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Abstract—The basic building block for constructing a mod-
elling tool architecture, is the relationship between a type and
its instances. It is this relation which gives rise to the hierarchy
that forms the foundation of the four-layer-architecture and to
multi-level modelling. Only through the type/instance relation,
a distinction is made between a model and its type model.
This relation consists of two equally important components:
instantiation and conformance. As both form the foundation
of a (meta-)modelling tool, they are often hardcoded, both for
conceptual and performance reasons. While this seems logical, it
constrains users to the problems envisioned by the tool developers.
It becomes necessary to alter models that are not a perfect fit
for the provided framework, increasing accidental complexity.
Incidentally, minimizing accidental complexity is one of the core
goals of Model Driven Engineering. In this report, we consider
the limitations imposed by a hardcoded conformance relation. We
also present our approach of explicitly modelling the conformance
relation: users can chose which conformance to use, and gain
insight in the semantics of the tool. We discuss the advantages
of this approach, and how this was implemented in our tool:
the Modelverse. An example is given where different notions of
conformance are used for both structural and nominal subtyping.

I. INTRODUCTION

The basic building block for constructing modelling tool
architectures is the relationship between a type and its in-
stances [1], [2]. It is only through this relation, that a dis-
tinction can be made between a model and its associated type
model. Effectively, a metamodelling hierarchy consists of a
set of models, between which the type/instance relation holds.
The type/instance relation is bidirectional: going from the type
model to the model, there is instantiation, and going from the
model to the type model, there is conformance. There is no
doubt that this is a special kind of relation, which is of critical
importance to the tool. For example, strict metamodelling [3]
does not allow relations between a model and its type model,
with the exception of the typing relation.

But due to the special attention given to these relations, it
is often shifted to the implementation level. This is done for a
multitude of reasons, the most obvious ones being conceptual
clarity (the whole tool depends on it) and performance (it is
a frequent operation). Most (meta-)modelling tools store the
typing somewhere internally in a datastructure, without ex-
posing it to the user. Similarly, instantiation and conformance
checking semantics are hidden from the user. While this is
a working solution, such important aspects are hidden inside
of the (hardcoded) implementation, with only (possibly non-
existent) documentation to guide users. For example, what is
the semantics of the typing relation? When can one consider
a model to be typed by another type model? And how is it

possible, in a uniform way, to change or read out the type of
elements?

It has been shown that many alternative conceptual frame-
works and implementations have been proposed [1], each
with their distinct advantages and disadvantages. Since current
tools fix their used framework and type/instance relationship,
they become unusable in different domains. This kind of
inflexibility was previously identified as one of the major
shortcomings of current tools [4].

In this paper, we touch upon these, and other, problems,
which we believe are raised by the implicit, hardcoded type-
/instance relation. We propose to explicitly model the type/in-
stance relation, by pulling it out of the coded implementation,
and making it user-accessible. This includes the type mapping,
but also the instantiation and conformance checking semantics.
To prevent the extension of the tool interface, and further
increase the applicability of the features of our tool, both the
type mapping and the semantics will be models in their own
right. As they are models, they can become subject to all
features offered for ordinary models, such as model versioning,
model transformations, and model management operations in
general. We discuss both advantages and disadvantages of our
approach, followed by an example application.

The remainder of this paper is structured as follows.
Section II elaborates on the type/instance relation, and the
limitations of the common approaches in use nowadays. Sec-
tion III presents our solution to these problems: the explicit
modelling of both instantiation and conformance checking
semantics, combined with an explicit type mapping model.
An example application is given in Section IV, where different
kinds of subtyping are implemented in our tool. Related work
is presented in Section V. Section VI concludes the paper and
presents future work.

II. TYPE/INSTANCE RELATION

A language consists of four main components: an abstract
syntax, concrete syntax, semantic domain, and a semantic
mapping. Of chief interest to this paper, is the abstract syntax,
which defines the set of allowed constructs in the language.
Generally, this set is described through the use of a type model,
defining the allowable types to use, their interconnection,
multiplicities, and cardinalities. The type model, however, is
limited to structural constraints (e.g., in Petrinets a place can
have outgoing links only to transitions), and does not consider
the static semantics (e.g., in Petrinets a place cannot have
a negative number of tokens). A type model is therefore
often augmented with constraints, expressed using a constraint
language such as the Object Constraint Language (OCL). This
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Figure 1: Instantiation of the Petrinets metamodel. The spec-
ification on top is intensional, whereas the specification at
the bottom is extensional. U represents all possible instances,
including those violating the structure; TS represents all in-
stances that conform structurally, but not necessarily to all the
constraints; TS∧C represents all instances that conform both
structurally and fullfills all constraints.

is visualized in Figure 1. The totality of this type model can
be translated to a single set of constraints [5].

Description of all instances through the definition of con-
straints is often called an intensional description [6]. The
other option is extensional description, where each instance is
explicitly enumerated. For example, the intensional description
{i ∈ N : 0 < i < 5} is equivalent to the extensional description
{1, 2, 3, 4}.

A. Bidirectionality

The type/instance relation consists of two relations, in op-
posite directions: instantiation (creating a new model from an
existing type model), and conformance (checking an existing
model with an existing type model). One is the inverse of the
other, as each instantiated model should conform to the type
model it was instantiated from: ∀i ∈ [[TMtype]]inst : conftype(i) =
true

Going from the type model to the model, is called in-
stantiation. Through instantiation, an instance is created that
conforms (structurally) to the provided type model. A general
instantiation method cannot be created, as it strongly depends
on what the conformance relation checks, and how it expects
the model to be physically represented. For example, if the

conformance relation supports subtyping, instantiation should
instantiate the own attributes, but also all inherited attributes.

From the model to the type model, we have the
conformance relation, often called “verify” in tools (e.g.,
metaDepth [7] and AToMPM [8]). This function takes a model,
a type model, and a type mapping between the two (some
parts might be defined implicitly), and maps it to a boolean.
Formally: confT : T × typeT × (2T → 2typeT ) → Boolean.
Optionally, insight can be provided in why a model does not
conform (e.g., too many instances of a class). A model is said
to conform to its type model if each element of the model is
an instance of (conforms to) an element of the type model.
What it means for a single element to conform to another, is
much more vague. For example, if the conformance relation
supports subtyping, an element might conform to types other
than its own type, if there is an inheritance relation between
them.

