
State space: all possible con�gurations of the domain
of interest
A start state: s0 ∈ S
Goal States: The set of end states
Operators A: Actions available , de�ned in terms of a
mapping from a state to its successor
Path: a sequence of states and operators
Path cost: number associated with each path
Solution: a path from s0 to a goal state
Optimal solutions: a solution with minimum cost
Search node: a state, the parent state and the opera-
tor used to generate it, the cost of the path, the depth
of the node
Candidate nodes: a set of nodes to be expanded
Expanding a node: Applying all legal operators to
the state in the node and generating all successor s-
tates
Uninformed (Blind) search: when we don't know
how far a state is to the goal. Has exponential worst
case complexity
Informed (heuristic) search: a heuristic is used to
guess how far the state is to the goal
Breadth-�rst search: all nodes at level i get expand-
ed before all nodes at level i+1, complete, O(bd) time
and space complexity
Branching factor: how many operators at most can
be applied to a state
Solution depth: how long is the path to the shallow-
est solution
Uniform cost search: When you enqueue the nodes
in a priority queue, ordered by increasing cost of the
path. Guaranteed to �nd an optimal solution
Depth-�rst search: Nodes at the deepest level get
searched �rst, O(bd) space comp, O(bd) time comp, not
optimal, not complete. Depth-limited search: DFS,
but cut o� at a max depth. It always terminates, but
still may not complete.
Iterative Deepening: What happens to your mom
every night It's like depth-limited search but you in-
crease the depth successively. It is complete, and has
linear space requirements.
Heuristic: Intuition about the distance from a state
to the goal.
Best-First Search: Nodes are enqueued in the order
of most promising to least promising. O(bd) time com-
plexity, not complete or optimal, greedy. Heuristic

Search Algorithm: Enqueue nodes by the cost of the
path and heuristic estimate of the node.
Admissible Heuristic: if h ∗ (n) is the cost of the
shortest path from n to any goal, then h(n) is admissi-
ble i� h(n) ≤ h ∗ (n)
A* search: Heuristic search with an admissible heuris-
tic, it is complete and optimal
Consistent: An admissible heuristic is consistent if
h(s) ≤ cost(s, s′) + h(s′) for every state s and its suc-
cessors s′

Iterative Deepening A*: Basically DFS, instead of
max depth, we use max f (h+ c), we expand all nodes
up to f , then we increase f . Uses less memory than
A*.
Real-Time search: instead of looking for a path to
the goal, we just move in the direction of the best path.
Real-Time A*: Do A* but with the g function equal
to cost from current state rather than from the start
α-pruning: Maintain a value α that has the lowest f-
value of any node in the current search horizon, and a
node costing more than α will never be expanded.
Optimization Problems: described by a set of states
and an evaluation function, we are only interested in
the best solution, and not the path.
Types of search methods:

• Constructive: start from scratch, build a solu-
tion

• Iterative improvement/repair: start with a
suboptimal solution, and improve it

• Global search: start from multiple states far a-
part, and go around the serch space

Hill climbing: greedy local search. Start at a con�g-
uration, go to its best successor, repeat until the best
successor is worst than the current state. Can get stuck
in local extrema, can get stuck on a plateau.
Simulated annealing: if a new value Ei is better than
old value E, move to Xi, if it's worse, move to Xi with
probability

e−
E−Ei

T

. T decreases with time. When T is high it's in
exploratory phase, when T is low it's in exploitation
phase. Simulated annealing is a randomized search or
Monte Carlo search.

Genetic algorithms: A solution is called an individ-
ual, each individual has a �tness, a set of individuals is
a population. Populations change over generations by
selection/mutation/crossover. Ways of selection:

• Fitness proportionate selection: Pr(i) =
Fitness(i)/

∑p
j=1 Fitness(j)

• Tournament selection: pick 2 random individ-
uals, compare them, the superior one is picked.

• Rank selection: sort hypothesis by �tness,
probability is proportional to rank

• Boltzman selection: Pr(i) =
exp(Fitness(i)/T )∑p

j=1 exp(Fitness(j)/T )

Elitism: Best solution ever encountered in hill climb-
ing/simulated annealing/genetic algorithms are saved.
Constraint satisfaction problem: a solution that
satis�es a set of contraints, basically a cost function
with minimum value at the solution, and max value
somewhere else. It is de�ned by:

• A set of variables that can take values from a do-
main

• A set of constraints specifying what combination
of values are allowed, they can be explicit (A¬3)
or implicit (A¬B)

• A CSP solution is an assignment of values to the
variables such that all constraints are satis�ed.

Binary CSP: each constraint relates at most two vari-
ables
Constraint Graph: Nodes are variables, arcs are con-
straints
Preferences(Soft constraints): represented using
costs, lead to constrained optimization problems
Backtracking search: Basically like DFS.
Forward checking: Assign value to X, look at each u-
nassigned Y connected to X and delete from Y's domain
those values which are inconsistent with X's assignment
Complexity of CSP:

• Worst-case is O(dn), d is number of possible val-
ues and n is the number of variables

• Tree constraint graphs are O(nd2)



• Nearly-tree structured graphs are O(dc(n− c)d2)
where c is the number of variables which when
removed turns the graph into a tree.

