
Heap Building Bounds

Zhentao Li1 and Bruce A. Reed2

1 School of Computer Science, McGill University
zhentao.li@mail.mcgill.ca

2 School of Computer Science, McGill University
breed@cs.mcgill.ca

Abstract. We consider the lower bound for building a heap in the worst
case and the upper bound in the average case. We will prove that the
supposedly fastest algorithm in the average case[2] does not attain its
claimed bound and indeed is slower than that in [6]. We will then prove
that the adversarial argument for the claimed best lower bound in the
worst case[1] is also incorrect and the adversarial argument used yields
a bound which is worse than that in [5] given by an information theory
argument. Finally, we have proven a lower bound of 1.37n + o(n) for
building a heap in the worst case.

1 Introduction

Heaps are a classical and commonly used implementation of priority queues.
They are so fundamental that computer science students typically learn about
them in their first year of university study. In this paper, we discuss bounds on
building heaps.

We will prove that the supposedly fastest algorithm in the average case[2]
does not attain its claimed bound and indeed is slower than that in [6]. We will
then prove that the adversarial argument for the claimed best lower bound in
the worst case[1] is also incorrect and the adversarial argument used yields a
bound which is worse than that in [5] given by an information theory argument.
Finally, we have proven a lower bound of 1.37n + o(n)for building a heap in the
worst case. Forthwith the details.

A heap [7, 4, 3] is a binary tree in each node of which we have stored a key.
The tree has a special shape. All of its levels are full except the last one. The
nodes on the last level are all as much to the left of the tree as possible. A
min-heap has the property that every node has value less than or equal to its
children. All heaps in this paper are min-heaps. A perfect heap is a heap whose
last level is full.

The height of a tree is defined as the number of arcs of the longest path from
the root to a leaf. Therefore, a perfect heap of height k has 2k+1 − 1 nodes.

One of the attractive features of heaps is that they can be implemented using
an array where the children of a node at A[i] are located at A[2i] and A[2i+1].

We will only consider building heaps in the comparisons model. That is,
at each step, an algorithm chooses two keys and compares them to determine

which is bigger. Since we are dealing with min-heaps, we will call the winner of
a comparison the key that is smaller and the loser of a comparison the key that
is bigger.

The first heap-building algorithm due to Williams [7] runs in O(n log(n)) by
inserting the keys one by one. More precisely, it’s worst case running time is
∑n−1

i=1 blog(i + 1)c. The key is added in a new leaf node so that the tree remains
heap-shaped and “bubbled up” the tree until the heap order is restored.

A classical algorithm of Floyd [4] for building heaps from the bottom up yields
an upper bound of 2n comparisons. This algorithm builds a heap on n = 2k − 1
nodes by first recursively builds 2 heaps of size 2k−1 − 1. It then “trickle down”
another node to merge these two heaps. An information theory lower bound
of 1.364n comparisons to build a heap on n keys is shown in [5]. An algorithm
which uses 1.521n comparisons on average is developed in [6] by combining ideas
from Floyd’s and Williams algorithm. Faster algorithms for building heaps in the
worst case were developed with the aid of binomial trees.

The binomial tree of size 1 (height 0) is a single node. A binomial tree of
height k is defined as follows: It has a root that has k children. The subtrees
rooted at the children of the root are binomial trees of each of heights 1 to k−1.
As in the min-heap, every node has a key whose value less or equal to that of
its children. Clearly a binomial tree of height k has 2k nodes.

A binomial tree on 2k nodes can be built recursively using 2k−1 comparisons
by first building two binomial trees of 2k−1 nodes and then comparing the keys
at their roots. This is clearly best possible since we know that the root contains
the min, any key that has not lost at least once could still be the min and each
comparison can only make one key, that has not yet lost, lose.

Faster algorithms for building heaps on 2k elements first build a binomial tree
and then recursively convert this into a heap. As discussed in [5], this approach
can be used to build a heap on n nodes in 1.625n + o(n) comparisons in the
worst case.

The contributions of this paper are threefold:

1. The algorithm shown in [2] claims to have an average case running time of
1.5n + o(n) or faster. We will show that the analysis gives a lower bound of
43
28n + o(n) which is slower than the algorithm shown in [6].

