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Given a multiple alignment of orthologous DNA sequences and a phylogenetic tree for

these sequences, we investigate the problem of reconstructing a most parsimonious sce-
nario of insertions and deletions capable of explaining the gaps observed in the alignment.

This problem, called the Indel Parsimony Problem, is a crucial component of the prob-

lem of ancestral genome reconstruction, and its solution provides valuable information
to many genome functional annotation approaches. We first show that the problem is

NP-complete. Second, we provide an algorithm, based on the fractional relaxation of an

integer linear programming formulation. The algorithm is fast in practice, and the solu-
tions it produces are, in most cases, provably optimal. We describe a divide-and-conquer

approach that makes it possible to solve very large instances on a simple desktop machine,

while retaining guaranteed optimality. Our algorithms are tested and shown efficient and
accurate on a set of 1.8 Mb mammalian orthologous sequences in the CFTR region.

Keywords: Insertions and deletions; Ancestral DNA sequences; Sequence evolution; In-

teger Linear Programming.

1. Background and Motivation

The large number of genomes sequenced or in the process of being sequenced has
shown to be an extremely valuable source of information for studying the evolution
of various species. An exciting prospect was raised recently by Blanchette et al. 3:
given the genomes of sufficiently many extant species, it may be possible to recon-
struct to a high degree of accuracy the genomes of some ancestral species having
lived tens of millions of years ago. The ancestral genome reconstruction procedure
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1 2 3 4 5 6 7
0 0 0 0 1 1 1
0 1 0 0 1 0 1 
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

del 2, ins 6
del 3-4, ins 5,7

ins 1

del 2-4

0 1 0 0 1 0 1
0 1 1 1 0 0 0

0 1 1 1 0 0 0
1 1 1 1 0 0 0 

Fig. 1. Example of an input to the Indel Parsimony Problem, together with one optimal solution

(left) and the induced ancestral sequences (right). A 1 indicates that a nucleotide was present at

a given position of a given species, while a 0 denotes the absence of a nucleotide (i.e. a gap). The
effect of deletions is shown by dashed boxes, while the effect of insertions is shown by shaded boxes.

The optimal scenario involves 3 deletions and 3 insertions. Notice that the insertion of positions

5 and 7 should be counted as a single event, because the base at position 6 does not yet exist at
the time the insertion happens.

involves several difficult steps, including the identification of orthologous regions in
different extant species20,22, ordering of the syntenic blocks5, multiple alignment of
the orthologous sequences within each syntenic block4, and reconstruction of the
ancestral sequences for each aligned block3. In this paper, we focus on one crucial
and poorly understood aspect of the ancestral sequence reconstruction that we call
the Indel Parsimony Problem. It consists of inferring the most parsimonious set
of insertions and deletions, performed along the branches of a given phylogenetic
tree, that may have led to the gaps observed in a given multiple alignment. Figure
1 provides an example of a possible input to the Indel Parsimony Problem, to-
gether with an optimal (most parsimonious) solution. Notice that since indels often
affect several consecutive nucleotides, alignment columns cannot be treated inde-
pendently, as opposed to the parsimony problem for substitutions9. A solution to
the Indel Parsimony Problem directly translates into a prediction of the presence or
absence of a base at a given position of the ancestral sequence at an internal node
of the tree (see Figure 1). The standard substitution-based maximum-likelihood
approach8 could then be used to decide which of the four possible nucleotides (A,
C, G, or T) is most likely at a given position (for more information on this process,
see Blanchette et al.3). Notice, however, that indel evolutionary scenarios are not
only useful for predicting ancestral sequences, but also for annotating functional
regions of extant genomes, including protein-coding regions21, RNA genes18, and
other functional regions14.

In this paper, we start by giving a formal definition of the Indel Parsimony Prob-
lem. We then prove the NP-completeness of the problem. After giving polynomial-
time algorithms for two special cases of the problem, we show how to encode a
general instance of the Indel Parsimony Problem as a 0-1 Integer Linear Program-
ing (ILP) problem. Although 0-1 ILP is also NP-complete11, we describe a fractional
relaxation approach that provides fast and provably optimal solutions in almost all
the cases, based on our empirical results. We then provide a divide-and-conquer
algorithm for breaking the original ILP problem into a set of independent subprob-
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lems, whose solution can be combined to obtain an optimal solution to the original
problem. This is of practical importance, as it allows very large problems to be
solved on a simple desktop computer and allows easy parallelization. Finally, our
algorithms are tested on two sets of actual biological sequences, consisting respec-
tively of 9 and 20 orthologous mammalian sequences for a 1.8Mb region around the
human CFTR gene23.

2. Related work

The Indel Parsimony Problem has received surprisingly little attention, and its
complexity remained unknown until now. The only authors to attack the problem
head on are Fredslund et al.10, who provide an elegant graph-based algorithm to
resolve most cases using a set of relatively simple rules. However, some cases cannot
be resolved based on these rules and the algorithm then relies on an exhaustive
enumeration to solve the difficult parts of the problem, which results in a worst case
running time that is exponential in the length of the alignment. Still, it performs well
in practice, provided that the number and length of the sequences in the alignment
are not too large.

The problem of inferring ancestral sequences has in fact more often been con-
sidered as a part of the multiple alignment problem. For example, Hein13 described
an algorithm for simultaneous alignment and ancestral sequence inference, which,
though quite accurate, remains much too slow for large scale applications. The
other line of work that is relevant to ancestral genome inference is the recent devel-
opment of statistical alignment procedures (see for example Lunter et al.15), which
have the advantage of providing confidence estimates for the predictions made. Un-
fortunately, here again, the current methods are too slow for reconstructing more
than a few kilobases.

3. Problem definition

We start by giving a precise definition of the problem under study. Consider a rooted
phylogenetic tree T = (VT , ET ) with its n leaves labeled with DNA sequences.
Consider a multiple alignment A of these n orthologous sequences, and let L be
the number of columns in A. Since the only evolutionary events of interest here
are insertions and deletions, A can be reduced to a binary matrix, where gaps are
replaced by 0’s and nucleotides by 1’s. Let Au be the row of the binarized alignment
corresponding to the sequence at leaf u of T , and let Au[i] be the binary character
at the i-th position of Au. For convenience, we add two extra columns, A[0] and
A[L + 1], made exclusively of 1’s.

3.1. Basic definitions

Definition 1 (Phylogenetic correctness). An alignment A is phylogenetically
correct if it aligns together exactly the nucleotides that come from a common
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Au     1 1 0 0 1 0 1 1

Av     1 0 1 1 1 0 0 1

anchors

a1 a2 a3

101 011 010

forced ones

(a) (b)

D = 1
I = 2

D = 1
I = 0

d(Au, Av) = delCost(1) + insCost(2) + delCost(1)

?11

?1?

