
Concern-Driven Software Development

Omar Alam Jörg Kienzle
School of Computer Science, McGill University,

Montreal, QC H3A 0E9, Canada
Omar.Alam@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

Gunter Mussbacher
Department of Electrical and Computer Engineering,
McGill University, Montreal, QC H3A 0E9, Canada

Gunter.Mussbacher@mcgill.ca

Technical Report, School of Computer Science, McGill University,
January 2015, CS-TR-2015.1

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design; I.6.5 [Simulation and Modeling]: Model Develop-
ment

Keywords software concern line, concern-driven development,
reuse, variation interface, customization interface, usage interface.

Abstract
This paper describes the vision of Concern-Driven Development
(CDD), a novel software development paradigm that extends
model-driven engineering with best practices from reuse, advanced
modularization techniques, goal modelling, and software product
line research. CDD advocates the use of a three-part interface to
describe units of reuse, i.e., concerns. The variation interface de-
scribes required design decisions and their impact on high level
system qualities, both explicitly expressed using feature models
and goal models. The customization interface allows the chosen
variation to be adapted to a specific reuse context, while the us-
age interface defines how a customized concern may eventually be
used. When a concern is reused, the modeller first uses the varia-
tion interface to select the feature configuration that has the desired
impact on stakeholder goals and system qualities, then adapts the
concern to the context of the application under development with
the help of the customization interface, and finally accesses the
concern’s functionality through its usage interface. We argue that,
if CDD is successfully adopted on a large scale, it will transform
the software engineering discipline by enabling software engineers
to specialize to a greater degree and hence align the practice of
software engineering closer to what is done in other engineering
disciplines.

1. Introduction
Engineering is defined as “creative application of scientific princi-
ples to design or develop structures, machines, apparatus, or man-
ufacturing processes, or works” that “respect an intended func-
tion, economics of operation or safety to life and property” [1].
Some engineering disciplines, e.g., civil engineering, have matured
over hundreds of years to a point where standard components and
standard processes exist that guide the engineer to weigh differ-
ent design choices on their merits and choose the solution that best
matches the requirements.

Software engineering as a discipline aims at ensuring that soft-
ware is built systematically, rigorously, measurably, on time, on
budget, and within specification. Complex modern software-based
systems often require many stakeholder groups (e.g., scientists,
software developers, and end-users with specialized domain knowl-
edge) to work in a coordinated manner on different aspects of the

system. Each aspect – called concern in this paper – is a domain
with its own specialized knowledge space. A major challenge that
stakeholders face is bridging the wide gap between the domain-
specific concepts they use to express their problems and the pro-
gramming languages and technologies used to implement solu-
tions. Software reuse, although successful at the programming lan-
guage in form of libraries, components, frameworks, and services,
is still very limited at higher levels of abstraction. As a result, soft-
ware engineers must manually bridge the gap between problem and
solution for each project, which introduces costly accidental com-
plexities [2]. Software modelling techniques, for example the Uni-
fied Modeling Language (UML) [3], are of limited use, because
the crosscutting nature of most concerns is an obstacle for classical
(object-oriented) modularization techniques to encapsulate a recur-
ring modelling concern in a reusable way.

Some engineering disciplines have specialized greatly over the
years, e.g., civil engineers usually practice as construction engi-
neers, transportation engineers, hydraulic engineers, environmen-
tal engineers, and so on. In contrast, software engineers are still
expected to master all concerns of a software-based system, which
is becoming more and more difficult considering the complexity of
modern software-based systems.

This paper outlines concern-driven development as a visionary
new software development paradigm inspired by the ideas of [4]
that builds on the disciplines of model-driven engineering, software
product lines [5], goal modelling, and advanced modularization
techniques offered by aspect-orientation to define flexible software
modules that enable broad-scale model-based software reuse. In
contrast to Software Product Lines, where reuse is planned for and
takes place within the boundaries of the domain of the product
line, CDD aims at enabling reuse across concerns (i.e., Software
Concern Lines). Concerns are units of reuse that are typically
developed in isolation. Reuse between concerns is made possible
by means of well-defined interfaces.

In the remainder of the paper, Section 2 presents the main con-
cepts of CDD. Section 3 discusses the flexible form of modularity
that concerns provide, while the last section draws the conclusions.

