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Introduction

Problem: Global investors often need to post collateral in multiple
currencies, while their performance is measured in one currency,
creating exchange rate risk.

Two competing incentives:

I Keep posted collateral low to minimize exchange rate risk

I Keep posted collateral high to minimize margin calls

What collateral levels in each different currencies optimally balance
these two opposing forces?



Introduction

Optimal collateral



Introduction

Similar problems:

I Equity portfolio hedging -
Minimizing currency risk while minimizing insurance costs

I Transaction costs -
Maximizing risk/return while minimizing transaction costs

I Inventory management -
Maximizing sales while minimizing shipping costs

I Staff dispatch -
Minimizing travel time while minimizing expenses



Introduction

A good solution needs to properly forecast the underlying prices
and exchange rates, accounting for the higher moments and
comoments of their respective time-series.

What we did:

I Select a few candidate models for the dynamics of the
underlyings’ prices and exchange rates

I Assess and compare their goodness-of-fit

I Optimize the “portfolio” of posted collateral based on the
chosen model
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Model

We chose a copula-based multivariate GARCH framework as
advocated in Xiaohong and Yanqin [2006], Patton [2006] and
Rémillard [2010]:

Xi ,t = µt(θi ) + ht(θi )
1/2 εi ,t (1)

where i = 1, . . . ,D and innovations ε1,t , . . . , εD,t are i.i.d. with
continous multivariate distribution function

K (x1, . . . , xD) = Cθ(F1(x1), . . . ,FD(xD)) (2)

where the Fi are the cumulative distribution functions of the
marginal distributions Xi and Cθ is the copula function with
parameter(s) θ.



Model

Two steps:

(i) Find appropriate univariate process for each random variable
(e.g. AR(1)-GARCH(1,1), eGARCH, GJR-GARCH, etc) for

Xi ,t = µt(θi ) + ht(θi )
1/2 εi ,t

(ii) Find appropriate copula to capture the dependence between
the standardized residuals (e.g. Gaussian, Student, Clayton,
Frank, Gumbel, etc) for

Cθ(F1(x1), . . . ,FD(xD))
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Goodness-of-fit

How do you choose between the different models and once a
model is chosen, how do you know it is statistically correct?

⇒ parametric bootstrapping



Goodness-of-fit

H0: Dataset belongs to said distribution
H1: Dataset does not belong to said distribution



Parametric bootstrapping

General procedure:

(i) Estimate the parameters of the chosen parametric distribution
that best fit the dataset

(ii) Calculate a distance ST between the empirical distribution
and the parametric distribution (good candidate: Cramèr-von
Mises statistic)

(iii) Generate a large number N of “bootstrapped” samples of the
same size as the dataset from the parametric distribution

(iv) For each of these bootstrapped samples k = 1, . . . ,N,

(a) Estimate the parameters of the chosen parametric distribution
that best fit the bootstrapped sample

(b) Calculate a distance S
(k)
T between their empirical distribution

and the parametric distribution

(v) The p-value for the test is given by the fraction of the S
(k)
T

bigger than ST



Cramèr-von Mises statistic
For univariate distributions, the Cramèr-von Mises statistic is given
by

ST =
T∑
t=1

1

T
(FT (xt)− Fθ(xt))2



Cramèr-von Mises statistic

For copulas, the Cramèr-von Mises statistic is given by

ST =
T∑
t=1

1

T
(CT (û1,t , . . . , ûD,t)− Cθ(û1,t , . . . , ûD,t))2

where û1,t , . . . , ûD,t are the normalized ranks

ûi ,t =
1

T − 1

T∑
k=1

1(xi ,t ≥ xi ,k),

CT is the empirical copula

CT (u1,t , . . . , uD,t) =
1

T − 1

T∑
k=1

1(û1,t ≥ ui ,k , . . . , ûD,t ≥ uD,k)

and Cθ is the parametric copula chosen.



Rosenblatt transform

Unfortunately, Cθ do not often have a closed form and numerical
approximations are computationally impractical when the number
of dimensions gets high. Fortunately an alternative is proposed in
Genest et al. [2009] using Rosenblatt’s transform:

U ∼ C ⇔ T (U) ∼ C⊥



Rosenblatt transform

T (u1, . . . , uD) = (e1, . . . , eD) given by e1 = u1 and

ei =

δi−1

δu1...δui−1
C (u1, . . . , ui , 1, . . . , 1)

δi−1

δu1...δui−1
C (u1, . . . , ui−1, 1, . . . , 1)

(3)

[Rosenblatt, 1952].

The recipe to compute the Rosenblatt transform for both
meta-elliptical and archimedean copulas can be found in Rémillard
et al. [2011].