If one wants to explicitly model the type/instance relation,
as is the goal in this paper, one needs to explicitly model both
the instantiation and the conformance checking functions.

B. Metamodelling Hierarchy

The metamodelling hierarchy, as popularized by the OMG
in the four-layered architecture, makes explicit use of the
relation between types and their instances. This architecture
consists of four layers, as shown in Figure 2: the metameta-
model (M3), the metamodel (M2), the model (M1), and the
real world (M0). Each of these models is said to conform to
the model at the layer above, meaning that the lower level is
an instance of the higher level. As a result, M1 conforms to
M2, which conforms to M3. At the top of the hierarchy, M3
is made to conform to itself, which is called meta-circularity.

This four-layered architecture is used by most (meta-
)modelling tools, with only two levels accessible to users: the
M2 and M1 level. M3 is fixed, and has a close relation to the
internals of the tool, as well as the physical representation of
models. M0 cannot be modelled in the tool, as this represents
the real world instance. This leaves only M2 and M1 for
modification. Users can then use M2 to define their own
custom language, specific to the domain they are interested
in. M1 is used to model the actual model that is to be
manipulated.

Having only two levels at your disposition can be limiting
for several applications [9]. Therefore, multi-level modelling
has been introduced, where the number of user-accessible
layers is unrestricted. This raises the question on how to restrict
elements several layers deep, which can be done through
the use of deep characterization (e.g., through potency [6],
[10]). These techniques have an influence on instantiation
and conformance semantics, and therefore require specialized
tools. For example, potency will prevent the instantiation of
elements whose potency value has reached 0. The exception
being potency *, which indicates unrestricted instantiation until
specified [11].

C. Hardcoded Type/Instance relations

From the previous examples, it becomes clear that instan-
tiation and conformance are more complex than graph (or
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Figure 3: Constructs that further restrict the set of instances.

model) homomorphism. Apart from finding whether the model
structurally conforms to the provided type model, additional
constraints are imposed on the representation. Several of the
instances of the graph even gain special semantics, deviating
from their originally structural role. For example, a cardinality
attribute will not merely be structural, but will further constrain
the set of allowed instances. Figure 3 shows some more
examples of additional constraints.

Their semantics is as follows:

• Inheritance. A special kind of link between two el-
ements. It cannot be further instantiated. The source
of the link becomes a subtype of the target during
the conformance check. In the example, this means
that any instance of C will also be considered as
an instance of B, but not the other way around.
Additionally, when instantiation an instance of C, all
attributes of B also need to be added.

• Potency. A special attribute which indicates how many
levels deep this element can still be instantiated. When
instantiating an element, the potency value is copied
and decremented by one. When the value reaches zero,
no further instances can be made. In the example, this
means that both A, B, and C can only be instantiated
once more. This places restrictions on both instan-
tiation (i.e., refuse to instantiate) and conformance

checks (i.e., always find them to be non-conforming).

• Cardinalities. A special attribute of an association
which limits the number of instances of this asso-
ciation for a single element at the other side of the
association. Both a lower and upper bound are possi-
ble. In the example, this means that each instance of A
has either 1 or 2 connected instances of B through this
association. For each B, there is exactly one connected
instance of A. Instantiating additional links, when the
upper limit is already reached, should be disallowed.
Conversely, a conformance check should flag a model
as non-conforming if the constraint is violated, even
though it is structurally fine.

• Multiplicities. A special attribute that indicates how
many instances of this element can be present at the
level immediately below. Both a lower and upper
bound are possible. In the example, this means that
there will be exactly 2 instances of A. Similarly to
cardinalities, both the instantiation and conformance
relation should be aware of these restrictions.

• Constraints. Previous constructs would limit the struc-
ture, whereas this part restricts the instances based on
the value of attributes, often refered to as static seman-
tics. Arbitrary executable models can be coupled to
the type model, which are evaluated when determining
whether the element conforms or not. In the example,
this means that the value of the attribute b of B will
always be greater than zero. The conformance check
should, apart from checking the previous constraints,
execute this piece of code to determine whether or
not the model conforms. Instantiation does not need
to be aware of this, as there is no way to statically
know which operations are allowed to satisfy this
function. Apart from the local constraints, as specified
in the example, global constraints exist as well. These
constrain the instances depending on a combination of
multiple elements of the instance.

When these constructs are only present structurally, as
is the case in most modelling tools, their semantics is non-
obvious. It might even be non-obvious whether or not the
attributes have any semantics (within the modelling tool) at
all: why would an attribute with a specific name suddenly be-
come part of the restrictions placed on instances? Somewhere,
semantics needs to be given to these constructs: a component
of the tool needs to find the attribute, read it out, determine
whether or not the model satisfies this requirement, and provide
user feedback.

While we acknowledge that these powerful constructs aid
in creating a tightly constrained set of possible instances,
their inclusion often creates severe problems in the modelling
hierarchy. Because each of these carries its own semantics,
informally described above, there needs to be a mechanism
to enforce the semantics. As described above, this semantics
is part of the type/instance relation, which is, in most current
tools, implicit and hardcoded.

More concretely, this results in the following problems:

1) Semantics. The exact semantics of these constructs
is often unclear [3], and only found out by reading



documentation or through experimentation. While for
some constructs the semantics doesn’t vary much
between tools, other constructs vary significantly.
And even if the semantics is clearly communicated
between both parties, it remains a problem as to how
these semantics are applied by the instantiation and
conformance checking operations. For example mul-
tiplicities: what if a lower bound is not reached? Does
it become impossible to delete elements, which would
cause this lower bound to be violated? Or would
a deletion be allowed, but subsequent conformance
checks do fail in case it is still violated at that point
in time? And is it possible to save a model which
violates these constraints? Similarly, is it possible to
create additional elements if these would violate the
constraints? Or is it only possible within some kind
of a transaction?
This is even the case in object-oriented program-
ming languages, where the semantics of subtyping
varies. For example, C++ offers multiple inheritance,
whereas Java only offers single inheritance. On the
completely opposite side of the spectrum, Haskell
uses structural subtyping instead of nominal subtyp-
ing [12]. While each of these has its advantages
and disadvantages, it should be clear to users which
semantics are used.

