 16. Possible Event Sequence in Case of an Attack

Linux and MacOS X, in which, two tanks, both controlled by an AI component,
fight a one-on-one battle in a 100 by 100 meter world. In Tank Wars, a tank is
equipped with sensors and actuators identical to our example model of section 2
(see also Fig. 2). During the simulation, an animation shows the moving tanks,
their radar ranges and their state.

The Tank Wars simulation environment is time-sliced (as opposed to discrete-
event). Every time slice, the AI component of the tank is given the current state
of the world as seen by the tank sensors. The AI then has to decide whether
to change the speed of the tank, whether to turn, whether to turn the turret,
whether to fire and how far, and whether to refuel or repair, if possible. Each
turn lasts 50 milliseconds. If the AI does not make a decision when the time
limit elapsed, the tank does not move during that time slice.

3.2 Time-slicing vs. Continuous Time

The simulation in Tank Wars is built on a time-sliced architecture. Every 50ms,
the new state of the environment is sent to the AI component. Statecharts on
the other hand are purely event-based. At the modeling level, as well as when
the model is simulated, time is continuous, i.e. infinite time precision is available.
There is no time-slicing: a transition that is labeled with a time delay such as
after(t) means that the transition should fire exactly after the time interval
t has elapsed, t being a real number. Continuous time is most general, and is
most appropriate at this level of abstraction for several reasons:

• Modeling freedom: The modeler is not unnecessarily constrained or en-
cumbered with implementation issues, but can focus on the logic of the
model.

• Symbolic analysis: Using timed logic it is possible to analyze the model
to prove properties.

• Simulation: Simulation can be done with infinite accuracy (accuracy of
real numbers on a computer) in simulation environments.

: AI: Tank Wars : Tank : TurretRadar : FuelTank

AI(...)
setPosition(p)

setRadarData(d)

setLevel(l)
...

: FrontRadar

setDirection(d)

setRadarData(d)

...

Fig. 17. Converting Time Sliced Execution to Events

• Reuse: Continuous time is the most general formalism, and can therefore
be used in any simulation environment.

When a model is used in a specific environment, actual code has to be synthe-
sized, i.e. the continuous time model has to be mapped to the time model used in
the target simulation. In games that are event-based such a mapping is straight-
forward. This is however not the case for Tank Wars, in which an approximation
has to take place: the synthesized code can execute at most once every time-
slice. Fortunately, if the time slice is small enough compared to the dynamics of
the system to be modeled (such as the motion of a tank), the approximation is
acceptable and the resulting simulation close to equivalent to a continuous time
simulation.

3.3 Bridging the Time-Sliced – Event-Driven Gap
In order to use event-based reasoning in a time sliced environment, a bridge
between the two worlds has to be built. In Tank Wars, at every time slice, the
framework calls the C++ function static void AI (const TankAIInput in,
TankAIInstructions & out) of an AI object. We implement the bridge between
the time-sliced game environment and our statechart model in this function.

In section 2.1, we modeled the state of the sensors in separate classes. The in
parameter of the AI function contains a data structure that describes the current
state of all sensors. The function proceeds by storing the new sensor states in
the appropriate objects (see Figure 17).

The mapping to events is done at the level of the sensor objects according
to the attached statecharts. After the operation updated the state of the sensor,
the guards in the statechart are evaluated, and the corresponding event is fired,
if any. For instance, according to the statechart shown in Fig. 4, the execution
of the setLevel operation of the FuelTank might generate a fuelLow event in
case the fuel level sinks below 10%.

From then on, propagation of events and triggering of actions entirely done
within the statechart formalism. After all events have been processed, or at least
just before the 50 ms deadline expires, the state in the actuator objects is copied
into the out struct of the AI function and returned to the Tank Wars simulation.

3.4 ATOM3 and Code Generation
To validate our approach, we built our tank model in our AToM3 visual meta-
modeling and model transformation environment [1]. We compiled the model

Fig. 18. Wall Encounter Execution Trace

into C++ code with our own custom-built Statechart compiler. After inserting
this code into the Tank Wars game (in the AI function), realistic behavior is
observed as shown in Fig. 18. The figure shows a trace of a scenario where a
tank encounters a wall, initiates turning until the wall is no longer in the line of
sight, and finally continues on its way.

4 Related Work
The use of visual modeling environments is not new to the gaming industry. Also
known under the name of Visual Scripting Languages, finite state machines and
other formalisms have been used to model various features of games, including
cinematics and story narratives [8]. The main objective of developing such sys-
tems is to offload work from the programmers to the game designers and the
animators, allowing them to participate to the development of the game without
requiring any programming or scripting knowledge [4].

More interesting is the use of modeling environment to define the behavior of
agents, as proposed by Simbionic and its toolset which allow a developer to de-
scribe the behavior of intelligent agents using finite state machines [3]. Although
similar to our approach, the Simbionic toolset represents states as actions, tran-
sitioning from one action to another solely through the use of conditions and
guards. In addition, the toolset functions exclusively in a time-slice fashion, ab-
stracting time as simple clock ticks.

Viusal modeling environments can also be found in commercial engines. The
Unreal Engine 3 [9] includes UnrealKismet, a visual scripting system, which
provides artists and level designers the freedom to design stories and action
sequences for non player characters within a game without the need for pro-
gramming. One key feature of UnrealKismet is the support for hierarchy of com-
ponents, which makes it possible to structure complicated behavior descriptions
nicely. The difference with our approach is that the models in UnrealKismet es-
sentially describe the decision making steps of an AI algorithm graphically. Our
approach does not model the control flow explicitly. The behavior emerges based
on the components that listen for and react to events.