Fig. 2. Examples of anchors and forced 1’s.

ancestor (i.e. all aligned nucleotides are derived from a common ancestral nucleotide
through direct inheritance or substitution).

Note that without extensive fossil record, it is impossible to guarantee that an
alignment is phylogenetically correct. Nonetheless, good heuristics have been devel-
oped to compute accurate multiple alignments for large genomic regions4,7,6, and,
for the purposes of this paper, we will assume that we are working on correct align-
ments. The effect of alignment errors on the accuracy of the ancestral reconstruction
has been studied by Blanchette et al. 3.

A phylogenetically correct alignment tells us a lot about the ancestral states at
certain positions of the alignment. More precisely, for any i = 1...L and any u, v ∈
leaves(T ), if Au[i] = 1 and Av[i] = 1, then for any w on the path from u to v in T ,
Aw[i] = 1.

We define the indel distance d(Au, Av) between two alignment rows Au and Av,
where u is the parent of v in T , as a function of the number and lengths of insertions
and deletions required to transform Au into Av. The definition below turns out to
be equivalent but it is more amenable to the algorithms. Refer to Figure 2 (a) for
an illustration of these concepts.

Let x and y be two binary strings of equal length. We need the following defini-
tions:

Definition 2 (Anchors, deletions, and insertions).

• The set of anchors for x and y is the set of positions where both strings
have a 1:
anchors(x, y) = {i|x[i] = y[i] = 1}.

• The number of characters deleted from x to y is denoted by
D(x, y) = |{k| x[k] = 1, y[k] = 0}|.

• The number of characters inserted from x to y is denoted by
I(x, y) = |{k| x[k] = 0, y[k] = 1}|.

Definition 3 (Indel distance). Let Au and Av be two alignment rows with
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anchors(Au, Av) = {a1, ..., aq}. The indel distance from Au to Av is given by

d(Au, Av) =
q−1∑
i=0

(insCost(I(Au[ai...ai+1], Av[ai...ai+1]))+delCost(D(Au[ai...ai+1], Av[ai...ai+1])))

The costs of insertions and deletions can be defined under different models. The
most general model we consider here is the edge-dependent, asymmetric affine-gap
penalty, given by insCost(l) = αe · l + βe and delCost(l) = δe · l + γe, for non-
negative αe, βe, δe, γe, where the parameters depend on the branch e ∈ ET along
which the indels take place. We also consider the simpler unit-cost model, where
αe = δe = 0, βe = γe = 1 ∀e ∈ ET (i.e. all indels have cost 1, no matter their length
or the branch along which they occur). The algorithms described in this paper
apply to the general edge-dependent, asymmetric affine-gap model, unless stated
otherwise. It should be noted that I(Au[ai...ai+1]] and D(Au[ai...ai+1]] depend only
on the number of inserted and deleted positions between anchors ai and ai+1, and
not on their arrangement. Indeed, the arrangement of the columns between anchors
is arbitrary, since they contain no orthologous positions. Thus, it is always possible
to go from Au[ai...ai+1] to Av[ai...ai+1] using at most one (multi-base) deletion and
one (multi-base) insertion.

Definition 4 (Admissible ancestors). Given an internal node u of the tree T , we
say that a predicted ancestral alignment row Au is admissible if, for any i ∈ {1...L}
and for any leaves v, w such that Av[i] = Aw[i] = 1 and such that u is on the path
between v and w in T , we have Au[i] = 1. This an immediate consequence of the
phylogenetic correctess of A. We say that Au[i] is forced to one (see Figure 2 (b)
for an example).

3.2. Metric properties of the indel distance

Clearly, the indel distance function d is not a metric on the set of all strings of
length L, because it fails to satisfy the triangle inequality (indeed, under the unit-
cost model, the distance from any string to the string 0L is one, but the distance
between two non-zero strings can be up to d2L/3e). However, it satisfies the first two
axioms of a metric: the Hausdorff principle and symmetry, and under the conditions
below, it also satisfies the triangle inequality.

Theorem 3.1. If we consider only triplets of tree nodes u, v, w ∈ VT where v is
located on the path between u and w, then for any phylogenetically correct triplets
of sequences Au, Av, Aw, we have that d(Au, Av) + d(Av, Aw) ≥ d(Au, Aw).

Proof. The phylogenetic correctness of the alignment guaran-
tees that anchors(Au, Aw) ⊆ anchors(Au, Av) ∩ anchors(Av, Aw). It follows that
insCost(Au, Av) + insCost(Av, Aw) ≥ insCost(Au, Aw) and delCost(Au, Av) +
delCost(Av, Aw) ≥ delCost(Au, Aw) because any mismatch between Au and Aw is
necessarily present as a mismatch of the same type between either Au and Av or
between Av and Aw. Hence, d(Au, Av) + d(Av, Aw) ≥ d(Au, Aw).
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3.3. The Indel Parsimony Problem

We are now ready to define the problem discussed in this paper.
INDEL PARSIMONY PROBLEM (IPP)
Given: An alignment A and a rooted phylogenetic tree T with the leaves of T

labeled with the rows of A.
Find: An admissible extension of A to the internal nodes of T such that cost(A) =∑

(u,v)∈ET
d(Au, Av) is minimized.

Notice that if we did not enforce this admissibility rule, most instances would
have for optimal solution the trivial solution where all ancestral positions are set to
zero, which usually would yield a score of n (under the unit-cost model), no matter
the size of L.

4. Computational complexity of the Indel Parsimony Problem

We first settle the complexity of the IPP by proving that it is NP-Complete on
phylogenetic trees of unbounded degree (we use a star tree with one ancestor and
n leaves). We first reduce the 3SAT problem to an Independent Set Problem on a
special type of interval graphs. We then show how to reduce this Independent Set
Problem to the Indel Parsimony Problem.

Theorem 4.1. The INDEL PARSIMONY PROBLEM on trees with unbounded
degree is NP-complete, under any of the cost models discussed in this paper.

Proof. See Appendix A.

The complexity of the problem on phylogenetic trees with bounded degree and
unit-cost indels remains unknown. However, if the cost of indels is allowed to depend
on the branch along which they occur, the problem is NP-complete even on binary
trees, as it is trivial to set the cost of indels on internal branches to be so high that
the tree effectively becomes a star tree.

5. Polynomial-time solutions to special cases

Interestingly, while minimizing the total number of insertions and deletions is an
NP-complete problem, the special cases where only deletions are allowed (at unit
cost), and the special case where only insertions are allowed (with any cost function),
are both solvable in polynomial-time, as described in the rest of this section.

