
A Type-theoretic Foundation for Programming with
Higher-order Abstract Syntax and First-class Substitutions

Brigitte Pientka
McGill University, Canada

bpientka@cs.mcgill.ca

Abstract
Higher-order abstract syntax (HOAS) is a simple, powerful tech-
nique for implementing object languages, since it directly sup-
ports common and tricky routines dealing with variables, such as
capture-avoiding substitution and renaming. This is achieved by
representing binders in the object-language via binders in the meta-
language. However, enriching functional programming languages
with direct support for HOAS has been a major challenge, be-
cause recursion over HOAS encodings requires one to traverse λ-
abstractions and necessitates programming with open objects.

We present a novel type-theoretic foundation based on contex-
tual modal types which allows us to recursively analyze open terms
via higher-order pattern matching. By design, variables occurring
in open terms can never escape their scope. Using several examples,
we demonstrate that our framework provides a name-safe foun-
dation to operations typically found in nominal systems. In con-
trast to nominal systems however, we also support capture-avoiding
substitution operations and even provide first-class substitutions to
the programmer. The main contribution of this paper is a syntax-
directed bi-directional type system where we distinguish between
the data language and the computation language together with the
progress and preservation proof for our language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Theory, Languages

Keywords Type theory, logical frameworks

1. Introduction
Typed functional programming languages are particularly suited
for analyzing and manipulating syntactic structures and are per-
vasively used for implementing object languages. Although many
object languages include binding constructs, it is striking that typed
functional languages still lack direct support for binders and com-
mon tricky operations such as renaming, capture-avoiding substi-
tution, and fresh name generation. The most common approach in
practice is to implement binders via de Bruijn indices, which at
least provides for α-renaming. While this leads to an efficient im-
plementation, analyzing and especially manipulating data can be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

cumbersome and error-prone. Capture-avoiding substitution must
be implemented separately. Nominal approaches (Gabbay and Pitts
1999) as found in FreshML (Shinwell et al. 2003) provide first-
class names and α-renaming. This approach is appealing because
it gives us direct access to names of bound variables. The genera-
tion of a new name and binding names are separate operations and
fresh name generation is an observable side effect. Unfortunately,
this means that it is possible to generate data which contains acci-
dentally unbound names. To address this problem, Pottier (2007)
recently proposed pure FreshML where one can reason about the
set of names occurring in an expression via a Hoare-style proof sys-
tem. This static analysis approach is quite expressive since the lan-
guage of constraints includes subset relations, equality, and inter-
section. Nevertheless, the programmer needs to implement capture-
avoiding substitution manually.

In higher-order abstract syntax (HOAS) we represent binders
in the object-language via binders in our meta-language (i.e. func-
tional programming language). One of the key benefits is that we
not only get support for renaming and fresh name generation, but
also for capture-avoiding substitution. Consequently, it is typically
easier to ensure correctness and reason about HOAS representa-
tions, since tedious lemmas about substitutions and fresh names do
not need to be proven. The strengths of HOAS have been impres-
sively demonstrated within the logical framework LF (Harper et al.
1993) and its implementation in the Twelf system (Pfenning and
Schürmann 1999) over the past decade. However, HOAS has rarely
been considered in real programming languages (example include
Washburn and Weirich (2006); Guillemette and Monnier (2006)).
To illustrate the difficulty, we define a small language with let-
expressions and arithmetic operations. The let-expression is defined
via higher-order abstract syntax, i.e. the binder in the let-expression
is represented via a binder in our meta-language. We distinguish
between natural numbers and expressions, and variables in expres-
sions represent only values.

exp: type .
Nat: nat → exp.
Add: exp → exp → exp.
Let: exp → (nat → exp) → exp.

nat: type .
z: nat.
suc: nat → nat.

The expression let val x = 1 in Add(0, x) end is repre-
sented as Let (Nat(suc z)) (λx.Add (Nat z) (Nat x)) in
our meta-language. When we recursively analyze the body of the
let-expression, we must analyze Add (Nat z) (Nat x) which
contains a free variable x and hence is an open term. Moreover,
we often also want to manipulate the variable x and compare it to
other variables. However, HOAS encodings do typically not allow
us to directly access, manipulate and compare bound variables.

The message of this paper is that we can recursively analyze and
manipulate open data, which is defined via HOAS and may contain

variables, and safely add this functionality to typed functional pro-
gramming. In particular, we can support operations such as analyz-
ing and comparing bound variables. By design, variables occurring
in open data can never escape their scope thereby avoiding a prob-
lem prevalent in previous attempts. Our framework therefore may
be seen as a name-safe alternative foundation for the operations
typically supported in nominal systems. However, in addition to
supporting binders and α-renaming, we provide capture-avoiding
substitution operation together with first-class substitution.

Building on ideas by Nanevski et al. (2006), we design a type-
theoretic foundation for programming with HOAS and substitu-
tions based on contextual modal types. The contextual modal type
A[Ψ] classifies open dataM whereM has typeA in the context Ψ.
Consequently, the object M may refer to the variables declared in
the context Ψ, but M is closed with respect to the context Ψ. The
data-object Add (Nat (suc z)) (Nat x) from the previous ex-
ample has type exp in the context x:nat.

Generalizing ideas from Despeyroux et al. (1997), data of type
A[Ψ] may be injected into the computation level and analyzed via
pattern matching via the box-construct thereby separating data from
computations. Since we want to allow recursion over open data ob-
jects and the local context Ψ which is associated with the type A
may grow, our foundation supports context variables and abstrac-
tion over contexts. Consequently, different arguments to a compu-
tation may have different local contexts and we can distinguish be-
tween data of type A[·], which is closed, and open data of type
A[Ψ]. This gives us fine-grained control and allows us to specify
strong invariants. Our type-theoretic foundation based on contex-
tual modal types is substantially different from previous propos-
als to marry HOAS with functional programming as proposed by
Schürmann et al. (2005). In Schürmann et al. (2005), the necessity
modality �τ describes computation of type τ which can be exe-
cuted in every world where we have at least one context extension.
The context containing binding occurrences is hence left implicit
and associated with a computation. As a consequence, every ar-
gument of the computation must share one global context. While
Schürmann’s work does provide for capture-avoiding substitution
via β-reduction, it lacks the support to construct substitutions as
first-class objects. The type of a substitution in our framework will
be Ψ[Φ] where Ψ describes the domain and Φ the range. In other
words, the substitution of type Ψ[Φ] maps bound variables declared
in the context Ψ to objects which may refer to the bound variables
declared in Φ. We believe this foundation provides general insights
into how open data-objects can be understood type-theoretically
and incorporated as first-class into programming languages. The
main contribution of this paper are:

• We present a syntax-directed decidable bi-directional type sys-
tem for open data and substitutions based on contextual types.
By design, variables occurring in open data objects cannot es-
cape their scope, and no separate reasoning about scope is re-
quired (Section 3). Following a recent presentation technique
for logical frameworks due to Watkins et al. (2002) our syntax
only allows for objects which are in canonical form since only
these are meaningful for representing object-languages. Conse-
quently, exotic terms that do not represent legal objects from
our object-language are prevented.

• Extending our previous work (Pientka and Pfennning 2003), we
present a linear higher-order pattern matching algorithm for
open data and substitutions together with its correctness proof
(Section 3.4). We also discuss the trade-offs and costs of con-
sidering the full pattern fragment as defined by Miller (1991)
versus linear higher-order patterns (Section 2 and Section 3.4).

• Using several examples (Section 2), we show that our frame-
work may be seen as a name-safe foundation to operations typ-

ically found in nominal systems while at the same time also
providing for capture-avoiding substitutions together with first-
class substitutions.

• We present a syntax-directed decidable bi-directional type sys-
tem for computation which allows recursion and pattern match-
ing on open data and substitutions (Section 4) together with a
small-step operational semantics (Section 5). Open data is in-
jected into computation via the box-construct. The driving force
behind the operational semantics is the higher-order matching
algorithm described in Section 3.4. The key to a clean and el-
egant meta-theory is our distinction between bound variables
in data, contextual variables which may be instantiated via pat-
tern matching with data, context variables, and bound variables
in computations. Each of these variables gives rise to their own
substitution definition and they play a central role in defining
our operational semantics. Building on different substitution
properties, we prove type preservation and progress.

We believe our calculus is an important step towards under-
standing syntactic structures with binders, and how one can pro-
vide direct support for binders in the setting of typed functional
programming. More generally, it provides a type-theoretic founda-
tion for open data-objects which play an important role in many
areas of computer science beyond programming with higher-order
abstract syntax, such as explaining linking of code, or staged com-
putation (see for example (Kim et al. 2006)).

2. Motivation
In this section we briefly discuss four small examples to illustrate
the main ideas behind our approach. The examples are purposely
simple to emphasize the key features of our work and we keep the
notation as close as possible to the theoretical foundation. In all our
examples, we consider a small language with let-expressions and
arithmetic operations which we introduced earlier.

Counting occurrences of a variable In the first example, we
show how to count the occurrences of a particular variable in a
given data-object. We exploit the power of higher-order patterns to
accomplish this. The function cntV takes in a context ψ of natural
numbers, and a data-object e of type exp[ψ,x:nat], i.e. an ex-
pression which may refer to the bound variables listed in the con-
text (ψ,x:nat), and returns as a result an integer. Just as types
classify data-objects and kinds classify types, we introduce con-
text schemas to classify contexts. In the type declaration for the
function cntV we state that the context variable ψ has the context
schema (nat)∗. In other words ψ stands for a data-level context
of the form x1:nat, . . ., xn:nat. We represent contextual vari-
ables which are instantiated via higher-order pattern matching with
capital letters.

rec cntV : Π ψ:(nat)∗.exp[ψ,x:nat] → int =
Λ ψ ⇒ fn e ⇒ case e of

box (ψ,x. Nat U[idψ]) ⇒ 0
| box (ψ,x. Nat U[x]) ⇒ 1
| box (ψ,x. Let U[idψ,x] (λy.W[idψ,x,y])) ⇒

cntV dψe box(ψ,x. U[idψ,x]) +

cntV dψ,y:nat e box(ψ,y,x. W[idψ,x,y])
| box (ψ,x. Add U[idψ,x] W[idψ,x]) ⇒

cntV dψe box(ψ,x. U[idψ,x])
+ cntV dψe box(ψ,x. W[idψ,x])

The function cntV is built by a context abstraction Λ ψ which
introduces the context variable ψ and binds every occurrence of ψ
in the body of the function. Next, we introduce the computation-
level variable e which has type exp[ψ,x:nat] by function-
abstraction. In the body of the function cntV we analyze objects

of type exp[ψ,x:nat] by case-analysis. As mentioned earlier, we
separate data from computations via the box-construct.