2. Concern-Driven Software Development
MDE [6] is a unified conceptual framework in which software de-
velopment is seen as a process of model production, refinement,
and integration. To reduce the accidental complexity and the effort
needed to move from a problem domain to a software-based so-
lution, MDE advocates the use of different modelling formalisms,
i.e., modelling languages, to represent and analyze the system from
multiple points of view. For each level of abstraction, the modeller
uses the best formalism that concisely expresses the properties of
the system that are important to that level, and that the concepts
used in the language are close to the problem domain at hand.
During development, high-level specification models are refined or



combined with other models to include more solution details, such
as the chosen architecture, data structures, algorithms, and finally
even platform and execution environment-specific properties. The
manipulation of models is achieved by means of model transforma-
tions. Model refinement and integration continues until a model (or
code) is produced that can be executed.

However, MDE on its own is not a silver bullet. To reduce
the complexity of reasoning and analyzing the problem and con-
structing a software-based solution, traditional software engineer-
ing principles such as decomposition, interfaces, information hid-
ing, levels of abstraction, and reuse are key. Unfortunately, the
crosscutting nature of most concerns is an obstacle for classical
modularization techniques that apply the aforementioned principles
in practice. To be effective, a flexible notion of modularity is re-
quired, that allows to separate and package concerns in a reusable
way, and allows advanced composition mechanisms to introspect
modules and compose them to build a usable (i.e., analyzable, sim-
ulatable, and/or executable) representation of the solution.

Concern-driven development (CDD) is a further development of
MDE that proposes a novel software module – the concern – and
uses it as the main unit of modularization, abstraction, construction,
and reasoning.

2.1 Concern
A concern is any domain of interest to a software engineer. It can
be but does not have to be a crosscutting concern as advocated by
aspect-oriented software development. A concern is a unit of modu-
larization that encapsulates a set of models describing all properties
of that concern required to sufficiently understand and use the con-
cern. Typically, the models within a concern span multiple phases
of software development and levels of abstraction. Each concern
has a root phase, where the concern manifests itself for the first
time. Some concerns appear in early phases of software develop-
ment, e.g., broadly scoped system properties with functional, non-
functional, or even intentional characteristics. Some concerns ap-
pear in later phases of software development, e.g., solution-specific
concerns such as specific communication protocols, concrete au-
thentication algorithms, and design patterns.

In CDD, models are built for the root phase and all follow-
up phases using the most appropriate modelling formalisms to ex-
press the properties of the concern that are relevant during each
phase. Consequently, a concern is described by many modelling
notations, which may be object-oriented in nature (e.g., based on
UML), but typically also need to offer other language mechanisms
(e.g., aspect-oriented features) in order to handle the crosscutting
nature of certain properties of the concern. Within a concern, model
transformations link models across different levels of abstraction.
Finally, a concern also encapsulates all relevant variations that are
available to software engineers at a given phase, together with guid-
ance on how to choose among those variations by specifying the
impact of each choice on stakeholder goals and system qualities.

2.2 Concern Interface
The key concept of CDD promoting modularity is the three part
interface [7] that every concern must provide:

• The Variation Interface describes the available variations of
the concern and the impact of different variants on high-
level stakeholder goals, qualities, and non-functional require-
ments. The variations are typically represented with a feature
model [8] that specifies the individual features that a concern
offers, as well as their dependencies such as optional, alterna-
tive, requires, and excludes. The impact of choosing a feature
can be specified with goal models (e.g., with GRL, which is
part of the User Requirements Notation (URN) standard [9],
or the NFR framework [10]). For example, a security concern

may offer various means of authentication, from password-
based to biometrics-based solutions, each with differing im-
pacts on the level of security as well as cost and end-user
convenience. These qualities have to be weighed, when de-
termining which authentication variant is most appropriate in
the current application context.

• The Customization Interface describes how a chosen variant
can be adapted to the needs of a specific application. Each
variant of a concern is described as generally as possible to
increase reusability. Therefore, some elements in the concern
are only partially specified and need to be complemented with
concrete modelling elements of the application that intends to
reuse the concern. The customization interface is hence used
when a specific variant of a reusable concern is composed with
the application. For example, a security concern may define a
generic User as a partial class that needs to be merged with
the concrete application classes that describe the actual users
of the system, e.g., Administrator or Employee.

• The Usage Interface describes how the application can finally
access the structure and behaviour provided by the concern.
For example, the usage interface of the design model of a con-
cern is typically comprised of all public classes and methods
made available by the concern. For the security concern this
might include an authentication operation that an administra-
tor can invoke in order to gain access to restricted behaviour.

