Skip to content. Skip to navigation
McGill Home SOCS Home
Personal tools
You are here: Home People Profile

Chris Paige


photo

Email: chris@cs.mcgill.ca
Home Page: http://www.cs.mcgill.ca/~chris
Office: MC205N
Phone: +1-514-398-3742
Fax: +1-514-398-3883
Address:

Research Description

Broadly: Numerical analysis and scientific computing, with particular emphasis on matrix computations. More specifically: The aim is to design, analyze and implement effective matrix algorithms, including general purpose algorithms as well as algorithms for specific applications areas. Some research areas of present interest are: Numerical linear algebra and algorithms. Rounding error analysis. Large sparse matrix methods.

Research Interests

Research Labs

Teaching

Selected Publications (click link in front of each publication to see bibtex in ASCII format)

[1] Paige, C. C., Styan, G. P. H., Wang, B.-Y., and Zhang, F. Hua's matrix equality and Schur complements. International Journal of Information and System Sciences, 2008, v. 4, n. 1, pp. 124-135.
[2] Chang, X.-W., Paige, C. C., and Titley-Peloquin, D. Characterizing matrices that are consistent with given solutions. SIAM Journal on Matrix Analysis and Applications (SIMAX), 2008, v. 30, n. 4, pp. 1406-1420.
[3] Chang, X.-W., Golub, G. H., and Paige, C. Towards a backward perturbation analysis for data least squares. SIAM Journal on Matrix Analysis and Applications (SIMAX), 2008, v. 30, n. 4, pp. 1281-1301.
[4] Argentati, M. E., Knyazev, A. V., Paige, C. C., and Panayotov, I. Bounds on changes in Ritz values for a perturbed invariant subspace of a Hermitian matrix. SIAM Journal on Matrix Analysis and Applications (SIMAX), 2008, v. 30, n. 2, pp. 548-559.
[5] Paige, C. C., and Panayotov, I. Majorization bounds for Ritz values of Hermitian matrices. Electronic Transactions on Numerical Analysis (ETNA), 2008, v. 31, pp. 1-11.
[6] Chang, X.-W., and Paige, C. C. Euclidean distances and least squares problems for a given set of vectors. Applied Numerical Mathematics, 2007, v. 57, pp. 1240-1244.
[7] Paige, C. C., and Strakos, Z. Core problems in linear algebraic systems. SIAM Journal on Matrix Analysis and Applications, 2006, v. 27, n. 3, pp. 861-875.
[8] Paige, C. C., Rozloznik, M., and Strakos, Z. Modified gram-schmidt MGS, least squares, and backward stability of MGS-GMRES. SIAM Journal on Matrix Analysis and Applications, 2006, v. 28, n. 1, pp. 264-284.

Last Update:   2010/11/17 22:21:01.108 US/Eastern