“Holes” in the pattern which are instantiated via higher-order
pattern matching are characterized by a closure U[σ] consisting of
a contextual variable U and a postponed substitution σ. As soon as
we know what the contextual variable stands for, we apply the sub-
stitution σ. In the example, the postponed substitution associated
with U is the identity substitution which essentially corresponds to
α-renaming. We write idψ for the identity substitution with domain
ψ. Intuitively, one may think of the substitution associated with
contextual variables which occur in patterns as a list of variables
which may occur in the hole. In U[idψ], for example, the contex-
tual variable U can be instantiated with any natural number which
either is closed, i.e. it does not refer to any bound variable listed in
the context ψ or it contains a bound variable from the context ψ.

To recursively analyze expressions we have to consider different
cases. The first case box (ψ,x. Nat U[idψ]) captures the idea
that if we encounter a natural number which does not contain
occurrences of the bound variable x then we return 0. In the second
case box (ψ,x. Nat (U[x])) we pattern match against a “hole”
which may refer to the bound variable x. The only time this case
now succeeds, is for a natural number which actually refers to x
since this is the only case not already covered by the first case. In
the third case box (ψ,x.Let U[idψ,x] (λy.W[idψ,x,y]))we
analyze the let-expression. To count the occurrences of the variable
x, we first count the occurrences in U[idψ,x], and then count the
occurrences in the body of the let-expression. To accomplish this,
we must extend the context with the declaration y:nat and pass the
extended context (ψ,y:nat) to the recursive call of cntV. Context
application is described by cntV dψ,y:nate.

The box-construct binds occurrences of data-level variables
only. For example in box (ψ,y,x.U[idψ,x,y]), the variables x
and y are bound and subject to α-renaming. However we empha-
size that the context variable ψ is not bound by the box-construct
in the branch of a case-expression, but bound by the context ab-
straction Λ ψ ⇒ In particular, ψ is not instantiated via pattern
matching. One may think that listing the bound variables explicitly
in the box-construct is not necessary because they are determined
by the type exp[ψ,x:nat]. However to support α-renaming of
data-level variables, we explicitly list the names of the bound vari-
ables, and enforce that this list can be obtained by erasing all types
from the context ψ,x:nat. In an implementation of our language
based on de Bruijn indices this complication can be eliminated.

Extracting variables Next, we show how to compute the vari-
ables occurring in a data-object. We will write a function which ac-
cepts a natural number of type nat[ψ] which may refer to bound
variables listed in the context ψ, and returns a data-object of type
nat[ψ] option. If a bound variable occurs in the natural number
then we return it, otherwise we return NONE.

rec FVnat:Π ψ:(nat)∗.nat[ψ] → (nat[ψ]) option =
Λ ψ ⇒ fn e ⇒ case e of

box (ψ.z) ⇒ NONE
| box (ψ.p[idψ]) ⇒ SOME box(ψ.p[idψ])
| box (ψ.suc U[idψ]) ⇒ FVnat dψe box(ψ. U[idψ])

The key question is how do we detect and pattern match against
a data-level variable? – To accomplish this, we use the parameter
variable p. A parameter variable represents a bound variable and
can only be instantiated with a variable from the object level.
Similar to meta-variables they are treated as closures. In contrast
to meta-variables which can be instantiated with an arbitrary object
and are represented by capital letters, we will use small letters for
parameter variables. Parameter variables allow us to write explicitly
a case for matching against variables and allow us to collect them,

and even compare them. Given the function FVnat, it should be
obvious how to write a function which collects all the free variables
occurring in a let-expression.

Closed value So far our examples only utilized one context and
didn’t exploit the power that we are able to distinguish between
different contexts. For example, we may want to write a simple
function which tests whether a given natural number is closed, and
hence constitutes a value. It may be in fact important in the later
part of the program that we know that we have a closed value. This
can be achieved by the function isVal which not only tests whether
a given natural number is closed but also strengthens the result.

val isVal:Π ψ:(nat)∗. nat[ψ] → (nat[.]) option =
Λ ψ ⇒ fn e ⇒ case e of

box (ψ.U[.]) ⇒ SOME box(U[.])
| box (ψ.U[idψ]) ⇒ NONE

In the first case we test whether the input is closed, and if it is
we return it in a strengthened context. While in other approaches
we can recursively analyze objects and thereby check whether they
are a closed value, the property of being closed is usually harder to
capture in current type systems.

Environment-based interpreter Finally, we give an example
which uses first-class substitutions and substitution variables which
our foundation provides. The task is to write a simple environment-
based interpreter for the language we have defined earlier, where
we take in a context ψ of natural numbers, an expression e of type
exp[ψ] and an environment r which maps variables declared in
the context ψ to closed values. The environment is represented as
a substitution with domain ψ and range empty and has the type
ψ[.]. The result of the interpreter is a closed value. Similar to
the box-construct which injects open data-objects into the compu-
tation, we use the sbox-construct to inject data-level substitutions
into the computation. We will use capital letters S to describe sub-
stitution variables which may occur in patterns, and similar to other
contextual variables we think of substitution variables as closures,
providing a built-in operation for composing substitutions.

rec eval:Π ψ:(nat)∗. exp[ψ] → ψ[.] → nat[.] =
Λ ψ ⇒ fn e ⇒ fn r ⇒ let sbox (S[.]) = r in
case e of

box (ψ.Nat U[idψ]) ⇒ box(U[S[.]])
| box (ψ.Add U1[idψ] U2[idψ]) ⇒

let val a = eval dψe box(ψ.U1[idψ]) r

val b = eval dψe box(ψ.U2[idψ]) r
in add(a, b) end

| box (ψ.Let W[idψ] (λx. U[idψ, x])) ⇒
let

box V[.] = eval dψe box(ψ.W[idψ]) r
in

eval dψ,x:nate
box (ψ,x. U[idψ,x]) sbox(S[.], V[.])

end
end

When we encounter a natural number as in the first case, we
can simply apply the substitution S[.] to the object U. Since the
substitution S[.] has domain ψ and range empty, applying it to
the meta-variable U yields a closed object. Because we apply S[.]
as soon as we know what U stands for, the variable occurring in
the instantiation for U will now be replaced by its correct corre-
sponding value. Closures thereby provide us with built-in support
for substitutions. The type system guarantees that the environment
r provides closed instantiations for every variable in the local con-
textψ, and applying the substitution S[.] to the contextual variable
U must yield a closed natural number.

When evaluating box (ψ.Let W[idψ] (λx.U[idψ,x])), we
evaluate the expression box (ψ.W[idψ]) in the environment r to
some closed value V, and then evaluate box (ψ,x.W[idψ,x]) in
the extended environment where we associate the binder x with the
value V. Since we think of substitutions by position, we do not make
their domain explicit and simply write sbox (S[.], V[.])

In traditional approaches where names are first-class, as in
FreshML, or where variables are represented by strings or de Bruijn
indices, environments are usually implemented as a list of pairs
consisting of variable name and their corresponding value. How-
ever, the type system cannot easily guarantee that the environment
indeed provides closed values for all free variables occurring in
the expression. Moreover, one needs to write a lookup-function for
retrieving a value from the environment and a substitution func-
tion for replacing the occurrence of the free variable with its cor-
responding value. In contrast, our foundation enforces a strong
invariant about the relationship between the expression we are an-
alyzing and the environment.

Remark: Higher-order pattern matching and its trade-offs
We would like to emphasize that our interest is in designing a
type-theoretic foundation for programming with HOAS and the
code snippets presented are intended to model our theory closely
to provide an intuition. It is not necessarily intended as the source
language which a programmer would use.

As mentioned earlier, we treat contextual variables uniformly
as closures and allow full higher-order pattern matching to instan-
tiate contextual variables. In higher-order patterns (Miller 1991),
the substitution associated with contextual variables must consist
of some distinct bound variables, and pattern matching must en-
force checks on bound variables. The cost of checking for variable
dependencies is hidden from the user (see for example the func-
tion cntV or isVal). Linear higher-order patterns (Pientka and
Pfennning 2003) restrict higher-order patterns such that every con-
textual variable must be applied to all the bound variables in whose
scope it occurs. In this case no bound variable dependency checks
are necessary (see Section 3.4) yielding an efficient matching al-
gorithm closely resembling first-order matching. Our foundation
leaves implementors a choice of whether to enforce linear higher-
order patterns dynamically or statically. To enforce them dynami-
cally, one translates every pattern into a linear one with potentially
additional constraints (see (Pientka and Pfennning 2003)). Conse-
quently, only if bound variable checks are necessary, they will be
done. Alternatively, if we enforce it statically, then all contextual
variables must be applied to all the bound variables. In this case,
contextual variables occurring in patterns can be simply described
by U or p and not as closure U[idψ] and p[idψ]. To check whether
an object depends on a bound variable we can write a separate func-
tion. To illustrate, we present a function for counting occurrences
of a variable x in a natural number.

rec cntVN : Π ψ:(nat)∗.nat[ψ] → nat[ψ] → int =
Λ ψ ⇒ fn e ⇒ fn e’ ⇒ let box (ψ. p’[idψ]) = e’ in
case e of

box (ψ. z) ⇒ 0
| box (ψ. p[idψ]) ⇒

if box (ψ.p’[idψ]) = box(ψ. p[idψ]) then 1 else 0

| box (ψ. suc U[idψ]) ⇒ cntVN dψe box(ψ. U[idψ]) e’
end

If we elide the identity substitutions associated with the con-
textual variables, we obtain a program which closely resembles
the one we write in a nominal style1. Closures however provide
us with direct built-in substitution operation. As shown in the

1 There are two remaining differences: First, our foundation makes the
context (= set of names) explicit. This is necessary if we want to reason

environment-based interpreter, the closure of meta-variable and
substitution allows us to retrieve a value. Similarly, when im-
plementing a substitution-based interpreter, we can use closures
to propagate instantiation. Providing not only direct support for
binders but also substitution, is the essence in higher-order abstract
syntax. However, this discussion seems to suggest that basic oper-
ations provided by nominal systems can be explained by imposing
special restrictions on our foundation.