2.3 Concern Reuse Process
Building a concern is a non-trivial, time consuming task, typically
done by or in consultation with a domain expert. Deep understand-
ing of the nature of the concern is required to be able to identify its
different features (and capture them in a feature model), to model
the common properties and differences of all features of a concern
at all relevant levels of abstraction (by building requirements mod-
els and design models that (i) realize the features of the concern us-
ing the most appropriate modelling notations and (ii) are eventually
refined into executable specifications), and to express the impact of
the different variants on high level stakeholder goals and qualities
(using goal models).

On the other hand, reusing an existing concern is extremely
simple, and essentially involves 3 steps:

1. The concern user must first select the feature(s) with the best
impact on relevant stakeholder goals and system qualities from
the variation interface of the concern based on provided impact
analysis. Based on this configuration, the modelling tool then
merges the models that realize the selected features to yield new
models of the concern corresponding to the desired configura-
tion. Depending on the root phase of the concern, the merg-
ing may involve requirement models and/or design models.
For composition at the requirements level with goal and work-
flow/scenario models, the interested reader is referred to [11]
for more details. For details on how this composition is done
for design concern models with structural and behavioural de-
scriptions based on class, sequence, and state diagrams, see [7].

2. Next, the concern user has to adapt the generated detailed mod-
els to the application context by mapping customization inter-
face elements to application-specific model elements. Again,
depending on the root phase of the concern, this step might re-
quire customizing requirement models and/or design models.

3. Finally, a software engineer can use the functionality provided
by the selected concern features which are exposed in the usage
interface within his own application models. In requirements
models, this may mean including workflow segments exposed
in the concern’s usage interface in the application’s workflow



models. In design models expressed using sequence diagrams,
for instance, using a concern may involve instantiating a class
exposed in the concern’s usage interface and/or calling one of
its public operations.

3. Concerns as Units of Modularization
The goal of the first part of this section is to reflect on the properties
of a single concern and the powerful modularization support it
provides. The second part discusses concern hierarchies and the
modular, abstraction-level preserving reasoning they enable.

3.1 Encapsulation and Adaptation of a Concern
Information hiding [12] is the activity of consciously deciding what
parts of a software module should be exposed to the outside, i.e.,
the “rest” of the application, and what parts should be hidden from
external use. To allow a developer to state what is internal and
what is external to a module, modelling or programming languages
typically provide constructs to define a module’s interface. The
problem with classical interfaces of reusable software modules is
that they usually tend to encapsulate the state and behaviour so
strongly that it is often impossible to adapt the module to the needs
of a developer.

Information hiding, if employed well, gives the developer the
ability to hide the internal workings of a software module behind a
well defined interface. As a result, anyone who wishes to interact
with a module only needs to know what the module does and is
not dependent on the details of how it does it. This is a critical
property, because it allows a developer to modify the internal state
and behaviour of the module, e.g., improve an algorithm or use a
different data structure, without affecting how the outside world
interacts with the module. A developer can even go to the extent of
replacing the module with a completely different one that supports
the same interface.

For reusable software modules, though, complete encapsulation
is not desired. Reusable modules are designed in a very general
way, which typically means that they need to work with state or
execute behaviour that is defined by the application context (i.e.,
the application that uses them). Concerns as advocated by CDD go
even further, because they aim at modularizing different available
variations or solutions of a problem. While each variation could be
used, each one has different properties and impacts. Choosing the
variant that is most adequate can only be done once the high-level
stakeholder goals and non-functional requirements of the applica-
tion context are known.

This is why concerns offer three interfaces. Combined together
they provide the flexible modularization required to encapsulate
domain knowledge, support information hiding and allow fine-
grained adaptation to application-specific contexts.

The variation interface presents the available variants that a con-
cern encapsulates to the user in a concise way. The user can make
an informed choice by consulting the impacts of each configura-
tion on non-functional requirements, stakeholder goals, and qual-
ities. When a variant is selected, the concern performs a complex
internal adaptation on the encapsulated implementation that typi-
cally involves structural and behavioural weaving. However, this
adaptation is completely hidden from the user.

