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Abstract

In recent years it has been shown that database replication is promising in improving performance and fault toler-
ance of database systems. Data replication means that there exist many copies of the same data. A challenge is replica
control, i.e., to keep copies consistent despite updates. Many replica control protocols have been proposed. Most of
these protocols have two shortcomings. Firstly, although these protocols perform well for cluster based systems in
Local Area Networks (LAN) they are not applicable in Wide Area Networks (WAN) due to the much longer commu-
nication delay in WAN. Secondly, database replication must gurantee certain levels of transaction isolation, i.e., to
what extent transactions will interfere with each other. Most of the existing protocols guarantee serializability, which
has become less popular than Snapshot Isolation (SI), a new transaction isolation level. My thesis aims to propose
a replication solution which guarantees SI and works well for WANs. Furthermore, I use a middleware approach
which provides replica control outside the database system. This provides flexibility and allows heterogeneous config-
urations. Existing middleware based approaches have severe restrictions. For instance, some require all operations
of a transaction to be known in advance or that transactions must be marked as read-only or update. Furthermore,
concurrency control is usually at a coarse level, e.g., table level. My research aims in overcoming these restrictions in
order to provide a flexible and transparent solution.

1 Introduction

1.1 What and why database replication in WANs

A replicated database system is composed of many copies of databases distributed across different sites. Each
database, being called a replica, can work individually to accept clients requests. The database replicas work cooper-
atively as a global database system to provide database services to clients at all sites. Clients submit read and write
operations to the system. They can bundle several such operations into the unit of a transaction, requiring that they are
executed as a single observable action.

Database replication is used for performance and availability. Performance refers to response time and throughput
of the system. Nowadays, businesses are becoming more geographically dispersed, yet employees still need access to
a single set of coherent data. [25] shows that the execution time for a transaction of the TPC-W benchmark [31] in
a centralized database is about 100 milliseconds. This does not include the communication cost between client and
database for a transaction. Assuming there is only one message round between clients and databases, we can expect an
additional few milliseconds added to the client response time if a client is connected to a local database, while the total
response time will be around 200 milliseconds in a WAN setup since message round trip is around 100 milliseconds in
WANs. With database replication, data can be replicated to remote sites so that clients in the remote sites can access
the data just locally. Thus clients receive fast response since WAN communication does not occur. In order to improve
throughput, since each replica can handle client requests, we can add replicas to increase the work capacity of the
system. This is especially useful in clusters configuration, but might also be true for WANs.

In regard to availability, if a replica fails, client requests can be routed to other replicas. In case of catastrophic
disaster such as fire, in which hardware is destroyed, data will survive as long as one replica, probably in a different
geographical site, remains accessible.

In all, database replication in WAN is desirable to be considered.
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1.2 Challenge of database replication

The main challenge of database replication is to keep the data copies consistent in the presence of updates. If a
client updates a data copy, the update has to be propagated to other copies. If clients connected to different repli-
cas submit updates on the same data items, such updates have to be coordinated to guarantee that the data remains
consistent.

An ideal replicated database system is that database replication should be transparent to clients as if there is only
one centralized database. This goal results in the challenge of how to guarantee the correct execution of transactions
globally as if they are executed on one logical database. In order to speed up read transactions which occur more often
than write transactions in most client applications, many replication solutions follow a scheme of Read One Write
All Available (ROWAA) in which reads are performed on one replica (the local) and writes on all available replicas
(those that have not crashed). With ROWAA, reads are as fast as having a single, local database, while writes trigger
a considerable update overhead. This is acceptable if the ratio of read to write is high, and has shown to outperform
basically all other approaches (e.g., quorum) [22]. My proposal also follows this scheme.