2) Static. Semantics, even if formally described in the
documentation, still remains static. While this is
not a significant problem in general, as a general
concensus exists for these attributes, sometimes a
slightly different semantics is desired. For example,
users might want to make to temporarily violate a
multiplicity constraint if the restriction is too strict.
Similarly, some users might prefer, or even require,
different semantics than those implemented. For ex-
ample, Java limits inheritance to single inheritance.
Users that require multiple inheritance will have to
resort to tricks to implement their models which
naturally lend themselves to multiple inheritance.
Should the semantics be modifiable at run-time, users
can alter the behaviour to their liking, or just switch
implementation. Users who prefer to be constrained
to single inheritance, can then use the single inheri-
tance semantics, whereas others can decide to opt for
multiple inheritance.

3) Special constructs at the implementation level. Be-
cause some constructs gain a special semantics, there
needs to be a way of identifying these constructs.
For some this is easy (e.g., read out an attribute
with a pre-defined name, such as potency), but for
others, this becomes more difficult. In particular, the
inheritance relation is a special case: it is a link,
and one would expect it to be implemented as such.
Many frameworks [13], [14], [8], however, rely on
this (or similar relations) to be a special kind of link,
unrelated to a normal association. And while their
underlying model storage hugely mimics existing
structures, such as graphs, exceptions need to be
made throughout to cope with these constructs. Fur-
thermore, this additional type causes further problems
in the checking of conformance: how is it typed?
Resolving these elements should not be done through

hardcoded types at the lowest level. This prevents the
reuse of existing libraries, as a wrapper needs to be
written to cope with the special types.

4) Special constructs at the metamodel level. Even if
special constructs at the implementation level are
avoided, special constructs at the metamodel level
are sometimes still used. This hardcodes the identity
of some parts of the metamodel in the instantiation
and conformance checking functions. The metamodel
will therefore simply be a normal metamodel, though
some associations will gain special importance which
are not apparant from the metamodel alone. It is only
the type/instance relation which adds this additional
semantics to the link.
Apart from the confusion this might cause to users, it
prevents users from using a different metamodel, and
even prevents multi-level modelling completely. This
was one of the problems that prevents AToMPM [8]
from having multi-level metamodelling, or just more
than two metametamodels: the inheritance semantics
is hardcoded in the core, and only applies to the
provided metametamodels.
Similarly, models cannot simply have attributes if
their metamodel does not allow for it. While this
is not a problem in the traditional four-level archi-
tecture, multi-level modelling quickly runs into this
problem: users can only specify a potency if their
metamodel explicitly calls for it. Instead of modifying
the metamodel for this, it is possible to encode
these special constructs as “explicitly allowed” in the
conformance relation, as was done in the previous
(unrelated) version of our tool [15]. The instantiation
algorithm should also be aware of this, as it should,
for whatever model, always add in these attributes by
default, and furthermore make them mandatory, such
that they cannot be removed.

5) Inflexible type mapping. Type mappings store the
types of elements. While they have previously been
identified theoretically, most current approaches hide
away this important piece of information in the
implementation. Apart from reading out the type,
and possibly altering it through some programming
interface, no modifications are possible as they reside
in the internal data structures of the tool.
By making these type mappings explicit, as an ordi-
nary model, it can be modified as any other model,
and in particular through the use of model trans-
formations. This is one of the limitations of model
transformations: the right-hand side cannot create an
instances of a metamodel that is only known at run-
time. This problem is currently solved by using model
transformation templates [16], which is still more
constraining than our approach, as it doesn’t allow
for retyping operations.

6) Single type. Finally, as the conformance function and
typing information is hardcoded, only a single such
relation is possible for a given element. Sometimes,
however, an element can be typed by multiple, pos-
sibly unrelated, elements. An example has already
been given in [17], where a model is created with a
single (constructive) type, but additional types can be
found during execution. This could however also be



2 3

Figure 4: Petri net model (concrete syntax for readability) that
will be encoded.

Place
tokens : int

Transition

weight : int

weight : int

Figure 5: Metamodel (concrete syntax for readability) of
Figure 4.

related to the use of multiple very similar metamod-
els. For example, consider a petri nets metamodel,
and a seperate, but identical, petri nets metamodel
with inhibitor arcs. Every petri net instance without
inhibitor arc, also conforms to the petri nets meta-
model with inhibitor arcs. Similarly, every petri net
without inhibitor arcs, even if it was constructed as
an instance of the metamodel with inhibitor arcs,
will conform to the original metamodel. Even though
these are unrelated, a model can easily be said to be
typed by both of them, depending on the situation in
which it is used. This can have further repercussions
in model evolution, where models frequently need to
be retyped to slightly different metamodels.

III. EXPLICIT TYPE/INSTANCE RELATIONS

We now present our solution to the previously identified
problems. As all problems were caused by the hardcoded al-
gorithms, our approach explicitly models the type mapping, the
instantiation algorithm, and the conformance check algorithm.
For this, we introduce (1) a semantics-free representation of
models (and subsequently type models), (2) an explicit type
mapping model, (3) an explicit instantiation algorithm and
corresponding (4) conformance algorithm in an executable
modelling language. We also show how this approach naturally
allows for multiple type models. Finally, we present the ad-
vantages and disadvantages of this approach, when compared
to hardcoded type/instance relations.

We use a simple petri net model and corresponding type
model, shown in Figure 4 and Figure 5, respectively, to
illustrate our approach.

A. Models

Since all semantics need to be shifted to the type/in-
stance relation, the model representation becomes essentialy
semantics-free. As there are no longer any attributes with
special purpose (and should thus always be there), nor are
there special kinds of elements (such as inheritance links), the
representation boils down to a simple graph. Because now the
complete structure of the model can be described only through
nodes and edges, existing graph databases can be reused. Apart

1 2 3 0

Figure 6: Petri net model representation in the Modelverse.

from the applicability of previously defined algorithms, this
lowers the burden of users trying to understand how and what
data is stored.