5.1. Deletion-only case

We first describe a simple greedy algorithm that is guaranteed to find the optimal
solution to a simplified version of the IPP in which only deletions are allowed (i.e.
all gaps observed in the alignment are assumed to be due to deletions), at unit cost.
Although this is not a biologically realistic situation, it does provide some insights
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into the structure of the problem. Deletions performed on internal branches of the
tree result in gaps in all the leaves of the affected subtree, so this problem is a variant
of rectangle covering: one wants to find the minimal number of rectangles required
to cover the gaps observed in the alignment. However, here, only the rectangles
corresponding to the leaves of a subtree of T are allowed. Contrary to many similar
0-1 rectangle covering problems 17, this version has a polynomial-time solution.

Definition 5.

• A deletion is a pair (v, [j, k]), where v is a node of T , [j, k] is an interval
with 1 ≤ j ≤ k ≤ L, such that Aw[l] = 0 ∀w ∈ leaves(subtree(v)) and
j ≤ l ≤ k.

• A deletion (v, [j, k]) covers position i of node u if u is a descendant of v (or
v itself), and j ≤ i ≤ k.

• A deletion (v, [j, k]) contains a deletion (w, [l,m]) if w is a descendant of v

(or v itself) and [l, m] ⊆ [j, k].
• A maximal deletion is one that is not contained in any other deletion.

The problem to be solved is thus to find a smallest set D of deletions such
that every gap in the alignment is covered by at least one deletion. Notice that
a given gap at a leaf may be covered by more than one deletion. Since, in our
current formulation, all deletions have unit-cost, there is no harm in always making
deletions as large as possible. More precisely, if an optimal solution contains deletion
(v, [j, k]), then replacing this deletion with a larger deletion that contains it will
also provide an optimal solution. Thus, there exists an optimal solution that only
employs maximal deletions. However, since a given gap may in general be covered
by more than one maximal deletion, it is not obvious which one should be chosen.
The following theorem resolves this uncertainty.

Theorem 5.1. For every leaf u and position i, if Au[i] = 0, then there exists a leaf
v and a position j such that Av[j] = 0 and such that Av[j] is covered by a unique
maximal deletion that also covers Au[i].

Proof. Let S be the set of all maximal deletions covering the gap at Au[i]. Let
M = (w, [k, l]) be an element of S such that l−k is maximized (i.e. M has maximum
possible length). We claim that M is the unique maximal deletion for some gap Av[j]
covered by it. Notice that the choice of M implies that Au[k − 1] = 1 = Au[l + 1],
since otherwise, we would have been able to extend M either to the left or to the
right. If w is the root of T , the claim above is trivially true. Otherwise, let p be the
parent of w in T . By maximality of M , we know that (p, [k, l]) is not a valid deletion.
Hence, there exists a position m, with k ≤ m ≤ l, and a q ∈ leaves(subtree(p)),
such that Aq[m] = 1. Consider the position Au[m]; by assumption, Au[m] = 0.
By the choice of M , any maximal deletion containing Au[m] is contained in M ,
because it cannot be extended to the left or to the right, and it cannot be extended
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to the parent p since Aq[m] = 1. Thus, M is the unique maximal deletion containing
Au[m], proving the claim and the theorem.

The proof above actually shows that we can create our minimal set of deletions
by taking, for each maximal set of consecutive gaps at a node, the deletion con-
taining it and rooted at the node of largest possible height (where the root of the
deletion (v, [i, j]) is v). This motivates a bottom-up algorithm for finding one such
minimal set of deletions:
Algorithm: DeletionParsimony(Alignment A, tree T)
Initialization:
For every leaf u, set Su = {(i, j)|Au(k) = 0 ∀i ≤ k ≤ j, Au(i− 1) = 1 = Au(j + 1)}
Recursion: For each internal node u ∈ VT , in a post-order traversal, do
Let v and w be the two children of u

Set Rv = {(i, j) ∈ Sv | ∃(k, l) ∈ Sw with (i, j) ⊆ (k, l)}
Set Rw = {(i, j) ∈ Sw | ∃(k, l) ∈ Sv with (i, j) ⊆ (k, l)}
Set Su = (Sv −Rv) ∪ (Sw −Rw)
Termination:
Return D =

⋃
u∈ET

⋃
(i,j)∈Su−Ru

{(u, [i, j])}.

5.2. Insertion-only case

The flip-side of the deletion-only case, called the insertion-only case, can also eas-
ily be solved in polynomial time. Notice first that not all phylogenetically correct
alignments can be explained by an insertion-only scenario, but only those for which,
for any column i, the set of leaves where Au[i] = 1 forms an exact subtree of T .
In that case, by our assumption of phylogenetic correctness, for any column i and
any node u in the subtree rooted at the least common ancestor of all 1’s in column
i, we will have Au[i] = 1, and all others nodes will have value zero. Thus, there is
a unique admissible solution, which can be trivially identified, and whose score is
easily computed in time Θ(n · L).

6. Integer Linear Programming Formulation

Linear programming (LP) is the problem of optimizing a linear function of a set of
variables, subject to a set of linear constraints on these variables. When the variables
are free to take arbitrary real values, the problem can be solved in polynomial time
using the so-called ellipsoid method 12. When the variables are constrained to take
only integer values (ILP), the problem is in general NP-hard 11. The special case
where the variables are restricted to take only values in {0, 1}, known as 0-1 ILP,
is also NP-hard 11. However, ILP is a very active area of research and efficient
heuristics have been developed 19. Here, we describe an encoding of an instance of
the IPP as an instance of the 0-1 ILP problem. Our formulation is suitable for the
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most general cost model studied here, where insertions and deletions are considered
simultaneously, under the affine cost, edge-dependent, asymmetric model.

We start by defining the set of variables we are going to use, then describe the
constraints on these variables, and conclude with the objective function. All the
variables have binary 0-1 values.

• For every internal node u and for every i ∈ {0...L + 1}, define Xu[i] to be
the character (0 or 1) at position i of the ancestor at node u. A truth as-
signment to the variables X constitutes a possible solution to the ancestral
reconstruction problem. For simplicity of notation, we also define the X

variables at the leaves of the tree, in which case Xu[i] = Au[i].
• For every edge e = (u, v) ∈ ET and for every i ∈ {0...L + 1}, define, for

a, b ∈ {0, 1}, Uab
e [i] to be 1 if and only if Xu[i] = a and Xv[i] = b (in which

case we say that the edge (u, v) at column i has type ab). The U variables
are used to keep track of changes between neighboring nodes.