1.3 Existing work and their shortcoming

How to guarantee that the data in all replicas is consistent (i.e., the same) in the presence of updates is the big chal-
lenge of replica control. Some replication protocols provide strong consistency meaning that data must be consistent
at any time. This, however, increases response time for updates because replicas must coordinate such updates before
the response is sent to the client. Other protocols only provide weak consistency meaning that data may be inconsistent
temporarily though it will be consistent finally. This provides fast response for writes but transactions may read stale
data when they read local data which does not yet reflect updates performed on remote replicas. Some protocols with
weak consistency even require to rollback updates previously applied and committed. This complicates the system
and exposes to applications a weird behavior of the systems. Section 3.1 will discuss in more detail existing replica
control strategies. Many protocols with strong consistency have been proposed [3, 5, 4, 6, 10, 11, 15, 19, 20, 27]. They
guarantee data consistency at any time and provide reasonably good performance. However, these protocols only work
well in LANs but not in WANs because they do not consider the long message delay in WANs. My approach will
address this issue.

Moreover, many of the existing replica control protocols are not up to date in regard to the current database tech-
nology. Although databases allow transactions to execute concurrently and access data simultaneously, transactions
may not arbitrarily interfere with each other. Instead, different transaction isolation levels have been defined. They
refer to the extend to which concurrent transactions may access the same data items. The strongest transaction iso-
lation level is serializability [8]. With serializability, though transactions may execute concurrently, the effect is the
same as running the transactions serially one after another. Many databases have concurrency control mechanisms that
guarantee serializability. For a replicated system the correctness criteria is 1-copy-serializability, that is, the entire
system behaves as if there were only one logical database providing serializability.

However, recently Snapshot Isolation (SI) has emerged as a new isolation level [8]. SI is slightly weaker than
serializability and has become quite popular. It requires that transactions read data from a snapshot committed at the
time point when they start. Furthermore, if two transactions want to update the same data item at the same time, one
will be aborted. SI has been adopted by many database vendors such as Oracle, PostgreSQL, Interbase 4 and Microsoft
SQLServer (the upcoming YuKon). Although not being as strong as serializability as defined in the research literature,
SI avoids all isolation anomalies as defined by the industrial ANSI standard [7]. Hence, Oracle and PostgreSQL claim
that their SI based concurrency control mechanisms actually provide serializability. Although SI has become popular
for centralized databases, little has been done on replication with SI. My thesis will look at replica control, providing
SI at the global level, what I define as 1-copy-SI.

Recently, many middleware based approaches for database replication have been proposed (e.g., [5, 4, 21, 11,
20, 29]). The middleware approaches implement replica control algorithms in middleware components which reside
between client and databases. Figure 1 shows two typical architectures for middleware approaches. In the centralized
architecture (Figure 1.(a)) there is only one middleware component for all databases. In the decentralized one (Figure
1.(b)) there is one middleware component for each database in one site and these middleware components will coordi-
nate with each other. In order to distinguish middleware and database components in one site, hereafter, we call them
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Figure 1. Middleware architectures

middleware replica and database replica respectively, unless it is clear in the context. A site refers to the combination
of its middleware replica (if it exists) and its database replica.

There are many reasons for using middleware approaches. Database systems are huge software systems, access to
the source code is limited, and any optimized implementation within the database kernel will lead to a tight integration.
Furthermore, middleware based solutions can be developed and maintained independently of database systems, and
can potentially be used in heterogeneous environments. It is well known that middleware based replication is simple
and flexible. We also follow a middleware approach because of these advantages.

In order to provide global transaction isolation, many of them perform concurrency control at the middleware
level. However since a middleware does not have access to the database kernel, it does not know exactly which
records are accessed by a transaction, but typically only knows which tables are accessed1 . Hence, many middleware
based approaches [20, 5, 4, 11] restrict the execution of concurrent transactions if they access the same table, although
they access different records. My research aims at providing concurrency at the record level.

Apart of this, most existing replication protocols have some restrictions such as read-only transactions must be
marked in advance [5, 29], or all operations of a transaction must be known upon submission time [5, 4, 15, 19, 20].
Some protocols require complicated setup or only work in simulation [10, 6].

