
Inductive Beluga: Programming Proofs

Brigitte Pientka and Andrew Cave

McGill University, Montreal, QC, Canada,
{bpientka,acave1}@cs.mcgill.ca

Abstract. beluga is a proof environment which provides a sophisti-
cated infrastructure for implementing formal systems based on the log-
ical framework LF together with a first-order reasoning language for
implementing inductive proofs about them following the Curry-Howard
isomorphism.
In this paper we describe four significant extensions to beluga: 1) we
enrich our infrastructure for modelling formal systems with first-class
simultaneous substitutions, a key and common concept when reasoning
about formal systems 2) we support inductive definitions in our reason-
ing language which significantly increases beluga’s expressive power 3)
we provide a totality checker which guarantees that recursive programs
are well-founded and correspond to inductive proofs 4) we describe an
interactive program development environment. Taken together these ex-
tensions enable direct and compact mechanizations. To demonstrate bel-
uga’s strength and illustrate these new features we develop a weak nor-
malization proof using logical relations.

Keywords: Logical frameworks, Dependent Types, Proof Assistant

1 Introduction

Mechanizing formal systems, given via axioms and inference rules, together with
proofs about them plays an important role in establishing trust in formal devel-
opments. A key question in this endeavor is how to represent variables, (simul-
tanous) substitution, assumptions, and derivations that depend on assumptions.

beluga is a proof environment which provides a sophisticated infrastructure
for implementing formal systems based on the logical framework LF [11]. This
allows programmers to uniformly specify syntax, inference rules, and derivation
trees using higher-order abstract syntax (HOAS) and relieves users from hav-
ing to build up common infrastructure to mange variable binding, renaming,
and (single) substitution. beluga provides in addition support for first-class
contexts [16] and simultaneous substitutions [4], two common key concepts that
frequently arise in practice. Compared to existing approaches, we consider its
infrastructure one of the most advanced for prototyping formal systems [6].

To reason about formal systems, beluga provides a standard first-order
proof language with inductive definitions [3] and domain-specific induction prin-
ciples [18]. It is a natural extension of how we reason inductively about simple

domains such as natural numbers or lists, except that our domain is richer, since
it allows us to represent and manipulate derivations trees that may depend on
assumptions. Inductive beluga substantially extends our previous system [19]:

First-class Substitution Variables [4] We directly support simultaneous substi-
tutions and substitution variables within our LF-infrastructure. Dealing with
substitutions manually can lead to a substantial overhead. Being able to ab-
stract over substitutions allows us to tackle challenging examples such as proofs
using logical relations concisely without this overhead.

Datatype definitions [3] We extend our reasoning language with recursive type
definitions. These allow us to express relationships between contexts and deriva-
tions (contextual objects). They are crucial in describing semantic properties
such as logical relations. They are also important for applications such as type
preserving code transformations (e.g. closure conversion and hoisting [1]) and
normalization-by-evaluation. To maintain consistency while remaining sufficiently
expressive, beluga supports two kinds of recursive type definitions: standard
inductive definitions, and a form which we call stratified types.

Totality Checking [18] We implement a totality checker which guarantees that a
given program is total, i.e. all cases are covering and all recursive calls are well-
founded according to a structural subterm ordering. This is an essential step to
check that the given recursive program constitutes an inductive proof.

Interactive Proof Development Similar to other interactive development modes
(e.g. Agda [14] or Alf [12]), we support writing holes in programs (i.e. proofs)
showing the user the available assumptions and the current goal, and we support
automatic case-splitting based on beluga’s coverage algorithm [5, 18] which
users find useful in writing proofs as programs.

The Beluga system, including source code, examples, and an Emacs mode,
is available from http://complogic.cs.mcgill.ca/beluga/.

2 Inductive Proofs as Recursive Programs

We describe a weak normalization proof for the simply typed lambda-calculus
using logical relations – a proof technique going back to Tait [20] and later re-
fined by Girard [10]. The central idea of logical relations is to define a relation on
terms recursively on the syntax of types instead of directly on the syntax of terms
themselves; this enables us to reason about logically related terms rather than
terms directly. Such proofs are especially challenging to mechanize: first, specify-
ing logical relations themselves typically requires a logic which allows a complex
nesting of implications; second, to establish soundness of a logical relation, one
must prove a property of well-typed open terms under arbitrary instantiations
of their free variables. This latter part is typically stated using some notion of
simultaneous substitution, and requires various equational properties of these
substitutions.