As there is also no longer any distinction between the
semantics of models (cannot be instantiated) and type models
(can be instantiated), both are reduced to the same representa-
tion. This further unifies the core implementation of a (meta-
)modelling tool, and avoids the problems previously identified
by storing a model twice [1].

For our example, Figure 6 shows how Figure 4 is repre-
sented in the Modelverse as a graph. The graph contains only
structural information on what the instance will look like, and
doesn’t contain any attributes that have semantical meaning
in the context of the type/instance relation. Note also that the
instance model does not contain names on the links, but only
their values. It is the type model, and corresponding typing
relation, which gives the name to the attributes, making them
identifiable. This was done for several reasons, but most impor-
tantly, this allowed the graph structure to be more restrictive,
as it explicitly stores the names of the allowable attributes.
Additionally, this is very similar to how most general purpose
object-oriented programming languages work. Furthermore, it
makes the stored data more independent of the names used
in the type model, such that, for example, different names for
the same attribute can be used interchangeably (e.g., due to
translation or different terminology).

B. Type Mapping

To explicitly represent the typing relation, they need to be
represented as a model. They are not to be included within
the model itself (e.g., as some kind of association) for three
reasons:

1) Making the distinction between normal links (in-
stances of associations) and typing links becomes
hard. This bears significant similarities to the problem
we were trying to avoid with the inheritance links
being of a special kind. As such, creating direct type
links directly needs to be avoided as they would
otherwise qualify as normal links. Unless, of course,
our instantiation and conformance algorithms can
cope with this.

2) Only a single type is possible if it is linked directly to
the elements. It would be possible to create multiple
type links starting from a single element, for example
have two outgoing type links for a single element.
These two different type links, however, would be
ambiguous, as it is unknown which mapping they
belong to. Type links are frequently interrelated: if
there are two elements, with both having two possible
types, a total of four different combinations become
possible. As this depends on the situation, it is
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Figure 7: Petri net typing relation with dashed lines (excerpt).

impossible to create general assumptions on this, and
should therefore be avoided.

3) Type links should ideally be stored in a seperate
model, such that they can have their own constrained
type model. If these links were part of the original
model (as outgoing links), they would need to be part
of the type model of the model. With type mappings
as seperate models, they can have a simple type
model, which largely resembles a kind of dictionary.

To circumvent these problems, we have opted to create
seperate type mapping models. These models are rather similar
to a dictionary, where the keys are the model, and the values are
the type of the model. And while they resemble a dictionary,
they are explicitly modelled, and thus user-accessible. Users
can thus open this type mapping just like any other model,
and modify it if desired. In particular, model transformations
can now also query the type of elements, or create elements
of specific types, by manually modifying this dictionary.

Figure 7 presents an excerpt of a possible typing relation
between the petri net model and type model. Most importantly,
the typing relation can be accessed as a single node (root node
of all typing links), making it easy to use a different one.

C. Instantiation Algorithm

When an instance is made of a type model, several things
need to happen. Most importantly, the instance itself needs
to be created. Furthermore, however, the instance needs to
be registered in the type mapping, effectively updating two
seperate models. Also, the operation needs to be checked for
validity: is it even possible to perform this operation?

Updating the type mapping is intimately related with the
representation of the type mapping, which we have, up to
now, proposed as inherent to our approach. Any possible
relation, however, is possible with our approach. As such,
a type mapping in itself is not mandatory, but it is only an
artifact of our example type/instance relation. Type/instance
relations without a type mapping, or with a very different one,

are possible. Therefore, information on the type mapping, such
as its representation and encoding, is necessarily included in
the instantiation algorithm.

Similarly, information on the semantics of additional con-
straints is necessary. The instantiation algorithm needs to be
aware of the things that need to be checked when a new
instance is created, such as potency, cardinality, multiplicity,
and so on. Attributes can also be read out from the type model
(and possibly supertypes of the found type), and presented to
the user. Users would then, instead of manually specifying
the name of the elements to create, be provided with a
list they need to fill in, similar to AToMPM [8]. All these
operations need to be explicitly defined in the instantiation
algorithm, where they are available for users to look up or
modify. Depending on the front-end the user uses, different
instantiation algorithms might be ideal. Indeed, a textual front-
end that runs in batch should not prompt the user, whereas an
interactive visual modelling environment should prompt users
if information is missing.

For our example, this means that the instantiation algorithm
will only ask users which element they want to instantiate
(e.g., Place), and give it (optionally) a name (e.g., p1) for
later reference in the model. Afterwards, users can specify
attributes to instantiate (e.g., tokens), for which the algorithm
will automatically resolve the types from the type model and
subsequently check for conformance to the required type.

D. Conformance Algorithm

Finally, an algorithm needs to be devised which takes a
previously defined model, type model, and mapping between
them, and determines whether or not the model conforms.
This algorithm will, for each element in the model, check
whether the type mapping points to an element in the speci-
fied type model. Additional constraints, such as potency and
cardinalities, also need to be checked. For each edge, the
source and target are checked: the source (target) of the model
needs to be an instance of the source (target) of the edge
in the type model. To determine whether an element is an
instance of another element, we consult the type mapping.
In addition to “direct types”, it is possible for an element to
be a subtype. Inheritance links are therefore followed during
the conformance check, finding out the relation between the
found type, and the expected type. Recall that there was
no longer any way of identifying the inheritance link at the
physical level, as it was just another association. For this
reason, this specific conformance algorithm takes an additional
parameter: the inheritance association. This is the type of
each inheritance link, of which the instances are the actual
inheritance links. The conformance algorithm therefore only
takes a single inheritance association as parameter, and can
automatically find all of its instances, the actual inheritance
links. Inheritance semantics is provided by the conformance
algorithm, which knows that following inheritance links is
allowed when finding instances.