My thesis aims to propose a replication solution which provides strong consistency under the SI isolation level, and
performs reasonably well in WANs. It should overcome the restrictions of current protocols. Furthermore, it should
be easy to implement and use.

1.4 Structure of the paper

In the following, Section 2 gives a detail explanations of transactions and transaction isolation levels. Section
3 summarizes the problems of current existing replica control protocols. Section 4 proposes a basic replica control
protocol based on SI which works well in LANs. Section 5 extends the protocol to work well in WANs by using some
important optimizations. Section 6 shows some experimental results. Section 7 concludes what has been done so far
and shows my future schedule.

2 Background

2.1 Transactions and Concurrency Control

Database clients access the database in terms of transactions. A transaction is the basic execution unit in databases.
It contains a collection of read and write operations accessing data records within the database. If a transaction is run
successfully, we say that the transaction has committed. All data changes performed by committed transactions are
permanent. If a transaction’s execution is canceled or its results are not made permanent when it is finished, we
say that it has aborted. In this case, none of its changes will remain in the database. Transactions may interleave

1SQL statements are declaratively indicating the accessed tables while the particular records to be accessed are determined by predicates.
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Figure 2. Serializability v.s. Snapshot Isolation

their operations during execution. If two transactions overlap their execution in that neither starts after the other
commits/aborts, we say that these two transactions are concurrent to each other.

A schedule is a representation of transaction execution over time. Within one database, we assume that execution
of operations is serial, that is one after the other. Figure 2 lists 5 different schedules of execution of transactions

���
and

���
in a single database. Let’s denote reading data item x with value a as r(x,a), writing data item x=b as w(x,b),

committing transaction
���

as � � , and aborting
���

as � � hereafter. In Figure 2.(a),
���

and
���

execute serially. In the
remaining schedules, they execute concurrently.

We say that two operations conflict if they are from two transactions, access the same data item, and at least one
operation is a write. If one operation reads and the other writes the same data item, the corresponding two transactions
have a read/write conflict. If both operations write the same data item, the corresponding two transactions have a
write/write conflict. There is no conflict if two transactions read the same data item. Two transactions conflict if they
have conflicting operations. In all examples of Figure 2,

� �
and

� �
conflict. For instance, in Figure 2.(a), (b) and (e)���

and
���

have read/write and write/write conflicts on data item x. In Figure 2.(c), they have only read/write conflict
on x. In Figure 2.(d), they have read/write conflicts on x and y. Note that two transactions may conflict but they are
not concurrent, as in Figure 2.(a).

Concurrency control is the activity of coordinating the execution of concurrent transactions that potentially inter-
fere with each other. Concurrency control is mainly concerned with concurrent conflicting transactions since transac-
tions without conflicts to each other will not interfere, and only concurrent transactions interleave their operations.

2.2 Transaction Isolation Level

2.2.1 Serializability and Snapshot Isolation

In order for transactions not to interfere with each other, we could just execute them one by one serially as in the
schedule of Figure 2.(a). We call this a serial schedule and denote the execution order as

�	��
����
. However, concur-

rent execution allows better resource utilization and increases system throughput. An isolation level restricts the order
in which in a non-serial schedule the operations of concurrent conflicting transactions may interleave. The strongest
isolation level is serializability [8]. A schedule which satisfies serializability is called a serializable schedule, i.e.,
it is equivalent to a serial schedule. A serializable schedule orders all conflicting operations in the same way as a
corresponding serial schedule that has the same sets of operations. For example, schedules (a),(c) and (e) in Figure 2
are serializable but schedules (b) and (d) are not. The schedule (c) is equivalent to the serial schedule