Iterative improvement algorithm: Start with a
broken assignment, reassign con�icted variables until
less con�icts occur
Min-con�icts heuristic: choose value that violates
the fewest constraints. It solves CSP in almost linear
time except for a very small subset of problems
Minimax search: Expand a complete search tree,
then go back up picking the worst value at min levels
and best value at max levels. Complete if game tree is
�nite, optimal against optimal opponent. Time com-
plexity O(bm), space complexity O(bm). Cope with
resource limitation by cutting o�, and use heuristic to
estimate values at cuto�.
α − β pruning: We keep the best possible value for
max as α and the best possible value for min as β and
if any node is lower we don't expand it. It does not
a�ect the �nal result.
Monte Carlo tree search: Play the game randomly
according to some random policy for each player, then
the value of each node is the average of the evaluations
after the simulation. usually you have a minimax pro-
portion and a monte carlo portion.
Rapid Action-Value Estimate: Assume the value
of the move is the same no matter when it is played.
Plan: A collection of actions for performing some task
with forms of knowledge representation to describe sets
of states. Declarative approach: Build agents with
two parts. A knowledge base which contains a set of
facts expressed in formal/standard lang. An inference
engine with general rules for deducing new facts
Logic: Formal language for representing information.
Syntax de�nes sentences in the language, semantics
de�ne the �meaning� of sentences
Ontological Commitment: What exists in the lan-
guage: facts/objects/relations/time
Epistemological Commitment: What states of
knowledge are in the language: true/false/etc
Interpretation: A way of matching objects in the

world with symbols in the sentence: a truth assignmen-
t: A sentence is valid if it's true in 1 interpretation,
satis�able if in all, unsatis�able if in none.
Entailment(KB � α): KB entails α i� α is true in
all worlds where KB is true. Inference(KB `i α): α
can be derived from KB by inference procedure i. i is
sound if when KB `i α, KB � α. i is complete if when
KB � α, KB `i α. Model checking: an inference
proof method by enumerating a truth table.
Conjunctive normal form: conjunction of disjunc-
tion of literals: OR clauses connected by ANDs
Disjunctive normal form: disjunction of conjunc-
tion of literals: And clauses connected by ORs
Horn form: Clauses with ≤ 1 positive literal, impli-
cations connected by ANDs
Resolution (for CNF): α∨β,¬β∨γα∨γ
Modus Ponens (Horn form): α1,...,αn,α1∨...∨αn→β

β
Forward chaining: when a new sentence is added to
KB, resolution happens, new sentences are added to
KB. Data driven, eager.
Backward chaining: when query q is asked, if q is in
KB, return true, else resolve q with other sentences in
KB and continue. Goal driven, lazy
Implication elimination: α→β

¬α∨β
Planning graph: Proposition and Action nodes ar-
ranged in levels in which they alternate. Lines between
levels indicate pre/post conditions, lines within levels
indicate mutual exclusions. Predicates: used to de-
scribe objects, properties, and relationships between
objects.
Quanti�er: ∀ or ∃
Atomic sentences: predicate(term1, . . . , termn) or
term1 = term2, Term = function(term1, . . . , termn) or
constant or variable
Complex sentences: made from atomic sentences
using connectives
Universal quanti�cation: ∀xTaking(x,AI) →
Smart(x), Existential quanti�cation:
∃xTaking(x,AI)Ŝmart(x) Quanti�er properties:
∀x∀y ↔ ∀y∀x, ∃x∃y ↔ ∃y∃x, ∃x∃y = ∃y∃x
∀xf(x)↔ ¬∃x¬f(x), same with exists.

Proofs: Modus Ponens α,α→β
β , And Introduction αβ

αβ̂
,

Universal elimination ∀xα
α{x/τ} , Resolution

α∨β,¬β∨γ
α∨gamma

Skolemization: ∃f(x) = Rich(G1), if ∃ is inside ∀:
∀xf(x) ← ∃yg(y) = ∀xf(x) ← g(H(x)). H(x) is a
skolem function.
STRIPS: Domain: a set of typed objects, states:
�rst-order predicates over objects in conjunction, op-
erators/actions de�ned in terms of preconditions and
e�ects, goals: conjunction of literals.
STRIPS Operator: preconditions are conjunctions
of positive literals, postconditions are in terms of an
Add-list and a Delete-list.
State-space planning: �nding a plan by looking
through state space looking for a path from start to
goal. Progression planners start from start, regression
planners start from goal.
Progression (Forward) Planning: Determine all
applicable operators in the start state, apply operator,
determine new content of knowledge base, repeat until
goal is reached.
Goal Regression: Pick action that satisfy (some of)
the goal's propositions, make a new goal by remov-
ing conditions satis�ed by this condition, adding the
preconditions of this action, repeat until goal state is
satis�ed by the start state.
Variations of Goal Regression: linear planning is a
stack of goals, not complete. non-linear (set of goals)
is complete but expensive.
Total vs Partial Order: total: plan is always a
strict sequence of actions, partial: plan steps may be
unordered
Bayes rule: P(H|e) = P(e|H)P(H)/P(e), P(e) = P
(e|H)P (H) + P (e|¬H)P(¬H). P(H|e) is posterior
probability, P(H) is prior probability, P(e|H) is likeli-
hood, P(e) is normalizing constant.
Conditional Independence: P (x|y, z) =
P (x|z),∀x, y, z, Knowing the value of y does not
change the probability of x if z is known. If C and
F are conditionally independe, P (C,F,B) decomposes
to P (C|B)P (F |B)P (B)