• For every edge e = (u, v) ∈ ET and for every i ∈ {0...L + 1}, define V 01
e [i]

to be 1 if and only if there exists j ≤ i such that Xu[j] = 0, Xv[j] = 1 and
for all j < k ≤ i, U11

e [k] = 0. The variables V 01 are used to keep track of
insertions.

• Similarly, for every edge e = (u, v) ∈ ET and for every i ∈ {0...L + 1},
define V 10

e [i] to be 1 if and only if there exists j ≤ i such that Xu[j] = 1
and Xv[j] = 0 and for all j < k ≤ i, U11

e [k] = 0. The variables V 10 are used
to keep track of deletions.

• For every edge e = (u, v) ∈ ET and for every i ∈ {0...L + 1}, define
W 01

e [i] as follows. Let j ≤ i be the maximal index for which U11
e [j] = 1.

Then, W 01
e [i] = 1 if and only if U01

e [i] = 1 and for all j < k < i, U01
e [k] = 0.

Informally, W 01[i] = 1 means that position i is the first column of type (01)
encountered since the last column of type (11). Define W 10

e [i] analogously.

Thus, the complete set of variables contains: (n − 1) · (L + 2) X variables (ex-
cluding those at the leaves, whose values are fixed), 3(2n− 2) · (L + 2) U variables
(the U00 variables are never used), and 2(2n− 2) · (L + 2) V and W variables, for
a total of 15 · (n − 1) · (L + 2) variables, all of which are binary. The number of
variables in the ILP is thus linear in the size of the alignment.

Then, the linear constraints in Table 1 enforce the consistency of the set of
variables. A total of 23 constraints are required for each edge and each column of
the alignment, so we get 23 · (2n− 2) · (L + 2) constraints in total. Notice that all
the constraints in Table 1 are in fact in 3-CNF form, a fact that can be exploited by
certain 0-1 ILP solvers like PBS1. The constraints of admissibility of the solution
are not listed in Table 1, but the variables Xu[i] corresponding to forced 1’s are
constrained to take the value 1, thus considerably reducing the size of the ILP.

The objective function to minimize is defined based on an indel cost function
that may depend on the edge along which the indel takes place and on the length
of the indel. Assuming that the cost of an insertion of length l along edge e is the
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Logic form 0-1 ILP form
∀ab∈{01, 10, 11}, i=0...L+1, e=(u,v)∈T : ∀i = 0...L + 1, e = (u, v) ∈ T :
Uab

e [i] ↔ (Xu[i] = a) ∧ (Xv[i] = b). (1− U11
e [i]) + Xu[i] ≥ 1

(1− U11
e [i]) + Xv[i] ≥ 1

U11
e [i] + (1−Xu[i]) + (1−Xv[i]) ≥ 1

(1− U10
e [i]) + Xu[i] ≥ 1

(1− U10
e [i]) + (1−Xv[i]) ≥ 1

U10
e [i] + (1−Xu[i]) + Xv[i]) ≥ 1

(1− U01
e [i]) + (1−Xu[i]) ≥ 1

(1− U01
e [i]) + Xv[i] ≥ 1

U01
e [i] + Xu[i] + (1−Xv[i]) ≥ 1

∀ab∈{01, 10}, i=1...L+1, e=(u, v)∈T : ∀ab∈{01, 10},i=1...L + 1, e=(u, v)∈T :
V ab

e [i] ↔ (Uab
e [i] ∨ (¬U11

e [i] ∧ V ab
e [i− 1]) V ab

e [i] + (1− Uab
e [i]) ≥ 1

V ab
e [i] + (1− V ab

e [i− 1]) + U11
e [i] ≥ 1

(1− V ab
e [i]) + Uab

e [i] + V ab
e [i− 1] ≥ 1

(1− V ab
e [i]) + Uab

e [i] + U11
e [i] ≥ 1

∀ab∈{01, 10}, i=1...L+1, e=(u, v)∈T : ∀ab∈{01, 10}, i=1...L+1, e=(u, v)∈T :
W ab

e [i] ↔ (V ab
e [i] ∧ ¬V ab

e [i− 1]) (1−W ab
e [i]) + V ab

e [i− 1] ≥ 1
(1−W ab

e [i]) + (1− V ab
e [i]) ≥ 1

W ab
e [i] + (1− V ab

e [i]) + V ab
e [i− 1] ≥ 1

Table 1. Integer Linear Programming constraints for the Indel Parsimony Problem.

affine function αel + βe and the cost of a deletion of length l is the affine function
δel + γe, the objective function is:

minimize
∑

e=(u,v)∈ET

∑
i=1...L

(αe · U01
e [i] + βe ·W 01

e [i] + δe · U10
e [i] + γe ·W 10

e [i])

Indeed, each insertion along edge e contributes αe, and the insertions are in
bijection with the set {i|W 01

e [i] = 1}. Furthermore, each column of type (01) con-
tributes βe and such columns are in bijection with the set {i|U01

e [i] = 1}. Hence, the
cost of all insertions along edge e is given by αe · |{i|W 01

e [i] = 1}|+ βe · |{i|U01
e [i] =

1}| =
∑

i(αe ·W 01
e [i] + βe · U01

e [i]). The same reasoning applies to deletions.

7. Fractional relaxation heuristics

Integer Linear Programming is an NP-hard problem, and the best ILP solvers avail-
able to date (e.g. PBS 1) can only be used to solve optimally relatively small systems
of integer linear equations. Fractional relaxation is a technique whereby the linear
program is solved in the space of real numbers, which can be done in polynomial
time using the ellipsoid method12, and the non-integer variable assignments are
somehow interpreted in terms of the original problem16. This approach has pro-
duced efficient exact or approximate algorithms for several important algorithmic
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problems16. We use fractional relaxation as part of a simple but efficient heuristic
that produces good (and usually provably optimal) results in practice, although we
currently do not have any approximation bounds for it. Our scheme is summarized
as follows:

(1) Solve the fractional relaxation of the ILP, to obtain a fractional solution X(f)

for the X variables, with an optimal value O(f) of the objective function when
no integrality constraints are enforced. Notice that O(f) is a lower bound on
the optimal value of the objective function with integrality constraints.

(2) In a typical example, the large majority of the variable assignments in X(f)

are already integers. Let X(r) be the solution obtained by setting to zero all
variables such that X

(f)
u [i] < 1, and let score(X(r)) be the score of that solution.