The customization interface (of the selected variant) then allows
the user to compose application-specific structure and behaviour
with the reusable concern’s internal structure and behaviour. This
specification takes the form of a simple mapping that establishes
relationships between the application context and the entities ex-
posed in the customization interface. Once this is done, structural
and behavioural weaving is used again to adapt the encapsulated
implementation in an automated way to the application context.

Finally, the resulting usage interface works just like a classic
interface. It exposes the minimal structural and behavioural knowl-
edge required by the application to trigger the functionality offered
by the concern when needed, and at the same time encapsulates the
specific implementation/solution details.

3.2 Concern Hierarchies and Information Hiding
As already mentioned in the introduction, complex applications
consist of many intertwined, interacting concerns, and CDD advo-
cates to develop an application by reusing as many already existing
concerns as possible. The same principle applies to the develop-
ment of a concern itself. As explained at the beginning of Section 2,
a concern encapsulates sets of models that describe relevant prop-
erties at all levels of abstraction required to sufficiently understand
the concern. Typically, a requirements concern, e.g., security, needs
to comprise not only models that specify different ways of achiev-
ing security (authentication, role-based access control, encryption,
etc.), but also different ways of realizing them (password-based
authentication vs. biometrics, etc.). Even for a given realization,
there are different possible implementation architectures (central-
ized password server vs. local, distributed databases, etc.). It comes
with no surprise that low-level design solutions, such as various de-
sign patterns, transaction controls, or resource allocation are quite
general solutions that can be reused in many contexts.

To fully reap the benefits of reuse, it is therefore important to
allow the creation of concern hierarchies. To increase scalabil-
ity and avoid duplication of effort, a high-level concern (or to be
more precise, a feature of a high-level concern) should be able
to reuse the functionality (structure / behaviour / properties) of a
lower-level concern when appropriate. Doing so creates a concern
hierarchy where a concern at a higher level of abstraction reuses
other lower-level concerns. Similarly, a more domain-specific or
solution-specific concern can reuse other more general concerns.
For example, an authentication concern that encapsulates a vari-
ety of authentication means and protocols could be used within the
context of a concern that provides authentication services for dis-
tributed systems connected with a local area network.

Concern hierarchies allow the developer to modularize the ap-
plication into different layers of abstraction. But these layers again
have to be flexible. In order to successfully reduce complexity, the
layers should allow for separate reasoning, and hide the complexity
of the lower levels from the upper levels. On the other hand, the lay-
ers can not be completely opaque, since the structure and behaviour
of most lower-level concerns crosscuts the structure and behaviour
of the upper levels (and the application). At the very least, the quali-
ties of the upper level depends heavily on the qualities of the reused
concerns at the lower levels.

Concern-orientation addresses this problem by allowing the
concern designer to precisely specify how the interface of the con-
cern being built is affected by the interfaces of the lower-level
concerns that are reused.

3.2.1 Composing the Usage Interface
For the usage interface, standard information hiding principles are
applied by default. In other words, the accessible structure and be-
haviour of the lower level concern are not included in the usage
interface of the concern being built, unless explicitly reexposed by
the developer. In those rare situations, which occur when the lower-
level concern directly provides functionality that the concern under
construction wants to offer, it is nevertheless often necessary to re-
name the reexposed functionality to reflect the change in level of
abstraction. For example, a concern encapsulating many variants
that implement the Observer design pattern might internally reuse
the Association concern to associate a subject with its observers. In
this case, the getAssociatedObjects functionality of the Asso-



ciation concern might be reexposed as a getObservers function-
ality in the usage interface of Observer.

3.2.2 Composing the Customization Interface
For the customization interface, the default rule is that the cus-
tomization interface of the concern being built is a union of the
new customization elements introduced by the concern and the
customization elements of the lower-level concerns that have not
been customized, i.e., that were not mapped to specific elements in
the current concern. This makes it possible to grow or shrink the
customization interface within concern hierarchies, depending on
the intent of the designer. A “more specific” concern, for instance,
would abstain from introducing new customization elements, and
map some of the lower-level customization elements to specific el-
ements of the concern under construction.

3.2.3 Composing the Variation Interface
The rules for constructing the variation interface of the concern
being built from the variation interfaces of the concerns being
reused are the most interesting. The considerations that have to be
taken into account are multiple:

1. Choosing the best variant of a concern is only possible once all
non-functional requirements and desired qualities are known.
This might not be the case within a concern hierarchy, and only
known when the complete application is being built.