2. The authors of [1] claim that their adversary yields a lower bound of 1.5n +
o(n) comparisons in the worst case. We will show that this adversary yields
a lower bound which is at best 5

4n + o(n) comparisons. This is worse than
that of the information theory lower bound of 1.364n comparisons [5].

3. We have proven a new lower bound of 1.3701 . . . n + o(n) for building heaps.

In what follows, we consider only heaps of size 2k and 2k − 1. This is not
really a restriction. For example, to build a heap with 23 elements,we can first
build the 15 element heap rooted at the left child of the root, then build the 7
elements heap rooted at the right child of the root and then “trickle down” the
remaining element from the root using 2 log(n) comparisons (see [3]) to construct
our heap. In the same vein, if we can construct heaps of size n = 2k − 1 in

αn+o(n) comparisons for all k, then we can build heaps of any size in αn+o(n)
comparisons.

A pseudo-binomial tree is a binomial tree with one leaf missing somewhere
in the tree.

2 Average case algorithm

The algorithm described by Carlsson and Chen [2] is as follows:

1. To build a perfect heap of size n = 2k − 1, first build a binomial trees of
height i for i = 1, 2, 4, . . . , 2k−1.

2. Repeatedly compare the keys of the roots of two smallest trees until a pseudo-
binomial tree of size 2k − 1 is created. Note that these first two steps take
n − 1 comparisons in total.

3. Let T̄ (2k −1) denote the number of comparisons required on average by this
algorithm to transform a pseudo-binomial tree of size 2k − 1 into a heap.
Note that T̄ (1) = T̄ (3) = 0 since these pseudo-binomial trees are heaps.
Note that the subtree rooted at the children of the root are all binomial
trees except for one which is a pseudo-binomial tree. If k < 2 then we have
constructed the desired heap. otherwise we proceed depending on where the
missing leaf is:
Case 1 If the largest subtree of the root is the pseudo binomial tree, recurse

on it. Then compare the keys of the roots of the other subtrees of the
root to create a pseudo-binomial tree (i.e.:same as step 2) and recurse
on it.
This takes T̄ (2k−1 − 1) + k − 2 + T̄ (2k−1 − 1) comparisons. It happens
only if the min was in the largest binomial tree (before step 2) and this
occurs n+1

2n
of the time as discussed in [2].

Case 2 Otherwise, transform the largest subtree, T , of the root R, which is
now a binomial tree, into a heap plus an extra element x. We do this as
follows: The root r of T will be the root of the heap. The subheap rooted
at the right child of r will be formed from the union of the elements of
the subtrees rooted at the children of r except for the largest. The largest
subtree of T rooted at the left child of r will be used to form the subheap
rooted at the left child of r (and will yield an extra element). To form
the right subheap, we build a pseudo-binomial tree from the union of
the trees under consideration and we recursively apply this algorithm
starting at step 2. To form the subheap rooted at the left child of r, we
recursively apply the procedure described in this paragraph.
At this point, we have built a heap on T − x. We now need to build a
heap on the elements not in T −x+ r. To do so, we consider x as a child
of R. Recurse on the children of R, excluding T but including x, starting
from step 2.
According to Carlsson and Chen, this takes

∑k−2
i=2

(

(i − 1) + T̄ (2i − 1)
)

+
k − 1 + T̄ (2k−1 − 1) comparisons on average. Since T̄ (3) = 0 this is just

2 +
∑k−1

i=3

(

(i − 1) + T̄ (2i − 1)
)

comparisons. This happens n−1
2n

of the
time.

4. Stop the recursion at the heaps of size 7 and build them in 9
7 comparisons

as discussed in [2].

It seems to us that Carlsson and Chen’s analysis is faulty as they ignore impor-
tant conditioning on x. We show now that their analysis is faulty even assuming
their conditioning assumptions are correct. Accepting their hypothesis, we have:

Theorem 1. For the algorithm in [2], T̄ (2k − 1) ≥ 15
282k − k ∀k ≥ 3

Proof. First note that T̄ (7) = 9
7 ≥ 15

282k − k for this algorithm.