Parametric bootstrapping - Copula-based Multivariate
GARCH model

(i) Estimate the parameters of each univariate marginal process

(ii) Estimate the parameter(s) of the chosen copula on the
standardized residuals εt obtained in step (i)

(iii) Compute the normalized ranks ut = u1,t , . . . , uD,t :

ui ,t =
1

T − 1

T∑
k=1

1(εi ,t ≥ εi ,k)



Parametric bootstrapping - Copula-based Multivariate
GARCH model

(iv) Compute Rosenblatt transforms et = e1,t , . . . , eD,t ,
t = 1, . . . ,T using equation (3)

(v) Compute Cramér-von Mises statistic

ST = T

∫
[0,1]D
{FT (u)− C⊥(u)}2du

=
T

3D
− 1

2D−1

T∑
t=1

D∏
i=1

(
1− e2i ,t

)
+

1

T

T∑
t=1

T∑
k=1

D∏
i=1

(1−max(ei ,t , ei ,k))



Parametric bootstrapping - Copula-based Multivariate
GARCH model

(vi) For some large integer N, repeat the following steps for each
k in (1, . . . ,N):

(a) Generate random trajectories of the processes with
parameters found in (i) and (ii) of the same length as the
original dataset

(b) Repeat steps (i) to (v) on trajectories generated in (a) to

obtain S
(k)
T .

(vii) The approximate p-value for the test is given by

p =
1

N

N∑
k=1

1(S
(k)
T > ST )
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Collateral optimization

The optimization objective:

Minimize the exchange rate risk on the posted collateral (as
measured by the tracking error, Value-at-Risk or Tail Conditional
Expectation) subject to a given tolerance on the probability of a
margin call



Collateral optimization

In mathematical terms:

min
λ1,t ,...,λD,t

Rα

(
D∑
i=1

(
λi ,t − λ∗i ,t

)
× Yi ,t+1

)
(4)

subject to

λ∗i ,t ≤ λi ,t ≤ ∞, i = 1, . . . ,D

and

P

((
D∏
i=1

1
(
λi ,t + PnLi ,t+1 ≥ λ∗i ,t

))
= 0

)
≤ Ptol (5)



Collateral optimization

where

Rα(X ) =


E [|X |] for expected tracking error

−x (α)(X ) for Value-at-Risk

E[X |X ≤ x (α)] for Tail Conditional Expectation
(6)

and

PnLi ,t+1 =

ni,t∑
j=1

iωj ,t × iWj ,t+1,
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Dataset

The data set consists of daily holdings of five futures contracts
denominated in four non-USD currencies from november 2003 to
march 2012 for a total of 1941 observations.
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Dataset
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AR(1)-GARCH(1,1),
gaussian innovations

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AR(2)-GARCH(2,2),
gaussian innovations

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

AR(1)-GARCH(1,1),
student innovations

0.56 0.69 0.37 0.58 0.50 0.45 0.60 0.54 0.52

Table : p-values from the goodness-of-fit tests on marginal processes



Dataset

p values
MV Gaussian 0.00

AR(1)-GARCH(1,1) & gaussian copula 0.01
AR(1)-GARCH(1,1) & student copula 0.12
AR(1)-GARCH(1,1) & Clayton copula 0.00
AR(1)-GARCH(1,1) & Frank copula 0.00
AR(1)-GARCH(1,1) & Gumbel copula 0.00

Table : p-values from the goodness-of-fit tests on copula-based MV
GARCH models



Backtesting

I Two alternative strategies:

(i) Naive: Always post as collateral 2x the minimum margins
requirements

(ii) Model the nine time series with a multivariate Gaussian

I 500 days buffer left at beginning of sample for calibration

I Daily recalibration

I GOF tests run every year

I Ptol = 0.05, α = 0.05



Backtesting

Figure : Optimal posted collateral in JPY, June 2011 - January 2012



Backtesting
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Results

Naive MV Gaussian AR-GARCH & t-
copula

Avg. daily tracking error (% collateral) 0.54 0.55 0.55
# of margin calls (out of 1440 days) 104 94 71
Frequency of margin call 0.0722 0.0653 0.0493

Table : Objective: Minimize the daily tracking error while keeping the
probability of a margin call under 0.05



Results

Naive MV Gaussian AR-GARCH & t-
copula

Realized daily VaR (% collateral) 1.19 1.21 1.24
# of margin calls (out of 1440 days) 104 105 78
Frequency of margin call 0.0722 0.0729 0.0542

Table : Objective: Minimize the Value-at-Risk while keeping the
probability of a margin call under 0.05



Results

Naive MV Gaussian AR-GARCH & t-
copula

Avg. daily tail loss (% collateral) -1.83 -1.85 -1.85
# of margin calls (out of 1440 days) 104 100 71
Frequency of margin call 0.0722 0.0694 0.0493

Table : Objective: Minimize the Tail Conditional Expectation while
keeping the probability of a margin call under 0.05
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Conclusion

Copula-based GARCH:

I are amongst the best model available for multivariate financial
time series

I have absolute goodness-of-fit tests now available (parametric
bootstrapping)

I provides for better and more robust portfolio engineering and
risk management
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