� � 

� �
and

the schedule (e) to
� � 
�� �

. However, schedules (b) and (d) are not equivalent to either
� � 
�� �

or
� � 
�� �

.
The typical concurrency control method to provide serializability is strict two-phase-locking (2PL). Locking

requires that a transaction obtains a read (or write) lock on each data item before it reads (or writes) that data item.
There can be several read locks active on the same data item (allowing concurrent read) but when a write lock is active
no other read or write lock may be granted (exclusive write access). In strict 2PL, a transaction releases all locks only
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at the time of commit or abort.
In recent years, a slightly weaker isolation level than serializability, Snapshot Isolation (SI), has been proposed

[8]. A transaction executing on SI reads data from a snapshot of the committed data as of the time the transaction
started. That is, if a transaction T reads data item x it reads the version of x created by a transaction T’ which was the
last to update x and commit before T started. If two concurrent transactions try to update the same object, one will be
aborted. Real systems often detect such write/write conflicts by special forms of locking. With SI, we only need to
worry about write/write but not read/write conflicts when determining conflicting transactions, because transactions
always read committed data from a committed snapshot. The beauty of SI is that read-only transactions will never
request locks, abort or interfere with update transactions. Since in database applications, the number of read operations
is usually much higher than that of write operations, the SI approach can save lots of concurrency control overhead
compared to standard locking protocol requesting locks for both reads and writes.

For example, schedules (a), (c) and (d) in Figure 2 provide SI while schedules (b) and (e) do not. There are
no write/write conflicts for transactions in schedules (c) and (d) so that they are allowed to commit according to SI.
However, transactions in schedules (b) and (e) have write/write conflicts and they are concurrent. Thus they should
not be able to commit according to SI.

Note that there are schedules that are allowed under SI but they are not serializable (e.g., Figure 2.(d)), and some
serializable schedules do not fulfill the SI conditions (e.g., Figure 2.(e)). The SI isolation level is not as strong as
serializability since SI does not request read locks during execution. For example, in Figure 2.(d), there are two
read/write conflicts which are not detected.

2.2.2 1-copy-serializability and 1-copy-SI

In a replicated database system, it is not enough that each local database system provides serializability or SI in order
to guarantee “global correctness”.

For example, in Figure 3 there are two schedules over
���

and
���

in database replicas A and B respectively. They are
serial and hence serializable and SI. However, the data are not consistent in both database replicas after execution, i.e.,
x==2 in A and x==1 in B. The reason is that transactions with write/write conflicts do not commit in the same order
in the two database replicas (i.e.,

� � 
�� �
in A and

� � 
�� �
in B). In order to keep data consistent in all database

replicas, conflicting write operations must execute in the same order at all database replicas. In order to provide global
serializability or SI, even more is needed.

The standard correctness criteria is 1-copy-serializability [9]. Despite the existence of multiple copies, a data
item must appear as one logical copy (1-copy-equivalent), and the execution of concurrent transactions is coordinated
so that it is equivalent to a serial execution over the logical copy (serializability). As long as replica control provides
1-copy-serializability, it is guaranteed that data in all database replicas is consistent. This is because all database
replicas execute concurrent transactions in the same serializable order. Many replication solutions aim to provide
1-copy-serializability such as [12, 3, 5, 11, 6, 15, 17, 19, 27, 30].

The popularity of SI in centralized databases motivates me to apply SI on replicated database systems and derive a
corresponding global transaction isolation level, i.e., 1-copy-SI [25]. A global execution schedule provides 1-copy-SI
if the concurrent execution of a set of transactions on the different database replicas is equivalent to executing them on
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a centralized database providing SI. Intuitively, with 1-copy-SI, all local schedules must provide SI and all transactions
with write/write conflicts must be scheduled in the same order. However, although these two conditions are enough to
guarantee data consistency, they do not guarantee that the global execution schedule is equivalent to a SI schedule in
a centralized database.