If score(X(r)) = O(f), then X(r) is an optimal solution and we are done.
(3) If, in X(f), there are variables that are assigned values exactly 0 or 1, then do

step 3a, otherwise do step 3b.
3a. For each such variable, substitute, in the ILP constraints, the variable by
its value, thus resulting in an ILP with a smaller number of variables. Return
to step (1) to solve the reduced ILP.
3b. Solve the remaining ILP exactly (in exponential time) using programs like
lpsolve2 (with integrality constraints), or PBS1. If the ILP is too large to be
solved in reasonable time, simply round down the fractional solution.

This scheme is particularly efficient when the lpsolve program is used as the frac-
tional LP solver, and in almost all cases (see Section 9), few iterations suffice to
find a provably optimal solution without having to perform the expensive step 3b.

8. Divide-and-conquer approaches

Since the running time of any exact or approximation algorithm for IPP is likely to
be Ω((n · L)1+ε), we would obtain gains in time complexity if we could divide the
given IPP instance into a set of smaller IPPs, whose optimal solutions would then
be combined to produce an optimal solution to the original problem. Breaking the
original problem into subproblems is thus of great practical importance, especially
given than we eventually want to apply these algorithms to genomes that are several
billion nucleotides long. Here, we describe a procedure for doing so which guarantees
that the optimal solutions of the subproblems can be combined into an optimal
solution to the original problem. This is achieved by building a dependency graph
G whose connected components correspond to these independent subproblems.

We start by defining an undirected graph H = (VH , EH) which simply consists
of a set of copies of T , one for each alignment position: VH = {v(u,i)|u ∈ VT , 0 ≤
i ≤ L + 1}, and EH = {(v(a,i), v(b,i))|(a, b) ∈ ET , 0 ≤ i ≤ L + 1} (see Figure 3). We
can view solutions to the IPP as an assignment to the vertices of H. Now, define a
function f on the nodes of H: f(v(a,i)) = 1 if Av[i] is forced to one, and f(v(a,i)) = 0
otherwise.
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Fig. 3. Example of graphs H and G constructed from a given IPP instance. The numbers on the

vertices v of H are f(v) values. In G, dashed lines connect vertices from consecutive columns while
full lines connect vertices with same column.

The dependency graph G = (VG, EG) is defined as a variant of the line-graph of
H (see Figure 3). We have VG = {w(a,b,i)|(v(a,i), v(b,i)) ∈ EH}. The edges EG are of
two types: those connecting vertices corresponding to the same alignment column
(shown with full lines in Figure 3) and those connecting vertices from consecutive
columns:

E1
G = {(w(a1,b1,i), w(a2,b2,i))|0 ≤ i ≤ L + 1, b1 = a2, f(v(b1,i)) = 0}

E2
G = {(w(a,b,i), w(a,b,i+1))|0 ≤ i ≤ L, NAND(f(v(a,i)), f(v(b,i))) ∧NAND(f(v(a,i+1)), f(v(b,i+1)))}

EG = E1
G ∪ E2

G

Intituitively, two vertices w1 = (a, b, i) and w2 = (c, d, j) of VG are connected
if an assignment to v(a,i) or v(b,i) in VH could affect the decision to assign v(c,j)

or v(d,j). If i = j and b = c but w1 and w2 are disconnected, it is because their
common endpoint b is forced to 1, so that assignments on each side will not directly
affect the other. If j = i + 1 and a = c, b = d but w1 and w2 are not connected, it
is because both v(a,i) and v(b,i) are forced to one, or both v(c,j) and v(d,j) are forced
to one, in which case the assignments do not affect each other since one of them is
fixed. Note finally that if, for some (a, b) ∈ ET , we have f(v(a,i)) = f(v(b,i)) = 1,
then w(a,b,i) is incident to no edges. It is therefore in a connected component of its
own.

The following theorem, whose proof is given in Appendix B, shows that it is pos-
sible to solve each connected component of G independently, while still guaranteeing
the global optimality of the solution.

Theorem 8.1. Let C1, . . . , Cc be the connected components of G. An optimal so-
lution to the IPP can be obtained by combining optimal solutions obtained indepen-
dently for each Ci, for i = 1...c.

8.1. Near-optimal divide-and-conquer

In some cases, the ILP associated to some of the connected components of the graph
G will remain too large to be solved exactly by existing algorithms. In this case,
educated guesses about the state of certain ancestral characters have to be made.
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While these guesses may result in a non-optimal solution, the following theorem
proves that each such guess cannot worsen the solution by more than 3 (under the
unit-cost model).

Theorem 8.2. Suppose a ∈ VT and f(v(a,i)) = 0 ∀i = α, . . . , β. Let S′ be an
optimal solution. Then, there is a solution S such that cost(S) ≤ cost(S′) + 3 and
Sa[i] = 0 ∀i = α, . . . , β. Thus, guessing that Sa[i] = 0 ∀i = α, . . . , β cannot worsen
the solution by more than 3.

Proof. Let Sa[i] = 0 ∀i = α, . . . , β and Sv[i] = S′
v[i] everywhere else. S is an

admissible solution since f(v(a,i)) = 0 ∀i = α, . . . , β. Let b be a neighbour of a in
T . Let j be the first anchor for (a, b) to the left of α. Let k be the first anchor for
(a, b) to the right of β. Then, d(Sa[j . . . k], Sb[j . . . k]) ≤ d(S′

a[j . . . k], S′
b[j . . . k])+1.

This is true since, for the left hand side, the deletion cost is at most 1 and there
are no insertions. Since a has at most three neighbours in T , the result follows.

In pratice, if a connected component is too large to be solved, we identify the
node a with largest eligible interval α...β and set the corresponding ancestral values
to zero. For the same reason that we do not have an edge in G when the common
endpoint that two edges from H share is forced to 1, we no longer have an edge
between them in G when the common endpoint is set to 0. This is because the edges
no longer share a common vertex whose assignment needs to be optimized.

9. Experimental results

We have implemented the algorithms described in Sections 7 and 8 and used the
lpsolve 2 program to solve the resulting ILPs. Two biological datasets of mammalian
sequences were analyzed and the speed and accuracy are reported on both. The first
set consists of an 1.8 Mb region of the human genome containing the CFTR gene23,
together with orthologous sequences from chimp, macaque, mouse, rat, rabbit, cow,
dog, and armadillo. The second set is a superset of the first one, using the 20 species
used in Blanchette et al. 3.

Our algorithm first breaks the problem into independent subproblems using the
exact algorithm of section 8. As can be seen in Table 2, the original problems are
broken into a large number of components, most of which are small enough to be
solved by our fractional relaxation procedure. In practice, lpsolve can solve our
fractional LPs for connected components of up to 3000 vertices. In our 9-species
dataset, only 20 components exceed this size (with the largest containing 9361
vertices), while this number rises to 25 for 20 species (where the largest component
contains 37391 vertices).