Summary of key ideas
We summarize here the four key ideas underlying our work: First,
we separate the data from the computation via the modality box.
Second, every data-object is closed with respect to a local con-
text. For example, box (x1,x2.Add (Nat(suc x1)) (Nat x2)
) denotes a data-object of type exp[x1:nat,x2:nat]. The box-
construct introduces the bound variables x1 and x2. Third, we al-
low context variables ψ and abstract over them on the computation
level. This is necessary since the concrete bound variables occur-
ring in a data-object are only exposed once we recursively traverse
a binder, and the context describing these variables may grow. Con-
text abstraction via Λ binds every occurrence of ψ in the expression
e. Fourth, we provide closures consisting of a contextual variable
and a postponed substitution. When replacing the contextual vari-
able with a concrete object, we apply the substitution thereby pro-
viding built-in support for substitutions. We support three kinds of
contextual variables, meta-variables which can be instantiated with
an arbitrary object, parameter variables which can be instantiated
with bound variables only, and substitution variables which repre-
sent first-class substitutions. While meta-variables allow us to de-
construct arbitrary objects with binders, parameter variables allows
us to manipulate names of bound variables directly in computation.

3. Data-level terms, substitutions, contexts
In this section, we concentrate on the formal definition and type
system for data-objects. The definition of computation-level ex-
pressions which allow recursion and pattern matching on data-
objects is discussed later in Section 4.

Our theoretical development is closely based on contextual
modal type theory by Nanevski et al. (2006) which we extend
with pairs and projections and more importantly with parameter
variables and substitution variables as well as context variables.
For simplicity, we also restrict our data-objects to the simply-typed
fragment, however the ideas can be extended to the dependently
typed setting (see Nanevski et al. (2006) for more details).

Types A,B ::= P | A→ B | A×B
Normal Terms M,N ::= λx.M | (M,N) | R
Neutral Terms R ::= c | x | u[σ] | p[σ] | R N | projiR
Substitutions σ, ρ ::= · | σ ; M | σ , R | s[σ] | idψ
Context Schema W ::= A | (W)∗ |W1 +W2

Contexts Ψ,Φ ::= · | ψ | Ψ, x:A
Meta-contexts ∆ ::= · | ∆, u::A[Ψ] | ∆, p::A[Ψ] |

∆, s::Ψ[Φ]
Context Schema
context Ω ::= · | Ω, ψ::W

Following a recent presentation technique for logical frame-
works due to Watkins et al. (2002) our syntax only allows for ob-
jects which are in canonical form since only these are meaningful

about the closedness of an object, and is also done for example in pure
FreshML by Pottier (2007). Since context schemas classify contexts, we
naturally can distinguish between different sets of names. Second, unlike
nominal type systems which have a special type atom for names, our type
system does not distinguish between a type for names and objects.

for representing object-languages. This is achieved by distinguish-
ing between normal termsM and neutral termsR. While the syntax
only guarantees that termsN contain no β-redices, the typing rules
will also guarantee that all well-typed terms are fully η-expanded.

We distinguish between four different kinds of variables in our
theory: Ordinary bound variables are used to represent data-level
binders and are bound by λ-abstraction. Contextual variables stand
for open objects and they include meta-variables u which repre-
sent general open objects and parameter variables p which can
only be instantiated with an ordinary bound variable, and substi-
tution variables s which represent a mapping from one context to
another. Contextual variables are introduced in case-expressions on
the computation level, and can be instantiated via pattern matching.
They are associated with a postponed substitution σ thereby repre-
senting a closure. Our intention is to apply σ as soon as we know
which term the contextual variable should stand for. The domain of
σ therefore describes the free variables which can possibly occur
in the object which represents the contextual variable, and our type
system will ensure statically that this is indeed the case.

Substitutions σ are built of either normal terms (in σ ; M) or
atomic terms (in σ , R). We do not make the domain of the sub-
stitutions explicit. This will simplify the theoretical development
and avoid having to rename the domain of a given substitution σ.
Similar to meta-variables, substitution variables are closures with a
postponed substitution. We also require a first-class notion of iden-
tity substitution idψ . Our convention is that substitutions, as defined
operations on data-level terms, are written in prefix notation [σ]N
for a data-level substitution. Contextual variables such as the meta-
variables u, parameter variables p, and substitution variables s are
declared in the meta-context ∆, while ordinary bound variables are
declared in the context Ψ.

Finally, our foundation supports context variables ψ which al-
low us to reason abstractly with contexts. Abstracting over con-
texts is an interesting and essential next step to allow recursion
over higher-order abstract syntax. Context variables are declared in
the context Ω. Unlike previous uses of context variables for exam-
ple in (McCreight and Schürmann 2004), a context may at most
contain one context variable. In the same way as types classify
objects, and kinds classify types, we will introduce the notion of
a context schema W which classifies contexts Ψ. We will say a
context Ψ belongs to context schema W or a context Ψ is an el-
ement of the context schema W , if it consists of declarations x:A
where A occurs in W . Context schemas are described by a sub-
set of regular expressions. For example, a context schema A + B
describes any context which contains declarations of the form x:A
or y:B. Concept schemas resemble the notion of worlds described
in (Schürmann 2000), however while similar in spirit, we simplify
matters by drawing on the power of pairs and cross-products to ex-
press the relationship between multiple objects in a context.

We assume that type constants and object constants are declared
in a signature Σ which we typically suppress since it never changes
during a typing derivation. However, we will keep in mind that all
typing judgments have access to a well-formed signature.

3.1 Data-level typing
Next, we present a bi-directional type system for data-level terms.
Typing is defined via the following judgments:

Ω;∆;Ψ `M ⇐ A Check normal object M against A
Ω;∆;Ψ ` R⇒ A Synthesize A for neutral object R
Ω;∆;Φ ` σ ⇐ Ψ Check σ against context Ψ
Ω ` Ψ ⇐W Context Ψ checks against schema W

For better readability, we omit Ω in the subsequent develop-
ment since it is constant and assume that context ∆ and Ψ are

well-formed. First, the typing rules for objects. We will tacitly re-
name bound variables, and maintain that contexts and substitutions
declare no variable more than once. Note that substitutions σ are
defined only on ordinary variables x and not contextual variables.
Moreover, we require the usual conditions on bound variables. For
example in the rule for λ-abstraction the bound variable x must be
new and cannot already occur in the context Ψ. This can be always
achieved via α-renaming. We are also explicit about α-renaming in
the rule for substitution variables where α

= describes equality be-
tween two contexts up to renaming.

Data-level normal terms

∆;Ψ, x:A `M ⇐ B

∆;Ψ ` λx.M ⇐ A→ B

∆;Ψ ` R⇒ P ′ P ′ = P

∆;Ψ ` R⇐ P

∆;Ψ `M1 ⇐ A1 ∆;Ψ `M2 ⇐ A2

∆;Ψ ` (M1,M2) ⇐ A1 ×A2

Data-level neutral terms

x:A ∈ Ψ
∆;Ψ ` x⇒ A

c:A ∈ Σ
∆;Ψ ` c⇒ A

∆;Ψ ` R⇒ A1 ×A2

∆;Ψ ` projiR⇒ Ai

u::A[Φ] ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` u[σ] ⇒ A

p::A[Φ] ∈ ∆ ∆;Ψ ` σ ⇐ Φ

∆;Ψ ` p[σ] ⇒ A

∆;Ψ ` R⇒ A→ B ∆;Ψ ` N ⇐ A

∆;Ψ ` R N ⇒ B

Data-level substitutions

∆;Ψ ` · ⇐ · ∆;ψ,Ψ ` idψ ⇐ ψ

s::Φ1[Φ2] ∈ ∆ ∆;Ψ ` ρ⇐ Φ2 Φ
α
= Φ1

∆;Ψ ` (s[ρ]) ⇐ Φ

∆;Ψ ` σ ⇐ Φ ∆;Ψ ` R⇒ A′ A = A′

∆;Ψ ` (σ , R) ⇐ (Φ, x:A)

∆;Ψ ` σ ⇐ Φ ∆;Ψ `M ⇐ A

∆;Ψ ` (σ ; M) ⇐ (Φ, x:A)

In the simultaneous substitutions σ, we do not make its domain
explicit. Rather we think of a substitution as a list of normal and
neutral terms, and if σ has domain Ψ the i-th element in σ corre-
sponds to the i-th declaration in Ψ. We can turn any substitution
σ which does not make its domain Ψ explicit into one which does
by σ/Ψ. We distinguish between substituting a normal term M
and a neutral term R. This is justified by the nature of hypotheti-
cal judgments, since an assumption x:A represents x ⇒ A so we
can substitute R for x if R ⇒ A. This distinction between normal
and neutral terms is necessary since we can extend a given simul-
taneous substitution σ with x and obtain (σ , x) when traversing a
binding operator in a type-free way. We could not extend the simul-
taneous substitutions with (σ ; x), since x is not a canonical term
unless it is of atomic type. Identity substitutions can now have the
form (x1 , . . . , xn). The typing rules for substitutions also make
clear that the identity substitution idψ is necessary once we intro-
duce context variables. Without the identity substitution idψ , we
wouldn’t be able to construct substitutions where the domain is de-
scribed abstractly by the context variable ψ. Finally, we present
context schema checking.