2. A concern encapsulates all possible variants that can be useful
in any context. When used in a specific context, some of these
variants might not be applicable.

3. The qualities of the concern being built are affected by the
qualities of the concerns being reused.

To address 1 and 2, the designer of the concern under construction
should be able to explicitly reexpose all features of the lower-
level concern that provide the required functionality (and indirectly
exclude those features that do not have the desired properties) in its
variation interface to defer the decision of which specific variant to
use to the next level. To address 1, 2, and 3, specific algorithms to
compose impact models of the high-level concern with those of the
lower-level concern are needed.

Such composition algorithms must differentiate two distinct
knowledge spheres. The first pertains to which feature configura-
tion of a concern offers the best possible solution for a specific
stakeholder goal or system quality. This can only be answered by
concern specialists, because they are the experts of the concern’s
domain, and must hence be encoded in the concern’s impact model.
The second relates to the impact of a reused concern on the current
concern that is reusing this concern. This can only be answered by
the modeler who is tasked to build the current concern and must
hence be expressed in the current concern’s impact model. When
goal models are used to describe impact models, then the best pos-
sible solution is identified by the stakeholder goal or system quality
being evaluated to the maximum evaluation value. Based on this
implicit understanding, the modeler of the concern under construc-
tion can then combine and describe the impacts of all reused con-
cern on itself in a coordinated fashion. Note that, in the future, goal
models could be replaced by more sophisticated models that allow
for more accurate predictions of the composed concern’s behaviour
(e.g., performance models based on queuing theory could be used
instead of goal models).

4. Conclusion
This paper presents the vision of concern-driven software de-
velopment, a novel software development paradigm that extends

model-driven engineering with best practices from reuse, aspect-
orientation, and software product line research. The paper presents
the flexible modularity that concerns offer. The 3-part interface of
a concern reduces complexity by hiding unnecessary internal con-
cern details from the concern user while still exposing the encap-
sulated design variants of the concern together with their impacts
on non-functional system properties and allowing customization to
specific application contexts.

The overhead of developing concerns is significant. The vision,
however, is that if CDD is successfully adopted on a large scale,
it will transform the software engineering discipline as a whole.
CDD would enable software engineers to specialize, i.e., to become
concern specialists. In companies selling concern libraries, security
concern specialists, e.g., would solely concentrate on maintaining
and evolving the models within the security concern, i.e., adding
new security requirements, solutions, techniques and platforms as
they become relevant. Within a company developing applications,
a security concern expert would focus on composing the security
concern with the other application concerns. Ultimately, concern
libraries, concern reuse, and concern specialization would provide
a clear structure to software development, and as a result align the
practice of software engineering closer to what is done in other
engineering disciplines.

References
[1] Engineer’s Council for Professional Development, 1947.
[2] R. France and B. Rumpe, “Model-driven Development of Complex

Software: A Research Roadmap,” in Future of Software Engineering,
FOSE ’07, pp. 37–54, IEEE, 2007.

[3] Object Management Group, Unified Modeling Language: Superstruc-
ture (v2.4.1), December 2011.

[4] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N degrees of
separation: Multi-dimensional separation of concerns.,” in ICSE’1999,
pp. 107 – 119, IEEE CS, May 1999.

[5] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2005.

[6] Douglas C. Schmidt, “Model-Driven Engineering,” IEEE Computer,
vol. 39, pp. 41–47, 2006.

[7] O. Alam, J. Kienzle, and G. Mussbacher, “Concern-oriented software
design,” in International Conference on Model-Driven Engineering
Languages and Systems - MODELS 2013, vol. 8107 of LNCS, pp. 604–
621, Springer, 2013.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Tech. Rep.
CMU/SEI-90-TR-21, Software Engineering Institute, CMU, 1990.

[9] International Telecommunication Union (ITU-T), “Recommendation
Z.151 (10/12): User Requirements Notation (URN) - Language Defi-
nition,” approved October 2012.

[10] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Springer, 2000.

[11] G. Mussbacher, D. Amyot, and J. Whittle, “Composing goal and
scenario models with the aspect-oriented user requirements notation
based on syntax and semantics,” in Aspect-Oriented Requirements
Engineering, pp. 77–99, Springer Berlin Heidelberg, 2013.

[12] D. L. Parnas, “A technique for software module specification with ex-
amples,” Communications of the Association of Computing Machin-
ery, vol. 15, pp. 330–336, May 1972.