2

http://complogic.cs.mcgill.ca/beluga/

As we will see our mechanization directly mirrors the theoretical development
that one would do on paper which we find a remarkably elegant solution.

2.1 Representing Well-typed Terms and Evaluation in LF

For our example, we consider simply-typed lambda-terms. While we often define
the grammar and typing separately, here we work directly with intrinsically
typed terms, since it is more succinct. Their definition in the logical framework
LF is straightforward. Below, tm defines our family of simply-typed lambda terms
indexed by their type. In typical higher-order abstract syntax (HOAS) fashion,
lambda abstraction takes a function representing the abstraction of a term over
a variable. There is no case for variables, as they are treated implicitly. We
remind the reader that this is a weak function space – there is no case analysis
or recursion, and hence only genuine lambda terms can be represented.

LF tp : type =
| b : tp
| arr : tp → tp → tp;

LF tm : tp → type =
| app : tm (arr T S) → tm T → tm S
| lam : (tm T → tm S) → tm (arr T S)
| c : tm b;

Our goal is to prove that evaluation of well-typed terms halts. For simplicity,
we consider here weak-head reduction that does not evaluate inside abstractions,
although our development smoothly extends. We encode the relation step stating
that a term steps to another term either by reducing a redex (beta rule) or by
finding a redex in the head (stepapp rule). In defining the beta rule, we fall back
to LF-application to model substitution. In addition, we define a multi-step
relation, called mstep, on top of the single step relation.

LF step : tm A → tm A → type =
| beta : step (app (lam M) N) (M N)
| stepapp: step M M’ → step (app M N) (app M’ N);

LF mstep : tm A → tm A → type =
| refl : mstep M M
| onestep: step M N → mstep N M’’ → mstep M M’;

Evaluation of a term halts if there is a value, i.e. either a constant or a
lambda-abstraction which it steps to.

LF val : tm A → type =
| val/c : val c
| val/lam : val (lam M);

LF halts : tm A → type =
| halts/m : mstep M M’ → val M’

→ halts M;

2.2 Representing Reducibility using Indexed Types

Proving that evaluation of well-typed terms halts cannot be done directly, as the
size of our terms may grow when we are using the beta rule. Instead, we define
a predicate Reduce on well-typed terms inductively on the syntax of types, often
called a reducibility predicate. This enables us to reason about logically related
terms rather than terms directly.

3

– A term M of base type b is reducible if halts M.

– A term M of function type (arr a B) is reducible, if halts M and moreover, for
every reducible N of type A, the application app M N is reducible.

Reducibility cannot be directly encoded at the LF layer, since it involves
strong implications. We will use an indexed recursive type [3], which allows
us to state properties about well-typed terms and define the reducibility relation
recursively. In our case, it indeed suffices to state reducibility about closed terms;
however, in general we may want to state properties about open terms, i.e.
terms that may refer to assumptions. In beluga, we pair a term M together
with the context Ψ in which it is meaningful, written as [Ψ `M]. These are called
contextual LF objects [13]. We can then embed contextual objects and types
into the reasoning level; in particular, we can state inductive properties about
contexts, contextual objects and contextual types.

stratified Reduce : {A:[`tp]}{M:[`tm A]} ctype =
| I : [`halts M] → Reduce [`b] [`M]
| Arr: [`halts M] →

({N:[`tm A]} Reduce [`A] [`N] → Reduce [`B] [`app M N])
→ Reduce [`arr A B] [`M];

Here we state the relation Reduce about the closed term M:[`tm A] using the
keyword stratified. The constructor I defines that M is reducible at base type, if
[`halts M]. The constructor Arr defines that a closed term M of type arr A B is
reducible if it halts, and moreover for every reducible N of type A, the application
app M N is reducible. We write {N:[`tm A]} for explicit universal quantification
over N, a closed term of type A. To the left of ` in [`tm A] is where one writes
the context the term is defined in – in this case, it is empty.