If T̄ (2i − 1) ≥ 15
282i − i for i = 3, . . . , k − 1 and k ≥ 4 then

T̄ (2k − 1) =
n − 1

2n

(

2 +

k−1
∑

i=3

(

(i − 1) + T̄ (2i − 1)
)

)

+
n + 1

2n

(

T̄ (2k−1 − 1) + k − 2 + T̄ (2k−1 − 1)
)

=
n − 1

2n

(

2 +

k−1
∑

i=3

(

(i − 1) + T̄ (2i − 1)
)

)

+
n + 1

2n

(

k − 2 + 2T̄ (2k−1 − 1)
)

≥
n − 1

2n

(

2 +
k−1
∑

i=3

(

(i − 1) +
15

28
2i − i

)

)

+
n + 1

2n

(

k − 2 + 2

(

15

28
2k−1 − k + 1

))

=
n − 1

2n

(

2 +
15

28

(

2k − 8
)

− (k − 3)

)

+
n + 1

2n

(

15

28
2k − k

)

=
n − 1

2n

(

15

28
2k − k +

5

7

)

+
n + 1

2n

(

15

28
2k − k

)

≥
n − 1

2n

(

15

28
2k − k

)

+
n + 1

2n

(

15

28
2k − k

)

=
15

28
2k − k

∴ T̄ (2k − 1) ≥ 15
282k − k

By induction, T̄ (2k − 1) ≥ 15
282k − k ∀k ≥ 3

Note that this implies that the algorithm in [2] is worse than the algorithm in
[6].

3 Worst case adversary

The adversary described by Carlsson and Chen [1] does the following: For all
keys x, define Up(x) = {y|y < x} and Down(x) = {y|y ≥ x}. When comparing
two keys x and y, the adversary will answer as follows:

If x ∈ Up(y), we must answer x < y. If y ∈ Up(x), we must answer y < x.
If x /∈ Up(y) and y /∈ Up(x) then answer x < y according to the first rule

that can apply:

Rule 1 If ‖Down(x)‖ > ‖Down(y)‖ then x is the winner, otherwise
Rule 2 if ‖Up(x)‖ < ‖Up(y)‖ then x is the winner.
Rule 3 For all other cases, answer x < y.

We will now show a counter-example for which the adversarial argument given
in [1] fails to attain the claimed bound of 1.5n.

Theorem 2. Given a complete heap H of height k ≥ 2, in which the key at
its leaves have never won, a key Loser which has never won, and a set S of
2k+1+2k+2 keys which have not yet been compared, we can build in 5

4 (2k+1+2k+2)
comparisons, against this adversary, a heap H ′ of height k +2 containing S and
all the nodes of H such that no leaf of H ′ contains a key which has won a
comparison.

We proceed in the following way: We consider a node P with both children
being leaves. We call the key at the left child L and the key at the right child R.

P

L R
It is enough to prove the theorem for heaps of size 7 as we can treat the 2k−2

heaps of size 7 at the bottom of H separately. In order to add 12 nodes to this
heap, we will do the following:

Step 1 – Compare Loser to P. Loser will lose since ‖Down(Loser)‖=1 (and
‖Down(Loser)‖ remains 1 after this comparison).

P

L R

LoserB

A
1

4

2
3

A number n on an edge is the nth comparison that we are making.

Step 2 – Compare two keys in S and call the winner A and the loser B.

– Compare B to L. B will win since ‖Down(L)‖ = ‖Down(B)‖ = 1 and
‖Up(L)‖ ≥ 2 while ‖Up(B)‖ = 1.

– Compare P to A. P will win since ‖Down(P)‖ ≥ 4 and ‖Down(A)‖ = 3.
We can redraw the tree to record the current information:

P

R

Loser

A

B

L

– Compare two more keys in S and call the winner C and the loser D.
– Compare C to A. C will lose since ‖Down(C)‖=2 and ‖Down(A)‖=3.
– Compare a key N1 in S to B and a key N2 in S to C. The new keys will lose

since ‖Down(B)‖=2, ‖Down(C)‖=2 and ‖Down(N1)‖=‖Down(N2)‖=1.

P

R
Loser

A

B

N DL

C

78 5

6

N1 2

Step 3 Do step 2 on R and P instead of L and P.