For example, in Figure 4 initially data items x and y are 0 in both database replicas. There are 4 transactions,� �����������������
,
� ���������� !�#"��

,
��$

and
�!%

reading x and y in A and B respectively. Note that we are using ROWAA
so that

� �
and

� �
will execute their writes at both database replicas but

��$
executes only in A and

��%
in B. There are

two local SI schedules in A and B respectively. Since
� �

and
� �

do not have write/write conflict, they can execute and
commit in any order according to SI. In the figure,

� �
executes and commits before

� �
in A and after

� �
in B. After

execution, x is set to 1 and y is 2 in both database replicas. Hence, data is consistent.
However, in database replica A,

�&$
reads x and y from a snapshot after

� �
commits and before

� �
commits, while

in B,
� %

reads x and y from a snapshot before
���

commits and after
�&�

commits. This can never happen in a centralized
database SI schedule, in which only one of these two snapshots can hold. The replicated database does not behave as
if there is only one database.

Thus, I define two levels of 1-copy-SI, which I will only introduce informally here. [25] presents a formal defini-
tion. Both levels of 1-copy-SI satisfy the two conditions mentioned above, i.e. all local schedules must be SI and all
transactions with write/write conflicts must be scheduled in the same order at all database replicas. This will guarantee
data consistency in all database replicas. Strong 1-copy-SI additionally requires to order the transactions in such a
way that any two snapshots read by two transactions in two database replicas can both occur in an execution in one
centralized database. This can be achieved if all update transactions (no matter if they conflict) are executed and com-
mitted in the same order at all database replicas, because this will create the same series of snapshots at all database
replicas. The weak 1-copy-SI allows a transaction to read a local snapshot not existing in other database replicas. The
global schedule shown in Figure 4 provides weak 1-copy-SI. To provide strong 1-copy-SI,

� �
and

� �
should commit

in the same order at both database replicas.
Actually, little has been done so far on replica control with SI. [29, 32] use SI in a replicated database but they do

not define a global transaction isolation level such as 1-copy-SI. [16] defines global SI. Although the definitions and
the reasoning is quite different, their correctness criteria allows exactly the same schedules as strong 1-copy-SI.

3 Related Work

3.1 Categories of Database Replication

There exist many different solutions. Most recent solutions all use a ROWAA approach. The seminal paper of
Gray et al. [18] categorizes these replication strategies according to two parameters determining update location and
propagation time respectively.

In regard to update location, a primary approach only allows data to be updated in one primary site. Thus,
in a primary approach, if a client submits updates to a site other than the primary site, the updates will be either
refused or redirected to the primary site for execution. Different data items might have different primary sites. In
this case, however, transactions that want to update data items with different primary sites are disallowed. In contrast,
in an update everywhere approach the updates are accepted and executed at the local site to which the updates are
submitted. In general, update everywhere approaches are more flexible than primary approaches.

In both approaches, updates must be propagated to other sites. A lazy approach allows update transactions to
commit before propagating the update to other sites. In contrast, using an eager approach update propagation must
happen before the transaction commits, and thus within the transaction boundary. An eager approach provides strong
consistency because a transaction will not commit until it is certain that it will be able to commit in all other available
sites. However, it delays transaction execution. A lazy approach provides only weak consistency because of early
commit, but transaction response time in a lazy approach is lower than that in an eager approach.

3.2 Primary approach

In a primary approach update transactions are only allowed to execute at the primary site which performs traditional
concurrency control to isolate conflicting transactions. As long as other sites apply and commit updates in the same
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order as at the primary site, data will be consistent, no matter if the changes of transactions are propagated lazily (i.e.,
after commit) or eagerly (i.e., before commit). Since eager propagation delays transaction execution, most primary
approaches are lazy [29, 13, 26, 12, 10, 6].

Figure 5 shows the execution model of a typical lazy primary protocol used in the Ganymed [29] system. There
is one centralized middleware (i.e., scheduler), one primary database replica, and several secondary database replicas
in the system. Transactions can only be submitted to the scheduler. Ganymed assumes that the underlying database
systems provide SI (both primary and secondaries). Figure 5.(a) shows how update transactions are handled. The
transactions are forwarded to the primary database replica which will execute the transactions on SI, and then the
scheduler propagates the changes to all secondary database replicas after commit. Secondary database replicas will
apply the changes in the same order as the corresponding transactions are committed at the primary, no matter if they
conflict or not. If a transaction is read-only, the scheduler will forward it to a secondary database replica with least
load for execution, as shown in Figure 5.(b).

