State space: all possible configurations of the domain
of interest

A start state: sp € S

Goal States: The set of end states

Operators A: Actions available , defined in terms of a
mapping from a state to its successor

Path: a sequence of states and operators

Path cost: number associated with each path
Solution: a path from sy to a goal state

Optimal solutions: a solution with minimum cost
Search node: a state, the parent state and the opera-
tor used to generate it, the cost of the path, the depth
of the node

Candidate nodes: a set of nodes to be expanded
Expanding a node: Applying all legal operators to
the state in the node and generating all successor s-
tates

Uninformed (Blind) search: when we don’t know
how far a state is to the goal. Has exponential worst
case complexity

Informed (heuristic) search: a heuristic is used to
guess how far the state is to the goal

Breadth-first search: all nodes at level i get expand-
ed before all nodes at level i+1, complete, O(b?) time
and space complexity

Branching factor: how many operators at most can
be applied to a state

Solution depth: how long is the path to the shallow-
est solution

Uniform cost search: When you enqueue the nodes
in a priority queue, ordered by increasing cost of the
path. Guaranteed to find an optimal solution
Depth-first search: Nodes at the deepest level get
searched first, O(bd) space comp, O(b?) time comp, not
optimal, not complete. Depth-limited search: DFS,
but cut off at a max depth. It always terminates, but
still may not complete.

Iterative Deepening: What—happens—to—your—mom
every—night It’s like depth-limited search but you in-
crease the depth successively. It is complete, and has
linear space requirements.

Heuristic: Intuition about the distance from a state
to the goal.

Best-First Search: Nodes are enqueued in the order
of most promising to least promising. O(b%) time com-
plexity, not complete or optimal, greedy. Heuristic

Search Algorithm: Enqueue nodes by the cost of the
path and heuristic estimate of the node.

Admissible Heuristic: if h % (n) is the cost of the
shortest path from n to any goal, then h(n) is admissi-
ble iff h(n) < h * (n)

A* search: Heuristic search with an admissible heuris-
tic, it is complete and optimal

Consistent: An admissible heuristic is consistent if
h(s) < cost(s,s’) + h(s') for every state s and its suc-
cessors s’

Iterative Deepening A*: Basically DFS, instead of
max depth, we use max f (h+ ¢), we expand all nodes
up to f, then we increase f. Uses less memory than
A*,

Real-Time search: instead of looking for a path to
the goal, we just move in the direction of the best path.
Real-Time A*: Do A* but with the g function equal
to cost from current state rather than from the start
a-pruning: Maintain a value o that has the lowest f-
value of any node in the current search horizon, and a
node costing more than « will never be expanded.
Optimization Problems: described by a set of states
and an evaluation function, we are only interested in
the best solution, and not the path.

Types of search methods:

e Constructive: start from scratch, build a solu-
tion

e Tterative improvement/repair: start with a
suboptimal solution, and improve it

e Global search: start from multiple states far a-
part, and go around the serch space

Hill climbing: greedy local search. Start at a config-
uration, go to its best successor, repeat until the best
successor is worst than the current state. Can get stuck
in local extrema, can get stuck on a plateau.
Simulated annealing: if a new value E; is better than
old value F, move to X, if it’s worse, move to X; with
probability

T decreases with time. When T is high it’s in
exploratory phase, when T is low it’s in exploitation
phase. Simulated annealing is a randomized search or
Monte Carlo search.

Genetic algorithms: A solution is called an individ-
ual, each individual has a fitness, a set of individuals is
a population. Populations change over generations by
selection /mutation/crossover. Ways of selection:

e Fitness proportionate selection: Pr(i) =

Fitness(i)/ Y_%_, Fitness(j)

e Tournament selection: pick 2 random individ-
uals, compare them, the superior one is picked.

e Rank selection: sort hypothesis by fitness,
probability is proportional to rank

e Boltzman selection: Pr(i) =
exp(Fitness(i)/T)

25— exp(Fitness(5)/T)

Elitism: Best solution ever encountered in hill climb-
ing/simulated annealing/genetic algorithms are saved.
Constraint satisfaction problem: a solution that
satisfies a set of contraints, basically a cost function
with minimum value at the solution, and max value
somewhere else. It is defined by:

e A set of variables that can take values from a do-
main

e A set of constraints specifying what combination
of values are allowed, they can be explicit (4—3)
or implicit (A-B)

e A CSP solution is an assignment of values to the
variables such that all constraints are satisfied.

Binary CSP: each constraint relates at most two vari-
ables

Constraint Graph: Nodes are variables, arcs are con-
straints

Preferences(Soft constraints): represented using
costs, lead to constrained optimization problems
Backtracking search: Basically like DFS.

Forward checking: Assign value to X, look at each u-
nassigned Y connected to X and delete from Y’s domain
those values which are inconsistent with X’s assignment
Complexity of CSP:

e Worst-case is O(d™), d is number of possible val-
ues and n is the number of variables

e Tree constraint graphs are O(nd?)



e Nearly-tree structured graphs are O(d¢(n — c)d?)
where ¢ is the number of variables which when
removed turns the graph into a tree.