NN

A

B

NL

C

P

Loser

A’

C’

RND’

B’

D

9
13

1412

11

1015

1 2 3 4

We have taken 15 comparisons to add 12 keys (Loser doesn’t count as an
added key). We can repeat this process using the same Loser key.

Note that we did not use the fact that the adversary chooses arbitrarily if
both ‖Up‖ and ‖Down‖ are equal.

Also note that the only property that we used was that ‖Down(L)‖ = 1
(and ‖Down(R)‖ = 1), ‖Up(L)‖ > 1 (and ‖Up(R)‖ > 1) and ‖Down(P)‖ ≥ 2).
These properties are kept for the keys on the last two levels after we have inserted
the new keys.

Here is a possible way of building the initial 7 nodes heap:

1

24

7

6 5

3

Note that we put the winner of the 3rd comparison at the root. This allows
us to build perfect heaps of odd height. To build perfect heaps of even height,
we can just start with a heap of 15 nodes instead.

Here is a possible way of building the 15 nodes heap:

1

24

7

6 5

3

9

10

11
12

13

14

1816

8

15

17

Now we can use Gonnet and Munro’s algorithm [5] to build heaps of any
height from perfect heaps.

Therefore, the lower bound that the adversary provides is at most 5
4n +

O(log2 n) which is worse than the information theory lower bound of 1.362n.

4 A Simple Adversary

We now describe an adversary which yields a lower bound of 1.3701 . . . n + o(n)
comparisons for building a heap H on 2k − 1 elements.

Since we are dealing with min-heaps, we will call the winner of a comparison
the key that is smaller and the loser of a comparison the key that is bigger.

The adversary decides how to answer comparisons by looking at the first loss
graph. This is a directed acyclic graph which contains, for every node x which
has lost, an edge from x to the first node to which it lost. These are the only
edges of the graph. Note that each component of this graph is a tree all of whose
edges are directed towards some root. Note further that this graph changes as the
algorithm progresses. Initially, it is empty and when the algorithm terminates,
it has n − 1 edges.

There are n − 1 comparisons which are first losses and hence correspond to
edges of the final first loss graph. We bound the number of comparisons used in
building the heap which are not part of the final first loss graph. If in the final
first loss graph, everybody but the minimum lost to the minimum, then since all
but the top three nodes of the heap lose to somebody who is not the minimum,
there must be at least n − 3 such extra comparisons in total.

More generally, our approach is to try to ensure that there are many vertices
of large indegree high up (i.e. close to the root) in the final first loss graph.

Ideally, we would like the indegree in the first loss tree of a node to be less
than the corresponding value for its parent. This is difficult to ensure as the
indegree of x may increase after its first loss. So instead, we colour an edge xy
of the first loss graph red if x lost to y before y had lost and blue otherwise. We
let a(x) be the red indegree of x. We note that a(x) can only increase during
the heap building process and that after x loses, a(x) does not change. So if we
insist that:

1. When comparing two nodes, the node with the higher a value wins

2. If the two nodes have equal a value then the node which has not yet lost
wins.

then the a(x) value of any node is indeed strictly less than that of its parent in
the final first loss tree.

We use b(x) to denote a(y) where y is the parent of x in the first loss graph.
If x has not yet lost, b(x) is undefined.

We analyze this adversary using a LP. We define some variables such as
p0 = ‖{x|a(x) = 0}‖/n and p(0,i) = ‖{x|a(x) = 0, b(x) = i}‖/n by looking at
the first loss graph. We also define variables depending on the shape of the final
heap that is built. They includes q(0,1) = ‖{x|a(x) = 0, b(x) = 1 and x is a
leaf }‖/n as well as q(0,1,4,5,2,3) = ‖{x|a(x) = 4, b(x) = 5, x is not a leaf, x has
children c1, c2 and a(c1) = 0, b(c1) = 1, a(c2) = 2, b(c2) = 3}‖/n. Our LP has a
total of 4099 variables.

Recall that we consider only heaps on n = 2k − 1 nodes. Thus every internal
vertex has two children.