Also worth mentioning is ScriptEase [7], a textual tool for scripting sequences
of game events and reactions of non player characters. Although it doesn’t use
a visual formalism, ScriptEase introduces a pattern template system – a library
of frequently used sequences of events – that allows designers to put together
complex sequences with little programming.

5 Discussion and Conclusion
In this section, we situate our efforts into the broader context of Model-Based
Design and highlight the benefits of this approach. The core idea of Model-

Based Design is to explicitly model the structure and behavior of systems under
study. Such models can be described at different levels of abstraction or detail
as well as by means of different formalisms. The particular formalism and level
of abstraction chosen depends on the background and goals of the modeler as
much as on the system modeled.

Working at the Appropriate Level of Abstraction In general, the process
of abstraction can be considered a type of transformation that preserves some
invariant properties (usually behavioral) of the system. In the case of our Tank
Wars example, several types of abstraction take place. First of all, there is the
explicit layering of levels of abstraction. At the lowest levels (most detailed data,
closest to the physical entities/game engine) are sensors and actuators. At the
highest level is the strategic planning level. Intermediate levels help bridge the
information gap between these levels. Different levels of abstraction are crossed
quite naturally by means of event aggregation and synthesis.

Abstraction is also applied to data. Sensors filter the large amounts of data
and propagate only salient events to higher abstraction layers. As is common in
object-oriented design, an abstraction is made by choosing only relevant prop-
erties to be modeled as object attributes.

Appropriate Formalism and Visual Notation Orthogonal to the choice of
model abstraction level is the selection of suitable formalisms in which the mod-
els are described. The choice of formalism is related to the abstraction level, the
intended audience, and the availability of solvers/simulators/code generators for
that formalism. In the case of our Tank Wars example, a variant of Rhapsody
Statecharts were chosen as the main formalism. This formalism allows for mod-
ular description of both structure (in the form of Class Diagrams) and behavior
(in the form of associated Statecharts) of the different components described
above. Statecharts have been used extensively to model behavior of reactive sys-
tems. It is hence no surprise that this formalism is a natural choice to model
the types of modern computer games we are interested in. The formalism has an
intuitive visual notation which makes it suitable for use by non software experts.
It also allows us to almost perfectly encapsulate the individual components.

During the modelling (and analysis and possibly simulation) stage of devel-
opment, Statecharts allow us to ignore implementation details such as whether
the game engine uses time-slicing or event-scheduling time management. This is-
sue, albeit very important, is taken care of transparently by the model compiler.
Thus, the game AI modeler is no longer burdened with making coding detail
decisions, but only with higher-level choices. This shows the power of working
at an appropriate level of abstraction, using appropriate formalism(s). Note that
complexity does of course never disappear. In Model-Based Design, accidental
complexity is kept to a minimum hidden and is factored out and encoded in
formalism transformation models (the model compiler in this case).

Enhanced Modularization There is the more detailed de-composition, within
each abstraction layer, of structure and behavior into easily identifiable compo-
nents. These components either correspond to physical entities (such as a Turret)

or to conceptual entities such as a AttackPlanner. This high degree of modular-
ity allows both for independent development and understanding of components.
While working on a specific component within a well-defined abstraction level,
a developer is maximally focused on the task at hand.
Enhanced Evolution and Reuse The abstraction layers we presented are
commonly found in a variety of modern computer games and provide a concep-
tual framework within which models can easily be formulated and (re-)used. For
instance, the AttackPlanner could be easily reused within a game in which a
computer-controlled knight has to decide how to attack an enemy soldier.

The elegant breakup into loosely coupled components makes it easy to evolve
an AI by simply replacing an existing components with a more sophisticated
component that provides similar functionality. For instance, the performance
of our tank AI could be enhanced by using a better Pathfinder. An enhanced
AttackPlanner could hide behind an obstacle and ambush the enemy.

Finally, the loose coupling makes it possible to create AI for tanks with
different sensors and actuators by removing or adding individual components.
For instance, a tank could have a better radar, or just one radar, or 2 turrets.

References

1. Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in AToM3. Software and Systems Modeling
(SoSyM), 3(3):194–209, August 2004. DOI: 10.1007/s10270-003-0047-5.

2. Electronic Arts. EA Tank Wars. http://www.info.ea.com/company/company-
tw.php, 2005.

3. Daniel Fu and Ryan T. Houlette. Putting AI in entertainment: An AI authoring
tool for simulation and games. IEEE Intelligent Systems, 17(4):81–84, 2002.

4. Sunbir Gill. Visual Finite State Machine AI Systems. Gamasutra:
http://www.gamasutra.com/features/20041118/gill-01.shtml, November 2004.

5. David Harel and Hillel Kugler. The rhapsody semantics of statecharts (or, on the
executable core of the UML). LNCS, 3147:325 – 354, 2004.

6. Monty Newborn. Deep blue’s contribution to AI. Ann. Math. Artif. Intell, 28(1-
4):27–30, 2000.

7. C. Onuczko, M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy,
K. Waugh, M. Carbonaro, and J. Siegel. A Pattern Catalog For Computer Role
Playing Games. In Game-On-NA 2005 - 1st International North American Confer-
ence on Intelligent Games and Simulation, pages 33 – 38. Eurosis, August 2005.

8. Christopher J.F. Pickett, Clark Verbrugge, and Felix Martineau. (P)NFG: A Lan-
guage and Runtime System for STructured Computer Narratives. In Game-On-NA
2005 - 1st International North American Conference on Intelligent Games and Sim-
ulation, pages 23 – 32. Eurosis, August 2005.

9. Unreal Technology. The Unreal Engine 3.
http://www.unrealtechnology.com/html/technology/ue30.shtml, 2007.