When the resulting subproblems remain too large to be solved with lpsolve, we
apply the procedure described in Section 8.1, in which educated guesses are made
to resolve large blocks of consecutive unforced positions. This procedure usually
quickly breaks large components into suitably small ones. As can be seen in Table
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Subproblem
size

0 1 2-9 10-99 100-999 1000-9999 ≥ 10000

9 species 1401 2744 2281 1565 77 40 0
20 species 2731 2736 1963 1818 352 45 10

Table 2. Number of connected components of G with a given number of vertices, after the divide-

and-conquer approach has been applied. A size of 0 means that the component is a forced on.

# components (exact) (1) # guesses(2) # guessed components (3)

9 species 8108 31 10400
20 species 9655 81 11995

Table 3. (1):Number of connected components after the application of the exact divide-and-conquer

procedure. (2): Total number of guesses that had to be made to break all components to a size of
at most 3000 vertices. (3): Number of connected components after the guesses have been made.

# components =LB =LB+1 =LB+2 =LB+3
9 species 10400 10396 4 0 0
20 species 11995 11968 17 7 3

Table 4. The number of guessed components that differ by 0,1, 2 or 3 from the lower bound which
is the value of the optimal solution of the fractional relaxation of the ILP (see Section 8 step 1).

No solution was off by more than 3 from the lower bound.

3, a very small number of these guesses is sufficient to obtain solvable components.
Furthermore, a visual inspection of the guesses made revealed that almost all of
them were very likely to be correct, given the context of the alignment. Unfortu-
nately, it is difficult to quantify the effect of the guesses made on the accuracy of
the solution, as these problems are to large to be solved by any other method.

Our fractional relaxation method not only gives us an approximate solution to
the IPP, but it also gives us a lower bound on the total indel score of a connected
component. When the IPP solution produced has a score equal to the lower bound,
we know that the solution is optimal. As can be seen from table 4, the solution
obtained is provably optimal for more than 99.7% of the connected components
solved.

The complete 9-species data set took 395 minutes to solve on a desktop com-
puter, while the 20-species dataset took 794 minutes. As seen in Table 5, most of the
time is spent on a few large components, with the worst 9-species component requir-
ing about one hour to solve and the worst 20-species component requiring nearly
two hours. Note that an interesting aspect of our approach is that we can make as
many heuristic guesses as desired (at the cost of sometimes making wrong choices),
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Time(sec) 0-1 1-2 2-10 10-100 100-1000 > 1000
9 species 10205 78 44 39 28 6
20 species 7924 0 3933 82 49 7

Table 5. Distribution of the running time required to solve the connected components. Note that
components with less than 5 vertices are solved by enumerating all 32 possible solutions, which is

faster than calling the ILP solver.

thus reducing the size of the connected components to be solved to whatever size is
suitable given one’s computing resources. Also of interest is the fact that our algo-
rithm is easily paralellizable (by solving each connected component on a different
CPU), an important factor for large-scale, genome-wide ancestral reconstructions.

10. Conclusion and future work

Reconstructing indel scenarios is a crucial part of the more general problem of in-
ferring ancestral genomes3 and is equally important for the annotation of functional
elements14. In this paper we have shown that reconstructing the most parsimonious
set of insertions and deletions required to explain a given multiple alignment is
an NP-complete problem. We formulated the problem as an Integer Linear Pro-
gramming problem and described a divide-and-conquer method for breaking up
the ILP into smaller components. We showed that in practice, a polynomial-time
procedure based on fractional relaxation of the ILP almost always yields provably
optimal results. Our algorithm is sufficiently fast and parallelizable to comtemplate
whole-genome reconstructions.

Several questions remain open:

• What is the time complexity of the Indel Parsimony Problem on binary trees
under the unit-cost model?

• Does the solution to the fractional relaxation of the 0-1 ILP provide guaranteed
approximation bounds for the original problem?

• Can we elaborate more sophisticated rules for dividing the problem into sub-
components?

• Is it possible to take advantage of the particularly regular structure of the 0-1
ILP to solve it faster?

• Can the techniques described in this paper be used to solve the Indel Maximum
Likelihood Problem?
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Appendix A. NP-Completeness proof for the IPP

We prove the NP-completeness of the decision problem version of the INDEL PAR-
SIMONY PROBLEM (IPP):

INDEL PARSIMONY DECISION PROBLEM (IPDP)
Given: An alignment A, a rooted phylogenetic tree T with the leaves of T labeled
with the rows of A, and a positive integer K.
Question: Does there exist an admissible extension of A to the internal nodes of
T such that

∑
(u,v)∈ET

d(Au, Av) ≤ K?

The proof will be separated into two stages. First, we will define a related prob-
lem, the INDEPENDENT SET ON PAIRED INTERVALS problem (ISPI) and
show that the ISPI problem is NP-complete. We will then use this result to show
that the decision version of IPP is also NP-complete.

A.1. Definitions

A paired interval consists of a pair of non-overlapping closed intervals [x1, x2] and
[x3, x4] on the real line, with x1 < x2 < x3 < x4. A paired interval contains a point
p if x1 ≤ p ≤ x2 or x3 ≤ p ≤ x4. The points x1 and x4 form the external boundary
of the paired interval, and the points x2 and x3 define the internal boundary of the
paired interval. The open interval (x2, x3) is called the internal hole of the paired
interval. Two paired intervals overlap if they both contain a common point on the
real line. An independent set of paired intervals is a set of paired intervals such
that no two paired intervals in the set overlap. The overlap graph of a set of paired
intervals is the graph obtained by constructing a vertex for every paired interval
in the set and adding edges between vertices corresponding to paired intervals that
overlap.
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A.2. NP-Completeness of the INDEPENDENT SET ON

PAIRED INTERVALS

Let us now define an auxiliary problem that will be used in the proof that the
decision problem version of the IPP is NP-complete:

INDEPENDENT SET ON PAIRED INTERVALS (ISPI)
Given: A set S of paired intervals and a positive integer K

Question: Does there exist a subset S′ ⊆ S of K paired intervals such that no two
paired intervals in S′ overlap?

Theorem A1. The ISPI problem is NP-complete.

Proof. The ISPI problem is clearly in NP, since a nondeterministic algorithm can
just guess a set of K paired intervals and verify in polynomial time that none of
them overlap.

To show that the problem is NP-complete, we show that the 3SAT problem11

can be reduced to the ISPI in polynomial time. Let an instance of the 3SAT problem
be defined by the set U = {u1, u2, ...um} of literals and the set C = {c1, c2, ...cn}
of 3-clauses. Let us now construct the overlap graph G for a set of paired intervals
and choose an integer value K such that G contains an independent set of size at
least K if and only if C is satisfiable.

