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Brain parcellation - the act of dividing the brain into sub-regions - 
has intrigued neuroanatomists since the dawn of the discipline. 
Here, we explore a de novo, data-driven, unsupervised method of 
parcellation the thalamus - a subcortical neuroanatomical hub 
essential for information relay and integration [1].

Unlike most thalamic parcellations, which typically use a single 
type of data (e.g. histology), our method allows for multiple 
modalites of information to be considered collectively in 
determining patterns of covariance and result in highly interpretable 
decompositions of the original data [2; 3].

Data Acquisition and Pre-Processing
Structural and diffusion data (T1-weighted, T2-weighted, Mean 
Diffusivity, Fractional Anisotropy) of 100 unrelated subjects were 
obtained from the Human Connectome Project [4]. Voxel intensities 
for each subject / image type combination from the L. thalamus are 
extracted and represented as row vectors.  

Image Decomposition & Parcellation
Non-Negative Matrix Factorization (NMF) is used to decompose the 
input matrix (V) with a user specified component quantity (r).   

Tractography
As a way of validation, we seed from each pacel to compute 
streamlines, and label each voxel with the dominant tract. 

Where a*c + b*d ≈ e , and:

    - The matrix W describes each component;

    - The matrix H describes the weighing of each voxel on each component.

Parcellation is generated via running a k-means algorithm using the 
H matrix weights as parameters to generate k clusters of voxels.

NMF is shown to produce spatially continuous components that 
captures prominant, interpretable variations, making it a useful tool 
in interpreting and analyzing multimodal, heterogeneous data.

Furthermore, prelimary work on discrete thalamic parcellation via k-
means shows promise. As a next step, further optimization of the 
algorithms and improvements in the input data should be 
considered. 
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Figure 2. (Top row) Sagittal view of the left thalamus. Colour range depicts each voxel's weight (as represented in the weight 
matrix, H) loading onto components 1, 2 and 5. Hotter colours indicate that a voxel is more strongly dependent on the particular 
component. (Bottom row): Each component's characteristics (from the component matrix, W). Hotter colours indicate stronger 
representation of a particular image modality. For instance,  combining the two rows, we see that the posterior thalamus has 
strong component 2 characteristics: high mean diffusivity (MD), low T1/T2 and low fractional anisotropy (FA) measures. 

Figure 1. NMF decomposition with r=6, where V≈W•H  (a) Input matrix (V), where each row depicts a subject / image type 
combination, and each column depicts a voxel; (b) Component matrix (W), where each column depicts the characteristics of a 
single decomposed component; (c) Weight matrix (H), where each row depicts the weights of voxels loading onto that particular 
component. For instance, voxels with hot colours in row 1 (of matrix H) have strong component 1 (column 1 of matrix W) 
characteristics. 
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Figure 3. K-means clustering (k=6) with weights from matrix H as input parameters for each voxel. (a) Sagittal view of the k-
means generated left thalamus parcellation labels; (b) Coronal view of the thalamus labels; (c) Tractography analysis using the 
k-means generated labels as seeds. The label value for a voxel is determined by the seed with the highest number of tracts 
innervating that voxel. Interestingly, we observe preferential connectivity to distinctive cortical regions. 
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