The conformance algorithm also searches for constraints
to execute, multiplicities and cardinalities to check, and po-
tencies to update. All semantics is now explicitly modelled
in the conformance algorithm, resulting in several degrees of
freedom. For example, it becomes possible for users to encode



any of these restrictions wherever they seem best suited. We
avoid the need for every model to have a mandatory attribute,
like potency, as this is up to the conformance algorithm to
decide. Other alternatives are equally valid, as long as they
are explicitly modelled in this algorithm. Our approach offers
much more flexibility to the users, and allows for models better
suited for the problems they are trying to solve.

For our example, this means that the conformance al-
gorithm will read out all elements of the model and check
whether they are typed correctly: is the tokens attribute indeed
an integer, is there no edge going directly between two places,
etc.

E. Multiple Metamodels

With all pieces into place, we can now discuss the possi-
bility for multiple type models. As each aspect of the type/in-
stance relation is explicitly modelled, and thus accessible by
the user, models can conform in different ways. For example,
users might provide a different type mapping, a different type
model, or a different conformance algorithm altogether. We
will only provide a simple example, which was already hinted
at, where a single Petri net model conforms to two distinct
type models: normal place/transition nets and place/transition
nets with inhibitor arcs. The conformance algorithm, when
passed with two different type mappings and corresponding
type model, will state that a petri net without inhibitor arcs,
conforms to both type models. This is shown in Figure 8. A
petri net containing at least one inhibitor arc will only conform
to the type model with inhibitor arcs. Further differences
between the type models are possible (even structurally, by
using a different conformance check), though these are not
shown here to prevent confusion.

One of the remaining problems is one of consistency: both
type mappings are updated independently, and should also be
maintained seperately. As a result, if users add an additional
place to the model, they would have to update both type
mappings. If a type mapping was not, or incorrectly, updated,
subsequent conformance checks will fail until the problem is
resolved.

F. Advantages and Disadvantages

As with everything, our approach implies some disadvan-
tages, mainly related to usability:

1) Explicit management. While the explicit modelling
of the type/instance relation has its advantages, users
might be bothered with the additional complexity. We
believe, however, that this complexity can be hidden
(though accessible) from users who do not require
it (novice users), and only accessible by advanced
users. Whereas other tools simply offer a built-in
instantiation and conformance function, users now
have full control over this, since it is just another
function. This does not necessarily need to be a
disadvantage: the conformance function is considered
as any other function, and can also be used as such.
Use of specific APIs is thus avoided, and users have
less need for documentation on what exactly is this
function and how it is implemented, as they are
already familiar with how to use it (just like any
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Figure 8: A single petri net model conforming to two different
type models simultaneously. The top type model is without
inhibitor arc, whereas the bottom one has an inhibitor arc.
Names of attributes also vary slightly.

other function), and the semantics can easily be seen
by opening the relevant model (instead of wading
through the source code of the tool).

2) Managing multiple concepts of type/instance rela-
tions. The concept of allowing for multiple types of
type/instance relations is an attractive one, but can
also stand in the way of users. We must acknowledge
that most users will probably never need to manage
the use of different kinds of type/instance relations.
This is a trade-off: do we limit the functionality of
our tool, such that it is easy to use for all users,
or do we open all aspects of the tool, potentially
confusing many users? Again, we believe that an
adequate interface will help users in managing this
complexity.

3) Tool itself is no longer a complete metamodelling
tool. What generally identifies a tool as a meta-
modelling tool, is its support for instantiation and
conformance, and optionally support for model man-
agement operations. By removing all these aspects
from the core of the tool, but shifting them a level
higher, the tool essentially no longer has support
for modelling. Instead, tools become simple model
interpreters, which will have to interpret the provided
instantiation and conformance algorithms to become
capable of modelling. While there is the danger



of becoming too general, this clearly seperates the
core of the tool from its additional functionality.
Nonetheless, the design and implementation of the
tool is still oriented towards metamodelling.

4) Efficiency. Up to now, efficiency has not been a
significant criteria when evaluating metamodelling
tools. While it is true that some are more efficient than
others, certainly for extremely large models, most
tools cope reasonably well with small to medium-
sized models. Interpretation of one of the core func-
tionalities of the tool, however, is detrimental for per-
formance. With naive implementations, tools become
too slow to use, even for small models. Currently,
we see this as one of the primary limitations of our
approach, as it likely necessitates much tweaking
of model interpretation performance. Nonetheless,
we find this very similar to Smalltalk [18], where
most functions are also provided as library functions,
written again in Smalltalk. While Smalltalk itself was
not efficient, the Squeak [19] environment proved
that high speedups are possible, even for this kind
of languages.

We believe that these disadvantages can be dealt with by
increasing usability in general. A clear syntax greatly aids
users in managing this additional complexity. Furthermore,
sane defaults should be provided, such that users can hide
the complexity if they don’t need it. It should be possible to
offer users a simple syntax, in which defaults are used, and a
more advanced syntax, in which users have full control. From
the point of view of efficiency, efficient model interpreters are
required, possibly through the use of Just-In-Time compilation
(JIT). Previous interpreters have seen significant speedups
through the use of JIT compilation, such as Squeak [19] for
Smalltalk [18], a language well-known for its philosophy of
making every aspect explicit. Compilation of the model might
also be possible, such that efficiency becomes comparable to
that of hand-crafted code.

Should these disadvantages be overcome, it offers us sev-
eral advantages. These advantages are related to the previously
identified problems of a hardcoded type/instance relation:

1) Explicitly modelled semantics. By explicitly mod-
elling the semantics of the tool, it becomes indepen-
dent of the implementation platform and navigable to
users. Users no longer have the need to consult seper-
ate tool documentation to know the semantics: they
are explicitly browsable, just like any other model.
Furthermore, it becomes managable like any other
function, making it susceptible to model transforma-
tions or modification. Additionally, users only need to
know one language: the modelling language. Previous
tools with an explicitly modelled action language,
still required users to work with their implementation
language to extend the tool (e.g., through plug-ins or
extension points).

2) Dynamic type/instance relation. The algorithms and
type mapping not only become visible to users from
within the tool itself, but they can also be modified
dynamically. As the function is interpreted, changes
are immediately visible to users, stimulating rapid
prototyping. We do, however, acknowledge that there

should be some restriction to this high degree of
freedom, in order to prevent absurd situations.