Context Ψ checks against a context schema W

A ∈W Ω ` Ψ ⇐W
Ω ` Ψ, x : A⇐W

ψ::W ∈ Ω

Ω ` ψ ⇐W Ω ` · ⇐W

Essentially a context is well-formed, if every declaration xi:Ai
is declared in the context schema W = A1 + A2 + . . . + An.
A ∈W succeeds if W = (A1 + . . .+An)∗ and there exists anAi
s.t. A = Ai.

Theorem 3.1. [Decidability of Type Checking]
All judgments in the contextual modal type theory are decidable.

3.2 Substitution
Since we have different kinds of variables, context variables ψ, or-
dinary variables x, and contextual variables, this gives rise to differ-
ent substitution operations. These different substitution operations
are key to the elegant and simple preservation and progress proof.

Substitution for context variables
We begin by considering the substitution operation for context
variables. The most interesting cases are where actual substitution
happens. If we encounter a context variables ψ, then we simply
replace it with the context Ψ. When we apply the substitution
[[Ψ/ψ]] to the context Φ, x:A, we apply the substitution to the
context Φ to yield some new context Φ′. However, we must check
whether x occurs in the variables declared in Φ′, i.e. x 6∈ V(Φ′),
to avoid name clashes. This side condition can always be met by
appropriately renaming bound variable occurrences.

Data-level context

[[Ψ/ψ]](·) = ·
[[Ψ/ψ]](Φ, x:A) = (Φ′, x:A) if x 6∈ V(Φ′) and [[Ψ/ψ]]Φ = Φ′

[[Ψ/ψ]](ψ) = Ψ
[[Ψ/ψ]](φ) = φ

The remaining definition is mostly straightforward. Since, con-
text variables occur in the identity substitution idψ , we must apply
the context substitution to objects and in particular to substitutions.
When we replace ψ with Ψ in idψ , we unfold the identity sub-
stitution. Expansion of the identity substitution is defined by the
operation id(Ψ) for valid contexts Ψ as follows:

id(·) = ·
id(Ψ, x:A) = id(Ψ) , x
id(ψ) = idψ

Lemma 3.1. [Unfolding identity substitution]
If id(Ψ) = σ then ∆;Ψ,Ψ′ ` σ ⇐ Ψ.

Theorem 3.2. [Substitution for context variables]
If Ω, ψ::W,Ω′;∆;Φ ` J and Ω ` Ψ ⇐W
then Ω,Ω′; [[Ψ/ψ]]∆; [[Ψ/ψ]](Φ) ` [[Ψ/ψ]]J .

Ordinary substitution
In the definition for ordinary data-level substitutions, we need to
be a little bit careful because the only meaningful data-level terms
are those which are in canonical forms. To ensure that substitution
preserves canonical forms, we will employ a technique pioneered
by Watkins et. al. (Watkins et al. 2002) and described in detail in
(Nanevski et al. 2006). The idea is to define hereditary substitu-
tion as a primitive recursive functional which will always return a
canonical object. In places where the ordinary substitution would
construct a redex (λy.M)N we must continue, substituting N for
y in M . Since this could again create a redex, we must continue
and hereditarily substitute and eliminate potential redices. We de-
fine the hereditary substitution operations for normal object, neutral
objects and substitutions next.

[M/x]nA(N) = N ′ Hereditary substitution into N
[M/x]rA(R) = R′ or M ′ : A′ Hereditary substitution into R
[M/x]sA(σ) = σ′ Hereditary substitution into σ

Each of these hereditary substitution operations will be defined
by nested induction, first on the structure of the type A and second
on the structure of the objects N , R, and σ. In other words, we
either go to a smaller type, in which case the objects themselves
can become larger, or the type remains the same and the objects
become smaller. We write A ≤ B and A < B if A occurs in
B (as a proper subexpression in the latter case). For an in depth
discussion, we refer the reader to (Nanevski et al. 2006).

Data-level normal terms

[M/x]nA(λy.N) = λy.N ′ where N ′ = [M/x]nA(N)
choosing y 6∈ FV(M), and y 6= x

[M/x]nA(M1,M2) = (N1, N2) if [M/x]nA(M1) = N1 and
[M/x]nA(M2) = N2

[M/x]nA(R) = M ′ if [M/x]rA(R) = M ′ : A′

[M/x]nA(R) = R′ if [M/x]rA(R) = R′

[M/x]nA(N) fails otherwise

Data-level neutral terms

[M/x]rA(x) = M : A

[M/x]rA(y) = y if y 6= x

[M/x]rA(u[σ]) = u[σ′] where σ′ = [M/x]sA(σ)

[M/x]rA(p[σ]) = p[σ′] where σ′ = [M/x]sA(σ)

[M/x]rA(R N) = R′ N ′ where R′ = [M/x]rA(R) and
N ′ = [M/x]nA(N)

[M/x]rA(R N) = M ′′ : B
if [M/x]rA(R) = λy.M ′ :A1 → B where
A1 → B ≤ A and N ′ = [M/x]nA(N)
and M ′′ = [N ′/y]nA1

(M ′)

[M/x]rA(proji R) = Ni : Ai
if [M/x]rA(R) = (N1, N2) :A1 ×A2

[M/x]rA(proji R) = proji R
′ if [M/x]rA(R) = R′

[M/x]rA(R) fails otherwise

Data-level substitution

[M/x]sA(·) = ·
[M/x]sA(σ ; N) = (σ′ ; N ′) where σ′ = [M/x]sA(σ)

and N ′ = [M/x]nA(N)

[M/x]sA(σ , R) = (σ′ , R′) if [M/x]rA(R) = R′

and σ′ = [M/x]sA(σ)

[M/x]sA(σ , R) = (σ′ ; M ′) if [M/x]rA(R) = M ′ : A′

and σ′ = [M/x]sA(σ)

[M/x]sA(s[σ]) = s[σ′] where σ′ = [M/x]sA(σ)

[M/x]sA(idψ) = idψ

[M/x]sA(σ) fails otherwise

If the original term is not well-typed, a hereditary substitution,
though terminating, cannot always return a meaningful term. We
formalize this as failure to return a result. However, on well-typed
terms, hereditary substitution will always return well-typed terms.

Theorem 3.3. [Termination]

1. If [M/x]rA(R) = M ′ : A′ then A′ ≤ A
2. [M/x]∗A() terminates, either by returning a result or failing

after a finite number of steps.

Theorem 3.4. [Hereditary Substitution Principles]
If ∆;Ψ `M ⇐ A and ∆;Ψ, x:A,Ψ′ ` J then
∆;Ψ,Ψ′ ` [M/x]∗A(J) where ∗ = {n, r, s}.

Building on the discussed ideas and extending (Nanevski et al.
2006), we can define also simultaneous substitution [σ]nΨ(M)
([σ]rΨ(R), [σ]sΨ(σ) resp.).

Contextual substitution for contextual variables
Substitutions for contextual variables are a little more difficult. We
discuss next the three kinds of contextual variables, meta-variables
u, parameter-variables p, and substitution variables s.

Contextual substitution for meta-variables We can think of u[σ]
as a closure where, as soon as we know which term u should stand
for, we can apply σ to it. The typing will ensure that the type of
M and the type of u agree, i.e. we can replace u which has type
A[Ψ] with a normal term M if M has type A in the context Ψ.
Because of α-conversion, the variables that are substituted at dif-
ferent occurrences of u may be different, and we write the con-
textual substitution as [[Ψ̂.M/u]]nA[Ψ](N), [[Ψ̂.M/u]]rA[Ψ](R), and
[[Ψ̂.M/u]]sA[Ψ](σ), where Ψ̂ binds all free variables in M . This
complication can be eliminated in an implementation of our cal-
culus based on de Bruijn indexes. The typing annotation A[Ψ] is
necessary since we apply the substitution σ hereditarily once we
know which term u represents, and hereditary substitution requires
this information to ensure termination. In defining the substitution
we must pay attention that normal forms are preserved. We show
contextual substitution into data-level terms next. For better read-
ability, we will write a as an abbreviation for the type A[Ψ].

Data-level normal terms

[[Ψ̂.M/u]]na (λy.N) = λy.N ′ where [[Ψ̂.M/u]]naN = N ′

[[Ψ̂.M/u]]na (N1, N2) = (N ′
1, N

′
2) where [[Ψ̂.M/u]]na (N1) = N ′

1

and [[Ψ̂.M/u]]na (N2) = N ′
2

[[Ψ̂.M/u]]na (R) = R′ where [[Ψ̂.M/u]]ra(R) = R′

[[Ψ̂.M/u]]na (R) = M ′ where [[Ψ̂.M/u]]ra(R) = M ′ : A

[[Ψ̂.M/u]]na (N) fails otherwise

Data-level neutral terms

[[Ψ̂.M/u]]ra(x) = x

[[Ψ̂.M/u]]ra(c) = c

[[Ψ̂.M/u]]ra(u[σ]) = N : A where [[Ψ̂.M/u]]saσ = σ′

and [σ′/Ψ]nΨM = N

[[Ψ̂.M/u]]ra(u
′[σ]) = u′[σ′] where [[Ψ̂.M/u]]saσ = σ′

choosing u′ 6= u

[[Ψ̂.M/u]]ra(p[σ]) = p[σ′] where [[Ψ̂.M/u]]saσ = σ′

[[Ψ̂.M/u]]ra(R N) = (R′ N ′) where [[Ψ̂.M/u]]raR = R′

and [[Ψ̂.M/u]]na (N) = N ′

[[Ψ̂.M/u]]ra(R N) = M ′ : A2

if [[Ψ̂.M/u]]raR = λx.M0 : A1 → A2 for A1 → A2 ≤ A[Ψ]

and [[Ψ̂.M/u]]na (N) = N ′ and [N ′/x]nA1
(M0) = M ′

[[Ψ̂.M/u]]ra(projiR) = projiR
′ if [[Ψ̂.M/u]]ra(R) = R′

[[Ψ̂.M/u]]ra(projiR) = Mi : Ai
if [[Ψ̂.M/u]]ra(R) = (M1,M2) : A1 ×A2

[[Ψ̂.M/u]]ra(R) fails otherwise

Applying [[Ψ̂.M/u]]rA[Ψ] to the closure u[σ] first obtains the si-
multaneous substitution σ′ = [[Ψ̂.M/u]]sA[Ψ]σ, but instead of re-
turning M [σ′], it proceeds to eagerly apply σ′ to M . However
before we apply σ′ to M we recover its domain by [σ′/Ψ]. To
enforce that we always return a normal object as a result of con-
textual substitution, we carry the type of the meta-variable u which
will be replaced. In the case where we would possibly obtain a
non-normal object, we resort to ordinary hereditary substitution in
order to guarantee that the final result of contextual substitution is
in normal form.