In the definition of Reduce, the arrows correspond to usual implications in
first-order logic and denote a standard function space, not the weak function
space of LF. Contextual LF types and objects are always enclosed with []

when they are embedded into recursive data-type definitions in the reasoning
language. We note that the definition of Reduce is not (strictly) positive, and
hence not inductive, since Reduce appears to the left of an arrow in the Arr case.
However, there is a different criterion by which this definition is justified, namely
stratification. We discuss this point further in Sec. 2.5

To prove that evaluation of well-typed terms halts, we now prove two lemmas:

1. All closed terms M:[`tm A] are reducible, i.e. Reduce [` A] [` M].

2. If Reduce [` A] [` M] then evaluation of M halts, i.e. [` halts M].

The second lemma follows trivially from our definition. The first part is
more difficult. It requires a generalization, which says that any well-typed term
M under a closing substitution σ is in the relation, i.e. Reduce [` A] [` M[σ]]. To
be able to prove this, we need that σ provides reducible instantiations for the
free variables in M.

4

2.3 First-class Contexts and Simultaneous Substitutions

In beluga, we support first-class contexts and simultaneous substitutions. We
first define the structure of the context in which a term M is meaningful by
defining a context schema: schema ctx = tm T;

A context γ of schema ctx stands for any context that contains only declara-
tions x:tm T for some T. Hence, x1:tm b, x2:tm (arr b b) is a valid context, while
a:tp,x:tm a is not. We can then describe not only closed well-typed terms, but
also a term M that is well-typed in a context γ as [γ ` tm A] where γ has schema
ctx [16].

To express that the substitution σ provides reducible instantiations for vari-
ables in γ, we again use an indexed recursive type.

inductive RedSub : {γ:ctx}{σ:[`γ]} ctype =
| Nil : RedSub [] [` ^]
| Dot : RedSub [γ] [` σ] → Reduce [`A] [`M]

→ RedSub [γ, x:tm A[^]] [` σ , M];

In beluga, substitution variables are written as σ. Its type is written [`γ],
meaning that it has domain γ and empty range, i.e. it takes variables in γ to closed
terms of the same type. In the base case, the empty substitution, written as ^, is
reducible. In the Dot case, we read this as saying: if σ is a reducible substitution
(implicitly at type [`γ]) and M is a reducible term at type A, then σ with M

appended is a reducible substitution at type [`γ,x:tm A[^]] – the domain has
been extended with a variable of type A; as the type A is closed, we need to weaken
it by applying the empty substitution to ensure it is meaningful in the context
γ. For better readability, we subsequently omit the weakening substitution.

2.4 Developing Proofs Interactively

We now have all the definitions in place to prove that any well-typed term M

under a closing simultaneous substitution σ is reducible.

Lemma For all M:[γ ` tm A] if RedSub [γ] [σ] then Reduce [`A] [` M[σ]].

This statement can be directly translated into a type in beluga.

rec main:{γ:ctx}{M:[γ ` tm A]} RedSub [γ] [` σ] → Reduce [` A] [` M[σ]] = ?;

Logically, the type corresponds to a first-order logic formula which quantifies
over the context γ, the type A, terms M, and substitutions σ. We only quantified
over γ and M explicitly and left σ and A free. beluga’s reconstruction engine [7, 17]
will infer their types and abstract over them. The type says: for all γ and terms M

that have type A in γ, if σ is reducible (i.e. RedSub [γ] [`σ]) then M[σ] is reducible
at type A (i.e. Reduce [`A] [`M[σ]]).

We now develop the proof of our main theorem interactively following ideas
first developed in the Alf proof editor [12] and later incorporated into Agda [14].
Traditionally, proof assistants such as Coq [2] build a proof by giving commands
to a proof engine refining the current proof state. The (partial) proof object
corresponding to the proof state is hidden. It is often only checked after the proof
has been fully constructed. In beluga, as in Alf and Agda, the proof object is the

5

primary focus. We are building (partial) proof objects (i.e. programs) directly.
By doing so, we indirectly refine the proof state. Let us illustrate.

Working backwards, we use the introduction rules for universal quantification
and implications; mlam-abstraction corresponds to the proof term for universal
quantifier introduction and fn-abstraction corresponds to implication introduc-
tion. We write ? for the incomplete parts of the proof object.

rec main:{γ:ctx}{M:[γ `tm A]}RedSub [γ] [`σ] → Reduce [`A] [`M[σ]] =
mlam γ, M ⇒ fn rs ⇒ ?;

Type checking the above program succeeds, but returns the type of the hole:

- Meta-Context:
{γ : ctx}
{M : [γ ` tm A]}

__
- Context:
main: {γ:ctx}{M:[γ `tm A]} RedSub [γ] [`σ] → Reduce [`A] [`M[σ]]
rs: RedSub [γ] [` σ]

===
- Goal Type: Reduce [` A] [` M[σ]]

The meta-context contains assumptions coming from universal quantifica-
tion, while the context contains assumptions coming from implications. The
programmer can refine the current hole by splitting on variables that occur ei-
ther in the meta-context or in the context using the splitting tactic that reuses
our coverage implementation [5, 18] to generate all possible cases.