3) Use of pre-existing libraries. By removing the need
for special elements at the implementation level,
well-known data structures can be used, such as
graphs. There is no longer any need to implement
specific kinds of graphs (e.g., with special “inheri-
tance” links, or even Typed Attributed Graphs), as
every link, even the inheritance and type link, will
be an ordinary edge. Instead of through the model
database, semantics is given by the interpretation of
the algorithms. Many tools and algorithms exist for
managing extremely large graphs, forming a research
domain on its own. All these tools and algorithms can
be used as-is, without any modification or wrappers
at all. Very minimal wrappers are still required, to
have the tools communicate with each other, though
these wrappers don’t hold any conversion logic, nor
do they alter the semantics of the stored graph.

4) Multiple possible metametamodels. As there are no
longer any “special” metametamodels, with hard-
coded parts in the core of the tool, any model can
potentially become a metametamodel, or even meta-
circular. Each model that is sufficiently expressible
can serve as the new root of a modelling hierarchy.
The instantiation and conformance algorithms still
need references to the model (e.g., to know about
the inheritance relation), but it can be fully cus-
tomized. So while some changes are still required,
these changes stay within the tool, and don’t force the
metametamodeller to leave the tool even once. Multi-
ple dimensions to conformance exist, as identified in
the OCA [20]. In this paper, we limit ourselves to the
linguistic dimension, but the need for multiple type
models is even stronger in the ontological dimension,
where it relates back to properties a given model
satisfies [21], [22].

5) Full support for multi-level modelling. Taking the
previous advantage a step further, any modelling hier-
archy becomes possible, as long as the conformance
relation is made to cope with it. All attributes that
influence conformance, such as potency and cardi-
nality, become explicitly modelled at each level of a
multi-level hierarchy. Multiple kinds of instantiation
semantics can be implemented, for example using
potency [6], or the unified version which also applies
to edges [10].

6) Flexible types. Type mappings are also explicitly
stored as models, making it possible to use them like
any other. Possible use cases of this are to query the
types of elements, or to modify the types at runtime.
Should types be coded somewhere in the core of
the tool, this becomes impossible without the use
of a dedicated API. Similar to our arguments for
the explicit modelling of sementics, reusing existing
interfaces is more familiar to users than creating new
ones.

7) Multiple types. In addition to making it possible
to have multiple possible type models, or even
metametamodels, a single element can be typed by
several different elements of potentially different type
models. These type relations are stored in seperate



type mappings, such that the user can decide which
typing relation to use for a specific operation.

IV. EXAMPLE APPLICATION: SUBTYPING SEMANTICS

We now present the power of our approach through an
example application. Our example makes use of different no-
tions of subtyping, which is closely related to the type/instance
relation. In this application, we mainly focus on determining
wheter a model conforms to a type model. A similar discussion
is possible for instantiation, though here we assume that the
model was already created one way or the other. As current
tools hardcode their conformance relations, users have no other
option than to use the given type system. We continue by
showing how our tool, the Modelverse [23], is able to cope
with different kinds of type systems. First, we briefly elaborate
on the typing problem at hand.

A. Subtyping

Throughout the years, different kinds of subtyping relations
have been defined and used. Subtyping directly influences the
conformance check: an instance of Class B is also an instance
of Class A, if either B is A, or if B is a subtype of A. The
definition of subtype varies between the different type systems.
We briefly present the two major classes of type systems:
nominal and structural typing [12].

1) Nominal Typing: The most commonly used kind of
subtyping is nominal typing. With nominal typing, subtypes
must be explicitly declared, such that there can be no confusion
or unexpected behaviour. Most programming languages are
implemented like this, with classes that can inherit from one
another. If Class IPlace inherits from Class Place, all instances
of IPlace will conform to both IPlace and Place. Additionally,
the structure of IPlace is automatically extended with all
concepts of Place. So if Class Place had an attribute tokens,
all instances of IPlace also have this attribute, in addition to
all the attributes that were also provided by IPlace.

Nominal typing is most oftenly used in Object-Oriented
General-Purpose Languages (GPL), such as C++, Python and
Java. Even then, subtle differences can be seen. For example,
C++ and Python allow for multiple inheritance (i.e., a single
class can inherit from multiple classes), whereas Java restricts
users to single inheritance (i.e., a single class can only inherit
from one class). Again, several variants exist in semantics:
attribute resolution is different between C++ and Python,
even though both have multiple inheritance. Even worse, the
multiple inheritance semantics in Python has already been
changed three times1 between different (otherwise compatible)
versions.

Nominal typing is considered safer, as the typing infor-
mation can be used both for typechecking, and at run-time.
Additionally, checking subtyping relations becomes almost
trivial. Flexibility, however, is partly lost: all typing relations
should be defined explicitly, which might be impossible when
legacy code is used.

1https://www.python.org/download/releases/2.3/mro/

2) Structural Typing: At the other end of the spectrum
lies structural typing, where subtypes are implicitly detected
instead of explicitly defined. A Class IPlace is considered
to be a subtype of Class Place if each feature of Place is
also present in IPlace. Consequently, if IPlace and Place have
exactly the same features, they will be considered equivalent,
with all instances of IPlace being instances of Place, and vice
versa.

Structural typing is used by languages such as OCaml,
Go, and Haskell. Now again, subtle differences exist, such as
whether or not the name of the features need to be identical,
in addition to the type. Structural typing is considered more
elegant than nominal subtyping, as it lies closer to type systems
studied in the literature. While great flexibility is gained,
elements might be typed by others “by accident”: simply
because an element has the same attributes, doesn’t mean that
they are identically typed.

B. Conformance Relation

Current (meta-)modelling tools, and even programming
language compilers, hardcode their type system, and the user
has to oblige. While the default type system is often a sane
choice for the domain for which the tool was developed, situa-
tions will occur where the other choice might have been easier
for the user. Users have no choice though, as the semantics
of the conformance relation is hardcoded. Even worse, many
modelling tools explicitly hardcode special instanceOf and
subtypeOf links inside of their data structure.