Our construction resembles the one presented in Garey and Johnson for the
proof of NP-completeness of the VERTEX COVER problem11. For every clause
ci, we create a gadget with vertices ci,1, ci,2, and ci,3 all connected to each other
in a triangle. We then create a gadget for each literal. Let N(ui) represent the
number of times ui or ūi is present in the clauses (whichever is greater). Then, if
N(ui) = 1, we simply create a vertex for ui and another one for ūi and connect
the two vertices together. However, if N(ui) > 1, we will create a cycle Ui with
the vertices V (Ui) = {ui,1, ūi,1, ui,2, ūi,2, . . . , ui,N(ui)+1, ūi,N(ui)+1} and the edges
E(Ui) = {{ui,1, ūi,1}, {ūi,1, ui,2}, . . . , {ui,N(ui)+1, ūi,N(ui)+1}, {ūi,N(ui)+1, ui,1}}.

Once all clause and literal gadgets are complete, we connect the clauses to their
assigned literals. For every clause vertex ci,j , we connect ci,j to the literal uk,l,
where the j-th literal in clause i is uk and l is the smallest integer such that uk,l is
not already attached to another clause vertex. An example of the resulting graph
is shown in Figure 4.

Let VU represent the total number of vertices in the gadgets for the literals
and VC represent the total number of vertices in the gadgets for the clauses. Let
K = VU

2 + VC

3 . Then we can choose at most K independent vertices from the
graph since any independent set can contain at most one vertex from each clause
gadget and half of the vertices from the each literal gadgets, corresponding to all
the vertices ui or the vertices of its complement ūi.

We can now show that the maximum independent set on our overlap graph is
of size K if and only if the corresponding clauses are satisfiable. First, note that
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ū4u4

u3u2u1

c1,1

c1,2

c1,3 c2,3

c2,2

c2,1
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Fig. 4. Overlap graph for the 3SAT problem with literals U = {u1, u2, u3, u4} and clauses
C = {{u1, ū3, ū4}, {ū1, u2, ū4}}.

when the clauses are satisfiable by some truth assignment of the literals, we can
select the vertices corresponding to the literals not included in the truth assignment
along with the vertices for the satisfied clause elements in each clause. This will give
us a set of K independent vertices. Conversely, if we have a set of K independent
vertices from our graph, we must have VU

2 literal vertices corresponding to either the
literal ui or its complement ūi for every ui ∈ U . By choosing the truth assignment
corresponding to the literal vertices not included in our independent set, we will
find that it satisfies all the clauses. Therefore, the two problems are equivalent.

The final step of our proof consists of showing that the overlap graph created
in our construction indeed represents the overlap graph of a set of paired intervals
(refer to Figure 5 for an example). To do this, we create one paired interval for
each vertex. We can start by connecting the first two vertices for each literal gadget
by aligning the left intervals for each pair of ui and ūi vertex. Similarly, we create
the triangle edges for each clause gadget by aligning the left interval of each clause
vertex in a triangle together. We are now free to align the right interval of each
clause element to its corresponding literal. Whenever we have a literal occurring
more than once, the right interval for the matched literal extends further than the
clause interval so that it may overlap with the next vertex in the literal cycle. Finally,
once all clause gadgets are fully connected to their associated literals, we close all
cycles with the remaining right intervals and position any unmatched literal right
interval to the right of all other intervals. This construction is clearly polynomial in
the size of the input to the original 3SAT problem, and requires a constant amount
of work per gadget. Therefore, our reduction is completed in polynomial time and
we have shown the NP-completeness of the ISPI problem.

For the purpose of the second part of the proof, we define a set of indel intervals
as a set of paired intervals with a few restrictions:

(1) All boundaries of the paired intervals in the set must be in Z.
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Fig. 5. Set of paired intervals corresponding to the overlap graph of Figure 4. Simple
alignments of literals with clauses are illustrated with dashed lines. The more complicated
assignments requiring the extension of a cycle for the literal gadgets are highlighted in the
shaded boxes.

(2) The left (right) external boundaries of each paired intervals are considered hard
boundaries. No paired interval may cross hard bounderies: a paired interval may
not contain the left (right) external boundary of another paired interval unless
it is also its left (right) external boundary.

(3) At least one hard boundary must be present in the internal hole of each the
paired interval.

(4) No two paired intervals in the set may share an internal boundary.

Corollary A2. The INDEPENDENT SET ON INDEL INTERVALS problem is
NP-complete.

Proof. This follows directly from our proof of Theorem A1. In order to show this,
we only need to modify the construction of the set of paired intervals slightly to
ensure that all paired intervals are created on the integer line, and that no two of
them share any internal boundaries. As we can easily see, this can be done without
affecting the overlap graph. The other two conditions - that no paired interval
crosses any hard boundary and that each paired interval contains at least one hard
boundary in its internal hole - are already satisfied by the construction.
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1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Ar

I1

I2

I3

Fig. 6. A set of three indel intervals and their corresponding sequences. In this example,
the optimal parsimony score is obtained with A{I1,I2}.

A.3. NP-Completeness of the IPDP

Theorem A3. The INDEL PARSIMONY DECISION PROBLEM (IPDP) is NP-
complete.

Proof. The IPDP problem is clearly in NP since a nondeterministic algorithm can
pick a set of insertions and deletions explaining the evolution of observed sequences.
We can then check in polynomial time whether the K insertions and deletions are
valid and explain the evolution of the sequences.

To show that the problem is NP-complete, let us reduce the INDEPENDENT
SET ON INDEL INTERVALS problem to the IPDP. We will do this by creating a
tree with a single ancestor and 3 aligned sequences for each indel interval (refer to
Figure 6 for an example of the construction). For the first sequence, we add a 1 at
the four boundary positions of the indel intervals, and 0s elsewhere. We refer to this
sequence as the interval sequence. The other two sequences are support sequences
that contain a single 1, at the left and right external boundary of the indel interval
respectively. The support sequences are present to ensure that the ancestor sequence
also has a 1 present at the external boundaries of the indel interval, and are at a
constant distance from any admissible ancestor root.