To split on M, our splitting tactic inspects the type of M, namely [γ ` tm A]

and automatically generates possible cases using all the constructors that can be
used to build a term, i.e. [γ `lam λy.M] and [γ `app M N], and possible variables
that match a declaration in the context γ, written here as [γ `#p]. Intuitively
writing [γ ` M] stands for a pattern where M stands for a term that may contain
variables from the context γ.

rec main:{γ:ctx}{M:[γ `tm A]} RedSub [γ] [`σ] → Reduce [`A] [`M[σ]] =
mlam γ, M ⇒ fn rs ⇒ (case [γ ` M] of
|[γ ` #p] ⇒ ?
|[γ ` app M N] ⇒ ?
|[γ ` lam λy. M] ⇒ ?
|[γ ` c] ⇒ ?);

Variable Case We need to construct the goal Reduce [` T] [` #p[σ]] given a
parameter variable #p of type [γ ` tm T]. We use the auxiliary function lookup

to retrieve the corresponding reducible term from σ. Note that applying the
substitution σ to [γ ` #p] gives us [` #p[σ]].

rec lookup:{γ:ctx}{#p:[γ `tm A]}RedSub [γ] [`σ]→ Reduce [` A] [` #p[σ]] = ?;

This function is defined inductively on the context γ. The case where γ is
empty is impossible, since no variable #p exists. If γ = γ’, x:tm T, then there are
two cases to consider: either #p stands for x, then we retrieve the last element
in the substitution σ together with the proof that it is reducible; if #p stands
for another variable in γ’, then we recurse. All splits can be done through the
splitting tactic.

6

Application Case Inspecting the hole tells us that we must construct a proof
for Reduce [` S] [`app M[σ] N[σ]]. beluga turned [`(app M N)[σ]] silently into [

`app M[σ] N[σ]] pushing the substitution σ inside. This is one typical example
where our equational theory about simultaneous substitution that we support
intrinsically in our system comes into play.

Appealing to IH on N, written as the recursive call main [γ] [γ ` N] rs, returns
rN: Reduce [` A] [` N[σ]]. Appealing to IH on M, written as the recursive call main
[γ] [γ ` M] rs, gives us Reduce [` arr A B] [` M[σ]]. By inversion on the definition
of Reduce, we get to the state where we must build a proof for Reduce [` B] [`app
M[σ] N[σ]] given the assumptions

rN: Reduce [` A] [` N[σ]]
ha: [` halts (arr A B) (M[σ])]
f: {N:[`tm A]} Reduce [` A] [` N] → Reduce [` B] [` app (M[σ]) N]

Using f and passing to it N together with rN, we can finish this case. Our partial
proof object has evolved to:

rec main:{γ:ctx}{M:[γ `tm A]} RedSub [γ] [`σ] → Reduce [`A] [`M[σ]] =
mlam γ, M ⇒ fn rs ⇒ (case [γ ` M] of
|[γ ` #p] ⇒ lookup [γ] [γ ` #p] rs
|[γ ` app M N] ⇒

let rN = main [γ] [γ ` N] rs in
let Arr ha f = main [γ] [γ ` M] rs in f [` _] rN

|[γ ` lam λy. M] ⇒ ?
|[γ ` c] ⇒ ?);

Abstraction Case We must find a proof for Reduce [` arr T S] [`lamλy.M[σ,y]]. We
note again that the substitution σ has been pushed silently inside the abstraction.
By definition of Reduce (see the constructor Arr), we need to prove two things: 1)
[`halts (lamλy.M[σ,y])] and 2) assuming N:[`tm T] and rN:Reduce [` T] [` N] we
need to show that Reduce [` S] [`app (lam λy.M[σ,y]) N]. For part 1), we simply
construct the witness [`halts/m refl val/lam]. For part 2), we rely on a lemma
stating that Reduce is backwards closed under reduction.