With explicitly modelled type/instance relations, typings
become modifiable by the user, possibly even automatically
using model transformations. In our case, it is further possible
to create multiple conformance relations, one for each kind
of type system, and use either, depending on the situation.
Depending on the conformance relation chosen by the user
(ideally, the one closest to the problem domain), the outcome
of the conformance check and every related operation will vary.

C. Modelverse

In the Modelverse, users are required to specify which
conformance relation they want to use, and where they want
this type mapping model to be stored. When a model is instan-
tiated, an instantiation policy also needs to be provided. Later
on, when conformance is checked, the previously specified
conformance relation is used.

Users still have to implement the conformance checks
they wish to use, except if it is provided by default, or by
other users. For our example, a subtyping check for nominal
typing will follow inheritance links when required, whereas a
structural typing check will only look at the features of the
class.

Note that, for the case of nominal typing, there are links
with a special semantics. In our approach, these links are just
normal links, stored like any other link (i.e., as an edge). The
conformance check, however, knows the semantics of the links,
and uses them appropriately.

In the following example, we define two Petrinet meta-
models: one for ordinary Petrinets, and one for Petrinets
with inhibitor arcs. A Petrinet without inhibitor arcs can thus
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Figure 9: Using structural subtyping, a simple Petrinet instance
conforms to both the simple metamodel, and the metamodel
containing the inhibitor arc.
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Figure 10: Using nominal subtyping, an explicit inheritance
link is necessary to indicate subtyping. Each instance now
conforms to exactly one of the concrete classes, but always
conforms to the abstract class.

equally be described using either of both formalisms. As a
result, such a Petrinet instance should be able to conform
to both metamodels at the same time, and operations defined
for either of the two metamodels should be applicable to the
model. As soon as an inhibitor arc is added, it becomes clear
that the model no longer conforms to the ordinary Petrinets
metamodel, but instead the one with inhibitor arcs is required.

When we implement this example, we can create both
metamodels independently for structural subtyping, as the
conformance checking algorithm will automatically detect the
similarity. For nominal subtyping, however, an explicit similar-
ity needs to be defined. For this, we defined an abstract Place
and Transition, which will serve as the superclass for both the
ordinary Petrinets and the Petrinets with inhibitor arcs. In this
situation, both metamodels need to explicitly state that they
want to be subtypes of the abstract classes.

The results of the conformance check for nominal and
structural subtyping are very different, and could alter the
complete semantics of the model. Using structural subtyping,
operations defined over either the Place or IPlace would be
applicable to the place. This implies that any object that has
a tokens attribute will be applicable for the function, which
is ideal for functions that operate solely on the number of
tokens. Using nominal subtyping, all operations that should
be applicable to both Place and IPlace instances need to be

defined on the abstract class /Place/. As such, there is no
reuse unless it is explicitly allowed. Furthermore, if Place was
defined before the IPlace extension was thought of, the legacy
model (Place) will also have to be updated, and all (or most)
of its operations ported to the abstract class /Place/.

While we do not want to argue which one is the best, we
offer the user the possibility to use either of these (or others),
depending on what the user believes to be the closest match
to the problem domain.

In the future, we plan to provide a sane default, similar
to the conformance check found in most other tools. This
will simplify modelling and prevents users from the associated
complexity if this functionality is not needed.

V. RELATED WORK

The problems we solve have already been partially ad-
dressed. But while our approach solves several problems
simultaneously, by taking a different view on the type/instance
relation, other approaches are more conservative, in that they
solve only one specific problem by making changes to the
current state of the art.

The main motivator for our research was the credo “model
everything at the right level of abstraction, using the most
appropriate formalism” [24], as popularized in Multi-Paradigm
Modelling (MPM). Naturally, this applies to the system being
modelled. We, however, also apply this to the tool, which will
be used for the modelling, as there would be no reason to
consider the tool as a special entity for which this credo does
not hold. As a natural step then, the conformance algorithm
was made explicitly modelled. It is not only the credo which
we take over from MPM, but we also create our tool to be used
in an MPM setting. For example, our notion of conformance
could possibly be used for multi-view and multi-abstraction
modelling. Further research is required in this direction.

While the conformance relation has, to the best of our
knowledge, always been hardcoded as foundational aspect of
the tool, the type mapping has frequently been made explicit,
certainly in theory. For example, de Lara et al. [25], [26] have
explicitly defined type mappings (explicit bindings) for their
concepts, which are an alternative form of model typing [27].
VPM [28] made the instanceOf links available just like any
other element, thus avoiding hardcoded relations. Our typing
relation is actually a relation between models, similar to the
relations defined for megamodelling (e.g., [29], [30]). Kurtev
et al. [14] proposes to define a model as a triple, containing
the model, the type model, and the type mapping. No mention
is made, however, about making this relation depend on the
conformance relation. Zschaler [27] already proposed to make
explicit all constraints on type models in the model type,
rather than hiding them away in the matching relation. We also
believe that constraints should not be hidden in the matching
relation, but instead of putting it in the model type, we make
the matching relation explicit.

Models have also often been represented using a graph
representation, for example in VMTS [13], or in the framework
proposed by Kurtev et al. [14]. Despite their mapping to
graphs, they include special edges, such as an inheritance
edge. Such edges are not defined in general graph theory, and



should therefore be avoided as it mixes parts of the structure
(i.e., the actual graph) with the semantics (i.e., the system we
represent with the graph). In our approach, everything is stored
as a graph, which purely defines the structure of the models.
Semantics is not given by this graph representation: it is given
by the executable models, which are themselves models in our
tool, represented as graphs.

Closest to our contribution is a-posteriori typing [17],
where a single model element has one single (constructive)
type, but possibly also a set of additional types which act
as views on the model. The constructive type is the one
gained through instantiation, and is not modifiable, nor user-
definable. Additional types, however, are dynamically deter-
mined when used in a specific setting. Whereas in our approach
we explicitly model the conformance relation and the type
mapping, a-posteriori typing is more of a kind of conditional
typing, related to their implementation of concepts. Elements
are considered as instances of specific types only if some
conditions are met, such as having a specific attribute with
a value within a certain range. Its primary use is for reuse of
functions, as exemplified in their application on the petri net
model. In comparison, our approach offers more flexibility, as
an element might be typed by multiple element (similar to a-
posteriori typing), but also typed using multiple conformance
relations. Since conformance relations are explicitly modelled,
there are no limitations as to what the modeller can model.