Let the default ancestor sequence Aφ
r represent the sequence obtained at the root

node r by setting Aφ
r [i] = 1 if and only if at least two of the leaf sequences have a 1

at position i. For a set of indel intervals I, we set AI
r to be the ancestor obtained by

taking the bit-wise OR operation of Aφ
r and the interval sequences corresponding

to the intervals in I.
Aφ

r contains the minimum total number of 1’s in the ancestor sequence. Since we
cannot reduce the number of necessary deletions by adding more 1’s in the ancestor,
Aφ

r also sets a lower bound on the minimum number of deletions required to get from
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any ancestor to the leaf sequences. Also, all interval sequences can be reached from
Aφ

r with a few deletions followed by a single insertion. Therefore, only ancestors that
remove the need for at least one of these insertions need to be considered to find
the ancestor generating the optimal parsimony score. Since the only ancestors that
can possibly remove insertions are those from AI

r , these are also the only ancestors
that we need to consider.

Let Sx represent the number of indel operations needed to go from the ancestor
Ax

r to the leaf sequences in our one-level tree. We will show that we can obtain the
indel parsimony score Sφ −K if and only if the original indel interval set contains
an independent set of size at least K.

First, assume that the set of indel intervals contains an independent set I of size
K. Since none of the sequences of I overlap, we can set the ancestor to be AI

r and
expand deletion operations that were necessary with the ancestor Aφ

r to include all
extra 1’s in AI

r . Also, we now do not need to have insertions in the K sequences of
I to get to the leaf sequence. Therefore, we now need Sφ −K operations to get to
all the leaf sequences.

Let us now consider the case where the set of indel intervals S does not contain
an independent set of size K. Then any subset U ⊆ S of size |U | ≥ K must contain
at least one pair of overlapping intervals s and t such that s contains one of the
internal boundaries of t. Denote that contained point as pt. By the definition of
indel intervals, we also know that there is a hard boundary ph in the internal hole
of s. In s, pt and ph are separated by one of the internal boundaries of s, denoted by
ps. When going from AU

r to the s in the corresponding IPDP, we wish to conserve
the point ps so we must delete pt and ph with two separate deletion operations.
Let U ′ = U \ s. With the ancestor AU ′

r , ps is not present in AU ′

r so we can delete
pt and ph in a single deletion operation before we insert ps. Therefore, going from
AU

r to s requires as many indel operations as going from AU ′

r to s. We can also
see that changing the ancestor from AU

r to AU ′

r cannot improve the number of
indel operations needed to get from the ancestor to any of the other leaf sequences.
Therefore, we have obtained a set U ′ of size |U ′| = |U | − 1 such that SU ′ = SU .
If the size of U ′ is still greater or equal to K, we can apply this logic recursively
until we get a set U ′′ of size less than K. At this point, the score of U ′′ must be
SU ′′ ≥ Sφ − |U ′′| > Sφ −K.

Thus, the indel parsimony score of our set of sequences is Sφ −K if and only if
the original indel interval set contains an independent set of size at least K. The
reduction described is clearly done in polynomial time, so we have shown that IPDP
is NP-complete.

Appendix B. Divide-and-conquer theorem

This section gives the proof for Theorem 8.1 presented in Section 8: An optimal
solution to the IPP can be obtained by combining optimal solutions obtained inde-
pendently for each Cα, α = 1 . . . k. B
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Lemma B1. If w(a,b,i) ∈ Cα and w(a,b,i+1) ∈ Cα, then (w(a,b,i), w(a,b,i+1)) ∈ EG.

Proof. Suppose (w(a,b,i), w(a,b,i+1)) /∈ EG. Then either f(v(a,i)) = f(v(b,i)) = 1 or
f(v(a,i+1)) = f(v(b,i+1)) = 1 (or both). Then, either w(a,b,i) or w(a,b,i+1) (or both)
would be incident to no edges, which contradicts the assumption that they belong
to the same connected component.

Lemma B2. Suppose Cα contains at least two vertices and suppose w(a,b,i) ∈ Cα

but w(a,b,i−1) /∈ Cα. Then, f(v(a,i−1)) = f(v(b,i−1)) = 1. Similarly, if w(a,b,i) ∈ Cα

but w(a,b,i+1) /∈ Cα, then, f(v(a,i+1)) = f(v(b,i+1)) = 1.

Proof. Assume that Cα contains at least two vertices and w(a,b,i) ∈ Cα but
w(a,b,i−1) /∈ Cα.

Suppose f(v(a,i−1)) = 0 or f(v(b,i−1)) = 0. Since w(a,b,i) ∈ Cα and Cα contains
at least two vertices, we do not have f(v(a,i)) = f(v(b,i)) = 1. Therefore, there is an
edge (w(a,b,i−1), w(a,b,i)), which contradicts w(a,b,i−1) /∈ Cα.

A similar argument applies for the second half of the lemma.

Lemma B3. If Cα contains only a single vertex w(a,b,i) then either f(v(a,i)) =
f(v(b,i)) = 1 or f(v(a,i−1)) = f(v(b,i−1)) = f(v(a,i+1)) = f(v(b,i+1)) = 1

Proof. If we do not have f(v(a,i)) = f(v(b,i)) = 1, then the argument in the previous
lemma applies.

Lemma B4. Suppose that f(v(a,i)) = 0, p is the parent of a in T and c is a child
of a in T . Then w(p,a,i) and w(a,c,i) are in the same connected component.

Proof. Follows directly from the definition of G.

Definition 1 (Block). Suppose (a, b) ∈ ET and ∀i = α, . . . , β, f(v(a,i)) = 0
or f(v(b,i)) = 0. Suppose further that f(v(a,α−1)) = f(v(b,α−1)) = f(v(a,β+1)) =
f(v(b,β+1)) = 1. Then, {(v(a,i), v(b,i))| i = α, . . . , β} ⊆ EH constitutes a block.

Definition 2. The score of EH(Cα) is the sum of the costs of all the blocks it
contains.

Theorem B5. The score of an optimal solution to the IPP on tree T and alignment
A is the sum of the scores of each connected component in G.

Proof.
By lemmas B2 and B3, we have that all the connected components are bounded

by forced anchors on each side. Since the union of all connected components contains
all the vertices in G, it contains all the edges in H. Thus, the sum of the costs of
all the EH(Cα) is the total cost of the tree, by definition of the indel distance d.
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Theorem B6. Changing the assignment to v(a,i) ∈ VH(Ck1) will not change the
cost of EH(Ck2) for k1 6= k2.

Proof. By lemmas B2, B3 and B4, the blocks containing all the edges (v(a,i), v(b,i))
are in the same connected component, namely Ck1 (since v(a,i) ∈ VH(Ck1) so one
of the edges (v(a,i), v(b,i)) ∈ EH(Ck1)). Since all the edges are in only one of the
EH(Cα), the cost of EH(Ck1) is the only one that is affected.

Corollary B7. An optimal solution to the IPP can be obtained by combining op-
timal solutions obtained independently for each Cα, k = 1 . . . n.