Contextual substitution for parameter variables Contextual sub-
stitution for parameter variables follows similar principles, but it
substitutes an ordinary variable for a parameter variable. This could
not be achieved with the previous definition of contextual substitu-
tion for meta-variables since it only allows us to substitute a nor-
mal term for a meta-variable and x is only a normal term if it is of
atomic type. In the case where we encounter a parameter variable
p[σ], we replace p with the ordinary variable x and apply the sub-
stitution [[Ψ̂.x/p]] to σ. This may yield a normal term, and hence
we must again ensure that our contextual substitution for parame-
ter variables preserves normal forms. We only show here the case
where substitution actually happens and again write a as an abbre-
viation for A[Ψ].

[[Ψ̂.x/p]]ra(p[σ]) = M : A if [[Ψ̂.x/p]]saσ = σ′ and
[σ′/Ψ]rΨx = M : A

[[Ψ̂.x/p]]ra(p[σ]) = R if [[Ψ̂.x/p]]saσ = σ′ and [σ′/Ψ]rΨx = R

[[Ψ̂.x/p]]ra(p
′[σ]) = p′[σ′] where [[Ψ̂.x/p]]saσ = σ′

The distinction between parameter variables and meta-variables
is mainly interesting from an operational point of view.

Substitution for substitution variables in data-level terms Fi-
nally, we give a brief definition for substituting for substitution
variables. To ensure it works correctly with the previously defined
substitution operations, we also annotate it with the type of the sub-
stitution variable. We will abbreviate Φ[Ψ] as c, and concentrate on
the case for substitution.

[[Ψ̂.σ/s]]sc(·) = ·

[[Ψ̂.σ/s]]sc(ρ ; N) = (ρ′ ; N ′) if [[Ψ̂.σ/s]]scρ = ρ′

and [[Ψ̂.σ/s]]ncN = N ′

[[Ψ̂.σ/s]]sc(ρ , R) = (ρ′ , R′) if [[Ψ̂.σ/s]]scρ = ρ′

and [[Ψ̂.σ/s]]rcR = R′

[[Ψ̂.σ/s]]sc(s[ρ]) = σ′ if ([[Ψ̂.σ/s]]scρ) = ρ′

and [ρ′/Ψ]sΨσ = σ′ and c = Φ[Ψ]

[[Ψ̂.σ/s]]sc(s
′[ρ]) = s′[ρ′] if [[Ψ̂.σ/s]]scρ = ρ′

[[Ψ̂.σ/s]]sc(idφ) = idφ

[[Ψ̂.σ/s]]sc(ρ) fails otherwise

Applying [[Ψ̂.σ/s]]sΦ[Ψ] to the closure s[ρ] first obtains the si-
multaneous substitution ρ′ = [[Ψ̂.σ/s]]sΦ[Ψ]ρ, but instead of return-
ing σ[ρ′], it proceeds to eagerly apply ρ′ to σ.

Theorem 3.5. [Termination] [[Ψ̂.M/u]]∗A[Φ](), [[Ψ̂.x/p]]∗A[Φ]()

and [[Ψ̂.σ]]∗Φ[Ψ]() terminate, either by returning a result or failing
after a finite number of steps.

Theorem 3.6. [Contextual Substitution Principles]

1. If ∆1; Φ `M ⇐ A and ∆1, u::A[Φ],∆2; Ψ ` J
then ∆1,∆2; Ψ ` [[Φ̂.M/u]]∗A[Φ]J where ∗ = {n, r, s}.

2. If ∆1; Φ ` x⇒ A and ∆1, p::A[Φ],∆2; Ψ ` J
then ∆1,∆2; Ψ ` [[Φ̂.x/p]]∗A[Φ]J where ∗ = {n, r, s}.

3. If ∆;Φ ` σ ⇐ Ψ1 and ∆1, s::Ψ1[Φ],∆2; Ψ ` J
then ∆1,∆2; Ψ ` [[Φ̂.σ/s]]∗Ψ1[Φ]J where ∗ = {n, r, s}.

3.3 Simultaneous contextual substitution
Often it is convenient to allow simultaneous contextual substitu-
tion θ. Typing rules for simultaneous contextual substitutions can
be defined via the judgment ∆′ ` θ ⇐ ∆, where ∆ denotes the
domain of the contextual substitution θ and ∆′ describes its range.
Just as we annotate the contextual substitution [[Ψ̂.M/u]]∗A[Ψ] with

the type of the meta-variable u, we annotate the simultaneous con-
textual substitution θ with its domain ∆. This is necessary because
when applying the substitution θ = (θ1, Ψ̂.M/u, θ2) to a closure
u[σ], we instantiate uwith a termM and then apply to it the substi-
tution [[θ]]σ. Since the ordinary simultaneous substitution operation
is annotated with its domain, we annotate also the simultaneous
contextual substitution with its domain.

∆′ ` · ⇐ ·
∆′ ` θ ⇐ ∆ ∆′; Ψ `M ⇐ A

∆′ ` (θ, Ψ̂.M/u) ⇐ ∆, u::A[Ψ]

∆′ ` θ ⇐ ∆ x:A ∈ Ψ

∆′ ` (θ, Ψ̂.x/p) ⇐ ∆, p::A[Ψ]

∆′ ` θ ⇐ ∆ ∆′; Ψ ` σ ⇐ Φ

∆′ ` (θ, Ψ̂.σ/s) ⇐ ∆, s::Φ[Ψ]

Definition of the simultaneous contextual substitution is a
straightforward extension of the previous substitution operation.

Theorem 3.7. [Simultaneous contextual substitution]
If ∆′ ` θ ⇐ ∆ and ∆;Ψ ` J then ∆′; Ψ ` [[θ]]∗∆J where
∗ = {n, r, s}.

3.4 Linear higher-order pattern matching
Data-level terms represent our data which we analyze via pattern
matching in computations. In this section, we describe a pattern
matching algorithm for linear higher-order patterns. Linear higher-
order patterns (Pientka and Pfennning 2003) are data-level terms
where we impose the following two restrictions on contextual vari-
ables: First, contextual variables must occur uniquely. Second, they
are applied to all bound variables in whose scope they occur. In our
setting, this means the postponed substitution σ associated with a
contextual variable must be a substitution which maps all variables
to distinct variables. We will write π for the substitution which
has domain and range Ψ. The identity substitution is the simplest
form of π, but in general we can allow permutations of variables.
As mentioned earlier, linear higher-order patterns refine the notion
of higher-order patterns as identified by Miller (Miller 1991), and
eliminate expensive checks for bound variable dependencies. For
the theoretical development, we enforce that every meta-variable
must be of base type. This can always be achieved by lowering.
Pattern matching for data-level terms is then defined as follows:

∆; Ψ̂ `M1
.
= M2/θ Ground term M2 matches M1

∆; Ψ̂ ` R1 + R2/θ Ground term R2 matches R1

∆; Ψ̂ ` σ1
.
= σ2/θ Ground substitution σ1 matches σ2

In the judgments describing matching we will keep a context
Ψ̂ which describes the ordinary variables occurring in M1 and M2

and R1 and R2 respectively. Let ∆ describe the meta-variables,
parameter variables and substitution variables. Only M1, R1, and
σ1 may contain contextual variables which we will instantiate via
matching. The result of matching M2 against M1 will be a contex-
tual simultaneous substitution θ for all the contextual variables in
M1, s.t. [[θ]]n∆M1 = M2 and [[θ]]r∆R1 = R2.