rec bwd_closed:{S:[`step M M’]} Reduce [` A] [` M’]→ Reduce [` A] [` M] = ?;

Using the fact that N provides a reducible term for x, we appeal to IH on M

by recursively calling main [γ,x:tm _] [γ,x` M] (Dot rs rN). As a result we obtain
rM:Reduce [` S] [` M[σ,N]]. Now, we argue by the lemma bwd_closed and using
the beta rule, that Reduce [` S] [`app (lam λy.M[σ,y]) N]. While this looks simple,
there is in fact some hidden equational reasoning about substitutions. From
the beta rule we get [` (λy.M[σ,y]) N] which is not in normal form. To replace
y with N, we need to compose the single substitution that replaces y with N

with the simultaneous substitution [σ,y]. Again, our equational theory about
simultaneous substitutions comes into play.

The complete proof object including the case for constants is given below.
Underscores that occur are inferred by beluga’s type reconstruction.

rec main:{γ:ctx}{M:[γ `tm A]}RedSub [γ] [`σ] → Reduce [` A] [` M[σ]] =
/ total m (main γ a s m) /
mlam γ, M ⇒ fn rs ⇒ case [γ ` M] of
| [γ ` #p] ⇒ lookup [γ] [γ ` #p] rs

7

| [γ ` lam λx. M] ⇒
Arr [` halts/m refl val/lam]

(mlam N ⇒ fn rN ⇒
let rM = main [γ,x:tm _] [γ,x` M] (Dot rs rN) in
bwd_closed [` beta] rM)

| [γ ` app M N] ⇒
let rN = main [γ] [γ ` N] rs in
let Arr ha f = main [γ] [γ ` M] rs in f [` _] rN

| [γ ` c] ⇒ I [` halts/m refl val/c];

2.5 Totality Checking

For our programs to be considered proofs, we need to know: 1) Our programs
cover all cases 2) They terminate and 3) all datatype definitions are acceptable.

We verify coverage following [5, 18]. If the program was developed interac-
tively it is covering by construction. To verify the program terminates, we verify
that the recursive calls are well-founded. We use a totality declaration to specify
the argument that is decreasing for a given function. In the given example, the
totality declaration tells beluga that main is terminating in the fourth position;
the type of main specifies first explicitly the context γ, followed by two implicit
arguments for the type A and the substitution σ, that are reconstructed, and
then the term M:[γ `tm A]. Following [18], we generate valid recursive calls when
splitting on M and then subsequently verify that only valid calls are made.

Recursive datatype definitions can be justified in one of two possible ways: by
declaring a definition with inductive, beluga verifies that the definition adheres
to a standard strict positivity condition, i.e. there are no recursive occurrences
to the left of an arrow. Positive definitions are interpreted inductively, which
enables them to be used as a termination argument in recursive functions.

Alternatively, by declaring a definition with stratified, beluga verifies that
there is an index argument which decreases in each recursive occurrence of the
definition. This is how our definition of Reduce is justified: it is stratified by
its tp index. Such types are not inductive, but rather can be thought of as
being constructed in stages, or defined by a special form of large elimination.
Consequently, beluga does not allow stratified types to be used as a termination
argument in recursive functions; instead one may use its index.

3 Related Work and Conclusion

There are several approaches to specifying and reasoning about formal systems.
The Twelf system [15] also provides an implementation of the logical framework
LF. However, unlike proofs in beluga where we implement proofs as recursive
functions, proofs in Twelf are implemented as relations. Twelf does not sup-
port the ability to reason about contexts, contextual LF objects and first-class
simultaneous substitutions. More importantly, it can only encode forall-exists
statements and does not support recursive data type definitions about LF ob-
jects.

8

The Abella system[8] provides an interactive theorem prover for reasoning
about specifications using higher-order abstract syntax (HOAS). Its theoreti-
cal basis is different and its reasoning logic extends first-order logic with ∇-
quantifier[9] which can be used to express properties about variables. Contexts
and simultaneous substitutions can be expressed as inductive definitions, but
since they are not first-class we must establish properties such as composition
of simultaneous substitution, well-formedness of contexts, etc. separately. This
is in contrast to our framework where our reasoning logic remains first-order
logic, but all reasoning about variables, contexts, simultaneous substitution is
encapsulated in our domain, the contextual logical framework. Abella’s interac-
tive proof development approach follows the traditional model: we manipulate
the proof state by a few tactics such as our splitting tactic and there is no proof
object produced that witnesses the proof.