Similar to our work is also that of the Dynamic Multi-
Layer Algebra [2], which also acknowledges the importance of
bootstrapping the system and making the instantiation explicit.
But whereas the instantiation is explicitly mentioned in the
paper and the algebra, there is no way for users to modify or
extend it at run-time.

Retyping is offered by other tools, either through model
transformations as in AToMPM [8] and MetaDepth [7], or by
seperate operations as is the case in MMINT [30]. Instead of
retyping, our approach has multiple types simultaneously, thus
avoiding frequent type conversions at the cost of managing
all type relations simultaneously. Retyping is also possible,
without the need for seperate operations, as the typing relation
is just another model.

Related to multiple types for a single element, Nivel [31]
allowed for multiple classification. In contrast to our approach,
only a single kind of conformance relation was defined, which
was directly encoded into their formalization and is thus
a fundamental part of the tool. Similarly, they hardcoded
concepts like subtyping, reducing flexibility further.

Several hardcoded conformance relations were proposed,
such as that of Nivel [31] and by Guy et al. [32]. Each
of these explicitly requires some attributes to be present,
such as multiplicities. In general, it is not guaranteed that
the type model will even contain these notions, let alone
that they have identical semantics. By making the semantics
of these elements explicit, users are certain about what the
values mean, but additionally they can also opt for simpler
type/instance relations, which don’t take into account some of
these restrictions. Salay and Chechik [33] raised the need for
modification (relaxation) of the conformance relation to allow
for agility.

In some way, de Lara et al. [25] propose a different kind of

conformance check, though still hardcoded: using requirements
for elements instead of types provided during instantiation. We
believe that in our framework, this would just be a specific kind
of conformance check, which can again be explicitly modelled
and included for users.

VI. CONCLUSIONS

We have identified several shortcomings of current tools
in how they handle the type/instance relation between models
and type models. This relation is bidirectional, and consists
of both the instantiation and conformance checking algorithm.
While it holds some advantages, primarily in terms of usability
and efficiency, hardcoding type/instance semantics in the core
of the tool has a significant set of disadvantages that limit
what can be done with the tool. To make matters worse, there
is no common consensus on what the semantics of some of
these concepts should be and how to handle violations. As this
semantics is hardcoded in the tool, users are forced to use it,
with the semantics only being defined in the source code of
the tool.

We proposed a different approach, where both the instantia-
tion and conformance checking algorithms, as well as the type
mapping, is made explicit as a model. Explicit modelling of
these semantics allowed us to clearly seperate model structure
(a graph) from conformance semantics (an algorithm). Addi-
tionally, the mapping between different models also became
available as a model that can be used like any other. The
primary advantages of our approach are that users achieve
full control over the modelling tool, and can themselves alter
the semantics of what it means for a model to conform to
a type model, or what it means to instantiate a type model.
Previous approaches have limited themselves to providing
users a pre-defined function which they had to deal with;
deviations were not allowed. And even when extension was
possible, this was limited to the implementation language of
the tool, which might be unfamiliar to the user. In this stage
of research, our approach has some problems with usability,
as users are currently exposed to a great deal of complexity,
to which they aren’t exposed in other tools. We believe that
this additional complexity can be handled through the use of
more usable front-ends, which hide the complexity when it is
not required. Performance problems can be resolved through
efficient algorithms, similar to those found in other interpreters.

Our approach was illustrated with a small example that is
prevalent in current programming languages: the semantics of
subtyping. Many languages have their own semantics in this
regard: is subtyping allowed at all? Do we use nominal or
structural subtyping? What about multiple-inheritance? And
what with the resolution order in multiple-inheritance? For
each of these possible choices, there has been at least one
programming language which choses one over the other. Their
choices are often well-founded, making us believe that the
ideal semantics is dependent on the domain. As the Modelverse
intends to be a general (meta-)modelling tool, we should
always offer the users the most appropriate formalism to
describe their problem. When a problem naturally lends itself
best to structural subtyping, for example, it should not be
implemented using nominal subtyping.

In future work, we plan to address the usability prob-
lems we encountered in our tool, as well as performance.



Another direction for future work is the definition of a general
type/instance relation, which holds for every model. That
would make it possible to store each model as a conforming
model (by construction), and to manipulate even incompatible
models or non-strict models. Finally, the prospect of multiple
type/instance relations, of which the semantics can be filled
in by the user, raises many new research questions. Specif-
ically, which current modelling operations can be lifted to
this relation? For example, conformance between execution
traces and an executable model, properties and models, and
concrete syntax with abstract syntax. Similarly, can we then
instantiate an executable model by giving an execution trace?
Or automatically instantiate models with specific properties?
All of these models have some relation between them, but
is this really conformance, and what is the usefulness of
identifying these relations as conformance relations?
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typing for model-driven engineering. In Proceedings of MoDELS, 2015.

[18] Adele Goldberg and David Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Longman Publishing Co., Inc.,
1983.

[19] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of Squeak, a practical Smalltalk written
in itself. In Proceedings of OOPSLA, pages 318–326, 1997.

[20] Colin Atkinson and Thomas Kühne. Model-driven development: A
metamodeling foundation. IEEE Software, 20(5):36–41, 2003.

[21] Bruno Barroca, Thomas Kühne, and Hans Vangheluwe. Integrating
language and ontology engineering. In Proceedings of MPM: Multi-
Paradigm Modelling Workshop, pages 77–86, 2014.

[22] Ken Vanherpen, Joachim Denil, István Dávid, Paul De Meulenaere,
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with a formal semantics. Software and System Modeling, 8:521–549,
2008.

[32] Clément Guy, Benoit Combemale, Steven Derrien, Jim Steel, and Jean-
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