With these variables, we define some constraints by simply counting the
nodes. An example of such constraint is

∑

pi = 1. We also have constraints due
to the structure of a heap such as

∑

q(i,j) = 0.5+ 1
2n

since there are 2k−1 leaves

in a heap on 2k − 1 elements. We note that instead of an equation with RHS
= 0.5 + 1

2n
, we use two inequalities which this implies. One with RHS ≤ 1

2 and
the other with RHS ≥ 1

2 + ε for a small but fixed ε. Our final analysis uses 209
constraints.

To give a flavour of the LP, we close this section by proving here a lower
bound of (1 + 1

13)n − 1 on the number of comparisons needed to build a heap.
We actually consider the number of comparisons not in the first loss graph. We
denote this number by Extra. We also use p∗1 to denote ‖{x|a(x) = 1, x has a
unique child in the first loss graph}‖/n

Now, consider a node y with a(y) ≥ 1. When a(y) increases from 0 to 1, y
won a comparison against a node x. Since y won, a(x) had value 0. Since a(y)
increased, x had not yet lost and xy is a red edge of the first loss graph. It follows
that for all i, p(0,i) ≥ pi. Thus, p0 ≥ 1

2 and more strongly

p0 ≥
1

2
+

1

2
(p(0,i) − pi) (1)

If y has a(y) ≥ 2 then for a(y) to become 2, it either has to have at least two
children in the first loss graph with a value 0, or one child with a value 0 and
another with a value 1. It follows easily that:

p0 + p∗1 ≥
3

5
(2)

p0 + p∗1 ≥
2

3
−

1

3
(p(0,1) − p1) (3)

Now, if a vertex x with a(x) = 0 is a non-leaf of the heap, then x must win
a comparison and this is not a comparison of the first loss graph. If a vertex x
with a(x) = 1 which has a unique child z in the first loss graph, is a non-leaf of
the heap, then one of z or x must win a comparison which is not a comparison
of the first loss graph. Since there are at most n

2 + 1
2 leaves, amortizing over x

and z in the second case, we have:

Extra ≥
1

2
(p0n + p∗1n − (

n

2
+

1

2
)) (4)

Combining this with (2) gives

Extra ≥
n

20
−

1

4
(5)

The point of our LP is that we can combine one such argument with others.
For example, if we consider only x with a(x) = 0, for each such x which is not a
leaf in the heap, each child y of x in the heap has a(x) = 0, and must have lost
twice so we have:

Extra ≥ 2(p0n −
n

2
−

1

2
) (6)

Combining (3) with (4) gives:

Extra ≥
n

12
−

1

6
(p(0,1) − p1)n −

1

4
(7)

Combining (6) with (1) gives:

Extra ≥ (p(0,1) − p1)n − 1 (8)

Finally, combining (7) and (8) which arise via two similar but different argument
give

Extra ≥
n

13
− 1 (9)

Our LP of course involves much more sophisticated arguments and many
more than two of them. Details can be found at

www.cs.mcgill.ca/~zli47/heaps.html

5 Conclusions

We have shown that the analysis of the average case running time of algorithm
[2] is incorrect. We have also shown that the lower bound on heap building from
[1] is incorrect. The full proof of our adversary which yields a lower bound of
1.37n + o(n) is available at www.cs.mcgill.ca/~zli47/heaps.html .

References

1. Svante Carlsson and Jingsen Chen. The complexity of heaps. In Proceedings of the

third annual ACM-SIAM symposium on Discrete algorithms, pages 393–402. SIAM,
1992.

2. Svante Carlsson and Jingsen Chen. Heap construction: Optimal in both worst and
average cases? In Algorithms and Computation, pages 254–263. Springer, 1995.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Sten.
Introduction to Algorithms. The MIT Press, McGraw-Hill Book Company, 2 edition,
2001.

4. Robert W. Floyd. Algorithm 245: Treesort. Commun. ACM, 7(12):701, 1964.
5. Gaston H Gonnet and J Ian Munro. Heaps on heaps. SIAM Journal of Computing,

15(4):964–971, 1986.
6. C. J. McDiarmid and B. A. Reed. Building heaps fast. J. Algorithms, 10(3):352–365,

1989.
7. J. W. J. Williams. Algorithm 232: Heapsort. Commun. of the ACM, 7(6):347–348,

1964.