Matching normal objects

∆; Ψ̂, x `M .
= N/θ

∆; Ψ̂ ` λx.M .
= λx.N/θ

∆; Ψ̂ ` R + R′/θ

∆; Ψ̂ ` R .
= R′/θ

∆1; Ψ̂ `M1
.
= M2/θ1 ∆2; Ψ̂ ` N1

.
= N2/θ2

∆1,∆2; Ψ̂ ` (M1 , N1)
.
= (M2 , N2)/(θ1, θ2))

Matching neutral objects

·; Ψ̂ ` x + x/· ·; Ψ̂ ` c + c/·

u::P [Ψ′]; Ψ̂ ` u[π] + R/(Ψ̂′.[π]-1R/u)

p::A[Ψ′]; Ψ̂ ` p[π] + x/(Ψ̂′.[π]-1x/p)

∆; Ψ̂ ` R + R′/θ

∆; Ψ̂ ` projiR + projiR
′/θ

∆1; Ψ̂ ` R1 + R2/θ1 ∆2; Ψ̂ ` N1
.
= N2/θ2

∆1,∆2; Ψ̂ ` R1 N1 + R2 N2/(θ1, θ2)

This matching algorithm extends ideas on higher-order pattern
unification (Pientka and Pfennning 2003; Pientka 2003) to handle
parameter variables and substitution variables. Note that we will
only match a term against another if both have the same type. The
interesting cases are when we match a neutral term R against a
contextual modal variable u[π], a substitution σ against a substi-
tution variable s[π], and a parameter x against a parameter vari-
able p[π]. We first consider matching a neutral term R against the
meta-variable u[π]. Since we require that all meta-variables u are
applied to all bound variables whose scope they occur in, we can
simply apply the inverse substitution [π]-1 to the object R. If π is
a substitution with domain Ψ′ and range Ψ then [π]-1 is the substi-
tution with domain Ψ and range Ψ′. Since we require that Ψ′ is a
permutation of Ψ, applying the inverse substitution [π]-1 to R will
only rename variables and must always succeed since all variables
possibly occurring in R are in the range of π. If π is the identity
substitution then we have [π]-1R = R. We note that the algorithm
above is strikingly similar to first-order matching algorithms. If one
would like to allow the full pattern fragment where meta-variables
are only required to be applied to some bound variables, then we
must check whether applying the inverse substitution to the object
R does in fact exist. This requires a traversal of R. For a more de-
tailed discussion we refer the reader to (Pientka 2003).

The rules for matching against substitutions are straightforward.
We note that we do not consider the case of matching against the
identity substitution idψ since our operational semantics will en-
force that all context variables have been instantiated and therefore
all identity substitutions have been unrolled.

Matching substitutions

·; Ψ̂ ` · .= ·/· s::Φ[Ψ]; Ψ̂ ` s[π]
.
= ρ/Ψ̂.[π]-1ρ/s

∆1; Ψ̂ ` σ .
= ρ/θ1 ∆2; Ψ̂ `M .

= N/θ2

∆1,∆2; Ψ̂ ` (σ ; M)
.
= (ρ ; N)/(θ1, θ2)

∆1; Ψ̂ ` σ .
= ρ/θ1 ∆2; Ψ̂ ` R .

= R′/θ2

∆1,∆2; Ψ̂ ` (σ , R)
.
= (ρ , R′)/(θ1, θ2)

Soundness of linear higher-order pattern matching ensures
that if an object N pattern matches against an object M then
[[θ]]n∆(M) = N . We require that M is indeed well-typed and is
a linear higher-order pattern, i.e. all contextual variables occur
uniquely and are applied to all bound variables whose scope they
occur in, which is described by the judgment ∆;Ψ `l J .

Theorem 3.8. [Soundness of linear higher-order pattern matching]

1. If ∆;Ψ `l M ⇐ A and ·; Ψ ` N ⇐ A and ∆; Ψ̂ `M .
= N/θ

then · ` θ ⇐ ∆ and [[θ]]n∆M = N .

2. If ∆;Ψ `l R ⇒ A and ·; Ψ ` R′ ⇒ A′ and A = A′,
∆; Ψ̂ ` R + R′/θ then · ` θ ⇐ ∆ and [[θ]]r∆R = R′.

3. If ∆;Ψ `l σ ⇐ Φ and ·; Ψ ` ρ ⇐ Φ and ∆; Ψ̂ ` σ
.
= ρ/θ

then · ` θ ⇐ ∆ and [[θ]]s∆σ = ρ.

Proof. By structural induction on the matching judgment.

Theorem 3.9. [Completeness of higher-order pattern matching]

1. If ∆;Ψ `l M ⇐ A and ·; Ψ ` N ⇐ A and [[θ]]nδM = N and
· ` θ ⇐ ∆ then ∆; Ψ̂ `M .

= N/θ.
2. If ∆;Ψ `l R ⇒ A and ·; Ψ ` R′ ⇒ A′, and A = A′, and
· ` θ ⇐ ∆ and [[θ]]rδR = R′, then ∆; Ψ̂ ` R + R′/θ.

3. If ∆;Ψ ` σ ⇐ Φ and ·; Ψ ` ρ ⇐ Φ and · ` θ ⇐ ∆ and
[[θ]]sδσ = ρ then ∆; Ψ̂ ` σ .

= ρ/θ.

Proof. Induction on M , R and σ respectively.

4. Computation-level expressions
Our goal is to cleanly separate the object level and the computation
level. While the object level describes data, the computation level
describes the programs which operate on data. Computation-level
types may refer to data-level types via the contextual type A[Ψ]
which denotes an object of type A which may contain the variables
specified in Ψ. To allow quantification over context variables ψ, we
introduce a dependent type Πψ:W.τ where W denotes a context
schema and context abstraction via Λψ.e. We overload the →
which is used to denote function types at the object level as well
as the computation level. However, it should be obvious from the
usage which one we mean.

Types τ ::= A[Ψ] | Φ[Ψ] | τ1 → τ2 | Πψ::W.τ
Expressions e ::= y | rec f.e | fn y.e | Λψ.e | e1 e2 |

box(Ψ̂.M) | sbox(Ψ̂. σ) | e dΨe |
(e : τ) | (case e of b1 | . . . | bn)

Branch b ::= box(Ψ̂.M) 7→ e | sbox(Ψ̂. σ) 7→ e |
Πp::A[Ψ].b | Πu::P [Ψ].b | Πs::Φ[Ψ].b

Contexts Γ ::= · | Γ, y:τ

Data can be injected into programs via the box-construct
box(Ψ̂.M). Sine we do not need types inside objects, we write
Ψ̂ for a list of variables x1, . . . , xn which we think of as a context
Ψ without types. HereM denotes an data-level term which has type
A in the context Ψ. Annotating the box-construct with Ψ̂, i.e. the
list of variables occurring in M , is necessary due to α-conversion,
and some renaming of bound variables may be necessary to bring
the variables in A[Ψ] in accordance with the variables in Ψ̂.M . We
keep Ψ as a proper context since in the dependent type case A may
depend on it. It is worth pointing out that in an implementation
with de Bruijn indices this complication can be eliminated.

Similarly, we can inject substitutions sbox(Φ̂. σ) which are of
type Ψ[Φ] where Ψ is the domain of the substitution σ and Φ is its
range. Due to α-conversion issues we list the variables occurring
in the range of the substitution. Since substitutions can be viewed
as pairs between variables and data-level terms, this facility essen-
tially allows us to model explicit environments. Finally, we allow
pattern matching on data-level terms via case-expression. In our
case-expression, we explicitly abstract over contextual variables
which occur in the pattern using the Π-quantifier, however this
prefix can always be reconstructed. This will simplify our meta-
theoretic development.

4.1 Typing rules for computation level
Next, we present bi-directional typing rules for programs which
will minimize the amount of typing annotations. We distinguish
here between typing of expressions and branches. In the typing
judgment, we will distinguish between the context Ω for context
variables, the context for contextual variables ∆, and the con-
text Γ which includes declarations of computation-level variables.
Context variables will be introduced via context abstraction. The
contextual variables in ∆ are introduced in the branch of a case-
expression, and computation-level variables in Γ are introduced by
recursion or functions.

Ω;∆; Γ ` e⇐ τ check an expression e against τ
Ω;∆; Γ ` e⇒ τ synthesize τ for expression e
Ω;∆; Γ ` b : τ ′ ⇐ τ branch b checks against τ ′ ⇐ τ

Branches b are of the form Π∆′.box(Ψ̂.M) 7→ e, where
∆′ contains all the contextual variables occurring in box(Ψ̂.M).
The judgment for checking branches then stipulates that the guard
box(Ψ̂.M) checks against τ ′ and the expression e checks against
the type τ . The typing rules for expressions are next.

Expressions

Ω, ψ:W ;∆; Γ ` e⇐ τ

Ω;∆; Γ ` Λψ.e⇐ Πψ:W.τ

Ω;∆; Γ, f :τ ` e⇐ τ

Ω;∆; Γ ` rec f.e⇐ τ

Ω;∆; Γ, y:τ1 ` e⇐ τ2

Ω;∆; Γ ` fn y.e⇐ τ1 → τ2

Ω; ∆;Ψ `M ⇐ A

Ω; ∆; Γ ` box(Ψ̂.M) ⇐ A[Ψ]

Ω; ∆;Ψ ` σ ⇐ Φ

Ω; ∆; Γ ` sbox(Ψ̂. σ) ⇐ Φ[Ψ]

Ω; ∆; Γ ` e⇒ A[Ψ] for all i Ω; ∆; Γ ` bi : A[Ψ] ⇐ τ

Ω; ∆; Γ ` case e of b1 | . . . | bn ⇐ τ

Ω; ∆; Γ ` e⇒ Φ[Ψ] for all i Ω; ∆; Γ ` bi : Φ[Ψ] ⇐ τ

Ω; ∆; Γ ` case e of b1 | . . . | bn ⇐ τ

Ω; ∆; Γ ` e⇒ τ ′ τ ′ = τ

Ω; ∆; Γ ` e⇐ τ

Ω; ∆; Γ ` e⇐ τ

Ω; ∆; Γ ` (e : τ) ⇒ τ

y:τ ∈ Γ

Ω; ∆; Γ ` y ⇒ τ

Ω; ∆; Γ ` e⇒ Πψ:W.τ Ω ` Ψ ⇐W

Ω; ∆; Γ ` e dΨe ⇒ [[Ψ/ψ]]τ

Ω; ∆; Γ ` e1 ⇒ τ2 → τ Ω; ∆; Γ ` e2 ⇐ τ2

Ω; ∆; Γ ` e1 e2 ⇒ τ

Branches

Ω; ∆′; Ψ l̀ M ⇐ A Ω; (∆,∆′); Γ ` e⇐ τ

Ω; ∆; Γ ` Π∆′.box(Ψ̂.M) 7→ e : A[Ψ] ⇐ τ

Ω; ∆′; Ψ l̀ σ ⇐ Φ Ω; (∆,∆′); Γ ` e⇐ τ

Ω; ∆; Γ ` Π∆′.sbox(Ψ̂. σ) 7→ e : Φ[Ψ] ⇐ τ

We observe the usual bound variable renaming conditions in
the rule for function abstraction, recursion, and context abstrac-
tion. Context variables are explicitly quantified and bound by Λψ.e.
There are a few interesting issues which deserve attention: First the
typing rule for box(Ψ̂.M).M denotes a data-level term whose free
variables are defined in the context Ψ, i.e. it is closed with respect to
a context Ψ. To type box(Ψ̂.M) we switch to data-level typing, and
forget about the previous context Γ which only describes assump-
tions on the computation level. Our typing rules will ensure that all
variables occurring in M must have been declared in the context
Ψ. Similar reasoning holds for the typing rule for sbox(Ψ̂. σ). In

both cases, some renaming may be necessary to apply the typing
rule to bring the variables in A[Ψ] in accordance with the variables
in Ψ̂.M . To access data, we provide a case-expression with pattern
matching. The intention is to match against the contextual modal
variables occurring in the pattern. When type-checking a branch,
we appeal to a linear typing judgment Ω;∆′; Ψ `l M ⇐ A, which
ensures that all contextual variables occur linearly and are higher-
order patterns.