Iterative improvement algorithm: Start with a
broken assignment, reassign conflicted variables until
less conflicts occur

Min-conflicts heuristic: choose value that violates
the fewest constraints. It solves CSP in almost linear
time except for a very small subset of problems
Minimax search: Expand a complete search tree,
then go back up picking the worst value at min levels
and best value at max levels. Complete if game tree is
finite, optimal against optimal opponent. Time com-
plexity O(b™), space complexity O(bm). Cope with
resource limitation by cutting off, and use heuristic to
estimate values at cutoff.

« — 3 pruning: We keep the best possible value for
max as « and the best possible value for min as g and
if any node is lower we don’t expand it. It does not
affect the final result.

Monte Carlo tree search: Play the game randomly
according to some random policy for each player, then
the value of each node is the average of the evaluations
after the simulation. usually you have a minimax pro-
portion and a monte carlo portion.

Rapid Action-Value Estimate: Assume the value
of the move is the same no matter when it is played.
Plan: A collection of actions for performing some task
with forms of knowledge representation to describe sets
of states. Declarative approach: Build agents with
two parts. A knowledge base which contains a set of
facts expressed in formal/standard lang. An inference
engine with general rules for deducing new facts
Logic: Formal language for representing information.
Syntax defines sentences in the language, semantics
define the “meaning” of sentences

Ontological Commitment: What exists in the lan-
guage: facts/objects/relations/time

Epistemological Commitment: What states of
knowledge are in the language: true/false/etc
Interpretation: A way of matching objects in the

world with symbols in the sentence: a truth assignmen-
t: A sentence is valid if it’s true in 1 interpretation,
satisfiable if in all, unsatisfiable if in none.
Entailment(KB F «): KB entails « iff « is true in
all worlds where KB is true. Inference(KB F; a): «
can be derived from KB by inference procedure i. i is
sound if when KB F; a, KB E «a. i is complete if when
KB F o, KB I; a. Model checking: an inference
proof method by enumerating a truth table.
Conjunctive normal form: conjunction of disjunc-
tion of literals: OR clauses connected by ANDs
Disjunctive normal form: disjunction of conjunc-
tion of literals: And clauses connected by ORs

Horn form: Clauses with < 1 positive literal, impli-
cations connected by ANDs

Resolution (for CNF): %@fv”

150000, V...Va,—f

Modus Ponens (Horn form): < 5
Forward chaining: when a new sentence is added to
KB, resolution happens, new sentences are added to
KB. Data driven, eager.

Backward chaining: when query q is asked, if ¢ is in
KB, return true, else resolve q with other sentences in
KB and continue. Goal driven, lazy

Implication elimination: f(z/%

Planning graph: Proposition and Action nodes ar-
ranged in levels in which they alternate. Lines between
levels indicate pre/post conditions, lines within levels
indicate mutual exclusions. Predicates: used to de-
scribe objects, properties, and relationships between
objects.

Quantifier: V or 3

Atomic sentences: predicate(terms,...,term,) or
termy = terms, Term = function(terms,...,term,) or
constant or variable
Complex sentences:
using connectives
Universal quantification: VazTaking(x, AI) —
Smart(zx), Existential quantification:
3axTaking(z, AI)Smart(z) Quantifier properties:
VaVy <+ VYyVa, Jxdy <« FJydz, dzdy < dydzx
Va f(x) <> ~Jax—f(z), same with exists.

made from atomic sentences

ap

Proofs: Modus Ponens a’aﬁi_)ﬁ, And Introduction 2%,

Universal elimination —22%— . Resolution “Y2:28Yy
a{z/T} aVgamma

Skolemization: 3f(z) = Rich(G1), if 3 is inside V:
Vof(z) < Fygly) = Vof(a) « g(H(x)). H(x)is a
skolem function.

STRIPS: Domain: a set of typed objects, states:
first-order predicates over objects in conjunction, op-
erators/actions defined in terms of preconditions and
effects, goals: conjunction of literals.

STRIPS Operator: preconditions are conjunctions
of positive literals, postconditions are in terms of an
Add-list and a Delete-list.

State-space planning: finding a plan by looking
through state space looking for a path from start to
goal. Progression planners start from start, regression
planners start from goal.

Progression (Forward) Planning: Determine all
applicable operators in the start state, apply operator,
determine new content of knowledge base, repeat until
goal is reached.

Goal Regression: Pick action that satisfy (some of)
the goal’s propositions, make a new goal by remov-
ing conditions satisfied by this condition, adding the
preconditions of this action, repeat until goal state is
satisfied by the start state.

Variations of Goal Regression: linear planning is a
stack of goals, not complete. non-linear (set of goals)
is complete but expensive.

Total vs Partial Order: total: plan is always a
strict sequence of actions, partial: plan steps may be
unordered

Bayes rule: P(Hle) = P(e[H)P(H)/P(e), P(e) = P
(efH)P (H) + P (e|-H)P(—H). P(H|e) is posterior
probability, P(H) is prior probability, P(e|H) is likeli-
hood, P(e) is normalizing constant.

Conditional Independence: P(zly, z) =
P(z|z),Vx,y,z, Knowing the value of y does not
change the probability of x if z is known. If C and
F are conditionally independe, P(C, F, B) decomposes
to P(C|B)P(F|B)P(B)

Q
™)