Inductive beluga allows programmers to develop proofs interactively by
relying on holes. Its expressive power comes on the one hand from indexed re-
cursive datatype definitions on the reasoning logic side and on the other hand
from the rich infrastructure contextual LF provides. This allows compact and el-
egant mechanizations of challenging problems such as proofs by logical relations.
In addition to the proof shown here other examples include the mechanization of
a binary logical relation for proving completeness of an algorithm for βη-equality
and a normalization proof allowing reductions under abstractions, both for the
simply-typed lambda calculus.

Acknowledgements Over the past 6 years several undergraduate and graduate
students have contributed to the implementation: A. Marchildon, O. Savary
Belanger, M. Boespflug, S. Cooper, F. Ferreira, D. Thibodeau, T. Xue.

Bibliography

[1] O. Savary Belanger, S. Monnier, and B. Pientka. Programming type-safe
transformations using higher-order abstract syntax. In Third International
Conference on Certified Programs and Proofs (CPP’13), Lecture Notes in
Computer Science (LNCS 8307), pages 243–258. Springer, 2013.

[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment. Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[3] A. Cave and B. Pientka. Programming with binders and indexed data-types.
In 39th Annual ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL’12), pages 413–424. ACM Press, 2012.

[4] A. Cave and B. Pientka. First-class substitutions in contextual type theory.
In 8th International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LFMTP’13), pages 15–24. ACM Press, 2013.

[5] J. Dunfield and B. Pientka. Case analysis of higher-order data. In Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP’08), Electronic Notes in Theoretical Computer Science
(ENTCS 228), pages 69–84. Elsevier, 2009.

9

[6] A. P. Felty, A. Momigliano, and B. Pientka. The next 700 Challenge Prob-
lems for Reasoning with Higher-order Abstract Syntax Representations:
Part 2 - a Survey. Journal of Automated Reasoning, 2015.

[7] F. Ferreira and B. Pientka. Bidirectional elaboration of dependently typed
languages. In 16th International Symposium on Principles and Practice of
Declarative Programming (PPDP’14). ACM, 2014.

[8] A. Gacek. The Abella interactive theorem prover (system description). In
4th International Joint Conference on Automated Reasoning, Lecture Notes
in Artificial Intelligence (LNAI 5195), pages 154–161. Springer, 2008.

[9] A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with
recursive definitions. In 23rd Symposium on Logic in Computer Science.
IEEE Computer Society Press, 2008.

[10] J.-Y. Girard, Y. Lafont, and P. Tayor. Proofs and types. Cambridge Uni-
versity Press, 1990.

[11] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the ACM, 40(1):143–184, January 1993.

[12] L. Magnusson and B. Nordström. The Alf proof editor and its proof en-
gine. In TYPES:Types for Proofs and Programs, Lecture Notes in Computer
Science (LNCS 806), pages 213–237. Springer, 1994.

[13] A. Nanevski, F. Pfenning, and B. Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

[14] U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineering,
Chalmers University of Technology, September 2007. Technical Report 33D.

[15] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In 16th International Conference on Auto-
mated Deduction (CADE-16), Lecture Notes in Artificial Intelligence (LNAI
1632), pages 202–206. Springer, 1999.

[16] B. Pientka. A type-theoretic foundation for programming with higher-order
abstract syntax and first-class substitutions. In 35th Annual ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL’08),
pages 371–382. ACM Press, 2008.

[17] B. Pientka. An insider’s look at LF type reconstruction: Everything you
(n)ever wanted to know. Journal of Functional Programming, 1(1–37), 2013.

[18] B. Pientka and A. Abel. Structural recursion over contextual objects,. In
13th Typed Lambda Calculi and Applications (TLCA’15), LIPIcs-Leibniz
International Proceedings in Informatics, 2015

[19] B. Pientka and J. Dunfield. Beluga: a framework for programming and
reasoning with deductive systems (System Description). In 5th International
Joint Conference on Automated Reasoning (IJCAR’10), Lecture Notes in
Artificial Intelligence (LNAI 6173), pages 15–21. Springer-Verlag, 2010.

[20] W. Tait. Intensional Interpretations of Functionals of Finite Type I. J.
Symb. Log., 32(2):198–212, 1967.

10

	Inductive Beluga: Programming Proofs