Theorem 4.1. [Decidability of Type Checking]
Type-checking computation-level expressions is decidable.

Proof. The typing judgments are syntax-directed and therefore
clearly decidable.

Due to space constraints, we omit here the substitution defi-
nitions [e/x]e′ and extensions of previous substitution operations
such as [[Ψ/ψ]](e) and [[θ]]∆(e). The definitions are mostly straight-
forward.

5. Operational semantics
In this section, we describe a small-step operational semantics
for the presented language. During execution type annotations are
unnecessary, and we define evaluation only on expressions where
all type annotations have been erased. First, we define the values in
this language.

Value v ::= fn y.e | Λψ.e | box(Ψ̂.M) | sbox(Ψ̂. σ)

Next, we define a small-step evaluation judgment:

e −→ e′ e evaluates in one step to e′.
(box(Ψ̂.M)

.
= b) −→ e′ Branch b matches box(Ψ̂.M)

and steps to e′

(sbox(Ψ̂. σ)
.
= b) −→ e′ Branch b matches sbox(Ψ̂. σ)

and steps to e′

Evaluation relies on pattern matching and evaluating branches.
The case for function application is straightforward. Values for pro-
gram variables are propagated by computation-level substitution.
Instantiations for context variables are propagated by applying a
concrete context Ψ to a context abstraction Λψ.e.

rec f.e −→ [rec f.e/f]e (fn y.e) v −→ [v/y]e

e1 −→ e′1

(e1 e2) −→ (e′1 e2)

e2 −→ e′2

(v e2) −→ (v e′2)

e −→ e′

e dΨe −→ e′ dΨe (Λψ.e) [Ψ] −→ [[Ψ/ψ]]e

e −→ e′

(case e of b1 | . . . | bn) −→ (case e′ of b1 | . . . | bn)

· ` box(Ψ̂.M)
.
= bi −→ e′

(case (box(Ψ̂.M)) of b1 | . . . | bn) −→ e′

· ` sbox(Ψ̂. σ)
.
= bi −→ e′

(case (sbox(Ψ̂. σ)) of b1 | . . . | bn) −→ e′

Evaluation in branches relies on higher-order pattern matching
against data-level terms to instantiate the contextual variables oc-
curring in a branch and data-level instantiations are propagated via
contextual simultaneous substitution. We assume that box(Ψ̂.M)
does not contain any meta-variables, i.e. it is closed.

∆; Ψ̂ `M ′ .= M/θ

(box(Ψ̂.M)
.
= Π∆.box(Ψ̂.M ′) 7→ e) −→ [[θ]]∆e

∆; Ψ̂ ` σ′ .= σ/θ

(sbox(Ψ̂. σ)
.
= Π∆.sbox(Ψ̂. σ′) 7→ e) −→ [[θ]]∆e

Given the current setup, we can prove type safety for our pro-
posed functional language with higher-order abstract syntax and
explicit substitutions. We assume that patterns cover all cases here,
but coverage checking can be incorporated by following ideas de-
scribed in (Schürmann and Pfenning 2003). First we state and prove
the necessary canonical forms lemma where |e| denotes the expres-
sion e where typing annotations in e : τ are erased.

Lemma 5.1. [Canonical forms]

1. If |e| is a value and ·; ·; · ` e⇒ A[Ψ]

then |e| = box(Ψ̂.M) and ·; ·; · ` box(Ψ̂.M) ⇐ A[Ψ]
2. If |e| is a value and ·; ·; · ` e⇒ Φ[Ψ]

then |e| = sbox(Ψ̂. σ) and ·; ·; · ` sbox(Ψ̂. σ) ⇐ Φ[Ψ]
3. If |e| is a value and ·; ·; · ` e⇒ τ1 → τ2

then |e| = fn y.e′ and ·; ·; · ` fn y.e′ ⇐ τ1 → τ2
4. If |e| is a value and ·; ·; · ` e⇒ Πψ::W.τ

then |e| = Λψ.e′ and ·; ·; · ` Λψ.e′ ⇐ Πψ::W.τ

Proof. By induction on the typing judgment and case analysis.

Theorem 5.1. [Preservation and Progress]

1. If ·; ·; · ` e ⇒ τ and e coverage checks then either |e| is
a value or there exists an expression e′ s.t. |e| −→ |e′| and
·; ·; · ` e′ ⇒ τ .

2. If ·; ·; · ` e ⇐ τ and e coverage checks then either |e| is
a value or there exists an expression e′ s.t. |e| −→ |e′| and
·; ·; · ` e′ ⇐ τ .

Proof. By structural induction on the first derivation using canoni-
cal forms lemma, correctness of higher-order pattern matching, and
various substitution properties we proved earlier.

6. Related Work
One of the first proposals for functional programming with sup-
port for binders and higher-order abstract syntax was presented by
Miller (1990). Later, Despeyroux et al. (1997) developed a type-
theoretic foundation for programming which supports primitive re-
cursion. To separate data from computation, they introduce modal
types �A which can be injected into computation. However, data
in their work must always be closed and can only be analyzed via a
primitive recursive iterator. Our work essentially continues the path
set out in (Despeyroux et al. 1997), and generalizes their work to
allow for open data-objects and first-class substitutions.

Closely related to our approach is the work by Schürmann et al.
(2005) where the authors present the ∇-calculus which provides a
foundation for programming with higher-order abstract syntax as
found in the simply typed Elphin language. In Schürmann et al.
(2005) the necessity modality �τ describes computation of type
τ which can be executed in every world where we have at least
one context extension. The context containing binding occurrences
is hence left implicit and associated with a computation. When
a new context extension is introduced, the computation moves
from the present world to a world where the context is extended.
To return the computation to the present world again where the
context extension is not present, the programmer has to explicitly
use a pop-operation which removes the introduced binding. The

fact that binders can never escape their scope during execution
is a meta-theoretic property which is proven. Since �τ describes
computation which may be executed in every world where we
have at least one context extension, the whole function and all its
arguments must be well-typed in this extended context.

This is in stark contrast to our work based on contextual modal
type, where A[Ψ] denotes some object of type A which is well-
typed in every world where we have a context Ψ and hence every
data-object carries its own local context. Therefore we can for ex-
ample return an object which is closed and distinguish it from an
object which is not closed. The fact that local binders can never es-
cape their scope is an inherent property of contextual types A[Ψ].
Ψ denotes exactly the bound variables which are allowed to occur
in an object of type A[Ψ], and the type system will detect if this
is violated. Elphin seems a special case of our foundation where
there is only one context variable which all arguments depend on.
Because we can distinguish between different contexts, we believe
our foundation is more expressive and is likely to scale better when
we compose different computations, since it provides more fine-
grained control. Finally, we propose to extend the framework with
first-class substitutions, which seem interesting on their own and
are absent from Elphin. Although their full impact still needs to be
explored, explicit substitutions have been used to model records,
closures, modules, classes and abstract data types with one single
versatile and powerful construct. The lack of first-class substitu-
tions generally forces the inclusion of several different name-space
mechanisms.

Most recently, Poswolsky and Schürmann (2007) proposed a
dependently typed language for programming with higher-order
encodings. While substantially different from Elphin, it also does
not provide fine-grained control to distinguish between multiple
different contexts and does not support first-class substitutions.

A different more pragmatic approach to allow manipulation of
binding structures is pursued in nominal type systems which serve
as a foundation of FreshML (Shinwell et al. 2003). In this approach
names and α-renaming are supported but implementing substitu-
tion is left to the user. The type system distinguishes at the type-
level between expressions and names, and provides a special type
atom which is inhabited by all names. The distinction between dif-
ferent categories of names is usually more difficult. Generation of a
new name and binding names are separate operations which means
it is possible to generate data which contains accidentally unbound
names since fresh name generation is an observable side effect. To
address this problem, Pottier (2007) describes pure FreshML where
we can reason about the set of names occurring in an expression via
a Hoare-style proof system. The system relies on assertions writ-
ten by the programmer to reason about the scope of names. This
static-analysis approach is quite expressive since the language of
constraints includes subset relations, equality, intersection etc. In
contrast, our work aims to provide a type-theoretic understanding
of open data, binders, and substitutions. This has various benefits:
For example, it should be possible to provide precise error mes-
sages on where names escape their scope. In contrast to nominal
systems, our foundation also leaves flexibility as to how data-level
bound variables are implemented and in fact lends itself to an im-
plementation based on de Bruijn indices. While the exact relation-
ship between nominal types, static analysis of names and contextual
types still needs to be investigated, we believe the presented work
is a start towards comparing both approaches.

From a more theoretical perspective, various λ-calculi support-
ing contexts as a primitive programming construct have been con-
sidered (Sato et al. 2001, 2002; Nishizaki 2000; Mason 1999;
Hashimoto and Ohori 2001). Nishizaki (2000) for example extends
a lambda-calculus with explicit substitutions in the spirit of the ex-
plicit substitution calculus proposed by Abadi et al. (1990). How-

ever, unlike Abadi’s work, the author proposes a polymorphic cal-
culus where we can quantify over explicit substitutions. This work
crucially relies on de Bruijn indices. Although the use of de Bruijn
indices is useful in an implementation, nameless representation of
variables via de Bruijn indices are usually hard to read and critical
principles are obfuscated by the technical notation.

Sato et al. (2002) introduce a simply typed λ-calculus which
has both contexts and environments (=substitutions) as first-class
values, called λκ,ε-calculus. There are many distinctions, however,
between their work and the contextual modal type theory we pro-
pose as a foundation. Most of these differences arise because the
former is not based on modal logic. For example, they do not allow
α-conversion on open objects and they do not require open objects
to be well-formed with respect to a local context. Moreover, they do
not cleanly distinguish between meta-variables and ordinary vari-
ables. All these restrictions together make their system quite heavy,
and requires fancy substitution operations and levels attached to or-
dinary variables to maintain decidability and confluence. None of
these approaches allows for pattern matching and recursion on open
data-objects.

7. Conclusion
We have presented a type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitutions based
on contextual modal types together with its type preservation and
progress proof. We support recursion over data defined in HOAS-
style, and allow pattern matching against open data and variables.
By design bound variables in data cannot escape their scope. This
is to our knowledge the first type-theoretic proposal to achieve this.
This work also provides interesting insights into the relationship
between nominal systems and higher-order abstract syntax. In the
future we plan to address the following questions:

Existential quantification over context variables In some exam-
ples, we would like to be able to write a function which returns
an open object of type exp[ψ’] for some context ψ’. This is for
example necessary if we want to write a small-step environment
based interpreter, or even if we want to translate a name-based rep-
resentation of terms into a higher-order representation. Adding ex-
istential quantification for context variables is in fact possible and
straightforward.

Types τ ::= . . . | Σψ::W.τ
Expressions e ::= pack(Ψ, e) | let pack(ψ, x) = e in e′ end

The typing and evaluation rules are then straightforward.

Typing rules

Ω;∆; Γ ` e⇐ [[Ψ/ψ]]τ Ω ` Ψ ⇐W

Ω;∆; Γ ` pack(Ψ, e) ⇐ Σψ::W.τ

Ω;∆; Γ ` e⇒ Σψ::W.τ Ω, ψ::W ;∆; Γ, x : τ ` e′ ⇒ τ ′

Ω;∆; Γ ` let pack(ψ, x) = e in e′ end ⇒ τ ′

Evaluation rules

let pack(ψ, x) = pack(Ψ, e) in e′ end −→ [e/x][[Ψ/ψ]]e′

e1 −→ e2

let pack(ψ, x) = e1 in e′ end −→ let pack(ψ, x) = e2 in e′ end

The full impact of existential types in practice however still
needs to be addressed.

Mixing data with computations At the moment our foundation
for programming with HOAS and substitutions is pure, i.e. we

never mix data and computation. However, there may be good rea-
sons to allow some form of computation inside of data-definitions.
For example, consider the definition of arithmetic expressions. We
defined natural numbers inductively, and then included them in the
expressions via the coercion Nat. However, clearly we may want
to use the integer-type given by our functional language when we
define the language of arithmetic expressions, and thereby be able
to rely on the built-in arithmetic operations instead of redefining
them. How to mix data and computation and retain all our good
properties is an important question we plan to address in the future.
Also the interaction with other features realistic programming lan-
guages provide such as mutable state, exceptions, etc. needs to be
investigated.

Reconstruction of context variables In the presented foundation
we explicitly abstract over context variables and pass them explic-
itly. An interesting question in practice is whether we can recon-
struct some of these context variables and keep contexts implicit.
This also leads to the question whether we should support pattern
matching against contextual variables. At the moment, context vari-
ables will be instantiated to some concrete context via context ap-
plication before we use pattern matching to decide which branch to
pick in a case-expression. This in fact is important to achieve el-
egant meta-theoretic properties. In the future, we plan to consider
in more detail how to reconstruct context variables and how to add
matching for context variables.

Acknowledgments
I would like to thank Frank Pfenning, Aleks Nanevski, and Adam
Poswolsky for many insightful discussion regarding this topic.
Moreover, this work benefited from comments and suggestions by
Derek Dreyer, Stefan Monnier, and François Pottier. Special thanks
go to Joshua Dunfield for helping to typeset the code.

References
Martı́n Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy.

Explicit substitutions. In Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, San Fran-
cisco, California, pages 31–46. ACM, 1990.

Joëlle Despeyroux, Frank Pfenning, and Carsten Schürmann. Primitive re-
cursion for higher-order abstract syntax. In R. Hindley, editor, Proceed-
ings of the Third International Conference on Typed Lambda Calculus
and Applications (TLCA’97), pages 147–163, Nancy, France, Lecture
Notes in Computer Science (LNCS) 1210, Springer-Verlag, 1997.

Murdoch Gabbay and Andrew Pitts. A new approach to abstract syntax
involving binders. In G. Longo, editor, Proceedings of the 14th Annual
Symposium on Logic in Computer Science (LICS’99), pages 214–224,
Trento, Italy, IEEE Computer Society Press, 1999.

Louis-Julien Guillemette and Stefan Monnier. Statically verified type-
preserving code transformations in Haskell. In Programming Languages
meets Program Verification (PLPV), Seattle, USA, Electronic Notes in
Theoretical Computer Science (ENTCS). Elsevier, 2006.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

Masatomo Hashimoto and Atsushi Ohori. A typed context calculus. Theo-
retical Computer Science, 266(1-2):249–272, 2001.

Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A polymorphic
modal type system for Lisp-like multi-staged languages. In 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages(POPL ’06), pages 257–268, New York, NY, USA, ACM Press,
2006.

Ian A. Mason. Computing with contexts. Higher-Order and Symbolic
Computation, 12(2):171–201, 1999.

Andrew McCreight and Carsten Schürmann. A meta-linear logical frame-
work. In Carsten Schürmann, editor, 4th International Workshop on Log-
ical Frameworks and Meta-Languages (LFM’04), 2004.

Dale Miller. Unification of simply typed lambda-terms as logic program-
ming. In Eighth International Logic Programming Conference, pages
255–269, Paris, France, MIT Press, 1991.

Dale Miller. An extension to ML to handle bound variables in data struc-
tures. In G. Huet and G. Plotkin, editors, Proceedings of the First Work-
shop on Logical Frameworks, pages 323–335, 1990.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. A contextual
modal type theory. ACM Transactions on Computational Logic (ac-
cepted, to appear in 2008), page 56 pages, 2006.

Shin-Ya Nishizaki. A polymorphic environment calculus and its type-
inference algorithm. Higher Order Symbol. Comput., 13(3):239–278,
2000.

Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger,
editor, Proceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, Trento, Italy, Lecture Notes in
Artificial Intelligence (LNAI) 1632, Springer-Verlag, 1999.

Brigitte Pientka. Tabled higher-order logic programming. PhD thesis,
Department of Computer Sciences, Carnegie Mellon University, 2003.
CMU-CS-03-185.

Brigitte Pientka and Frank Pfennning. Optimizing higher-order pattern
unification. In F. Baader, editor, 19th International Conference on
Automated Deduction, pages 473–487, Miami, USA, Lecture Notes in
Artificial Intelligence (LNAI) 2741, Springer-Verlag, 2003.

Adam Poswolsky and Carsten Schürmann. Programming with higher-
order encodings and dependent types. Technical Report YALEU/D-
CS/TR1375, Department of Computer Science, Yale University, July
2007.

François Pottier. Static name control for FreshML. In Twenty-Second
Annual IEEE Symposium on Logic in Computer Science (LICS’07),
pages 356–365, Wroclaw, Poland, IEEE Computer Society, 2007.

Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit environments.
Fundamenta Informaticae, 45(1-2):79–115, 2001.

Masahiko Sato, Takafumi Sakurai, and Yukiyoshi Kameyama. A simply
typed context calculus with first-class environments. Journal of Func-
tional and Logic Programming, 2002(4), March 2002.

Carsten Schürmann. Automating the meta theory of deductive systems. PhD
thesis, Department of Computer Sciences, Carnegie Mellon University,
Available as Technical Report CMU-CS-00-146, 2000.

Carsten Schürmann and Frank Pfenning. A coverage checking algorithm
for LF. In D. Basin and B. Wolff, editors, Proceedings of the 16th
International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2003), pages 120–135, Rome, Italy, Lecture Notes in Com-
puter Science (LNCS) 2758, Springer-Verlag, 2003.

Carsten Schürmann, Adam Poswolsky, and Jeffrey Sarnat. The∇-calculus.
functional programming with higher-order encodings. In Pawel Urzy-
czyn, editor, Proceedings of the 7th International Conference on Typed
Lambda Calculi and Applications(TLCA’05), pages 339–353, Nara,
Japan, Lecture Notes in Computer Science (LNCS) 3461, Springer,
2005.

Mark R. Shinwell, Andrew M. Pitts, and Murdoch J. Gabbay. FreshML:
programming with binders made simple. In Eighth ACM SIGPLAN
International Conference on Functional Programming (ICFP’03), pages
263–274, New York, NY, USA, 2003. ACM Press.

Geoff Washburn and Stephanie Weirich. Boxes go bananas: Encoding
higher-order abstract syntax with parametric polymorphism. Journal of
Functional Programming, 2007 (to appear).

Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A
concurrent logical framework I: Judgments and properties. Technical
Report CMU-CS-02-101, Department of Computer Science, Carnegie
Mellon University, 2002.