The system provides strong 1-copy-SI. However, there are several shortcomings. First, all requests go through the
single middleware resulting in WAN communication between the middleware and clients if the clients are remote, and
between the middleware and the database replicas if the database replicas are distributed across the WAN. This com-
munication can happen for each read and write operation. Hence the approach only works well in a LAN. Secondly,
secondary database replicas apply all updates serially, not allowing for any parallelism. Third, both middleware and
primary database replica are a single point of failure. They are also potential bottlenecks.

Other lazy primary protocols work slightly differently. [13, 26] do not have a middleware but allow clients to
submit requests as transactions to local database replicas. If a transaction is read-only, it will execute locally. Other-
wise, the local database replicas will forward the transaction to the primary database replica which will execute the
transaction (using local concurrency control to provide serializability) and then propagate the changes to secondary
database replicas after commit. The secondary database replicas will work as in Ganymed. [13, 26] provide 1-copy-
serializability.

All these approaches have the requirement to know if a transaction is read-only or not at the time of submission.
It decreases flexibility of applications considerably. Moreover, it may not work well in WANs for transactions with
multiple operations if update transactions must be forwarded to the primary site operation by operation. If clients are
not local to the primary site, the more operations there are in an update transaction, the more communication cost is
included in the response time. It is desirable to send only a constant number of messages for each transaction, as my
protocol will do.

[6] use a centralized replication graph for conflict resolution. Conflicting information must be delivered to a
centralized site for building the replication graph and the decision is sent back. The communication overhead is
large in WANs. [12, 10] allow multiple primaries (i.e., assigning different primaries to different data) and put certain
restrictions at the data placement in different sites. This restricts the flexibility of these protocols. Furthermore, if an
update transaction is submitted to a secondary site, it is simply aborted or rejected. Hence, the clients must know the
locations of the primaries.

Finally, there is a serious problem for lazy primary approaches in failure cases. In case that the primary site crashes
before propagating a change but after commit of a transaction, the transaction will not be applied in the secondary sites
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and data will be inconsistent.

3.3 Update everywhere approach

Update everywhere approaches do not require update transactions to be submitted or forwarded to a primary site
for execution. However, it is more difficult to keep data consistent than in primary approaches. This is because in
a primary approach conflicts between update transactions are detected in a single site (i.e., the primary) while in an
update everywhere approach conflicting update transactions can run concurrently on different sites. Thus, an update
everywhere approach requires additional coordination between different sites for concurrency control purposes, which
is not trivial. Gray et al. [18] claims that update everywhere approaches may lead to high deadlock and abort rates if
many transactions run concurrently on different sites.

Update everywhere approaches can be combined with lazy and eager propagation. Figure 3 is using lazy update
everywhere approach.

� �
commits in site A and then propagates the change to site B.

� �
commits in site B and then

propagates the change to site A. Thus, data in sites A and B will not be consistent. The inconsistency has to be detected
and reconciled, leading basically to a rollback of an already committed transaction. This example shows that lazy
update everywhere may lead to a serious problem, reconciliation. Although provided by many commercial systems, it
is recommended to use lazy update everywhere only if there are extremely low conflict rates.

The challenge of eager update everywhere approaches is to provide replica control in order to guarantee global
transaction isolation. Traditional eager update everywhere protocols use distributed 2PL. [18] has shown analytically
and [23] has shown empirically that such an approach does not scale. Recent proposals address the problems of eager
update everywhere with two different approaches, a middleware based scheduler or the use of powerful communication
mechanisms.

3.3.1 Update everywhere with centralized scheduler

[4] proposes a conflict aware replica control protocol, which is a typical example of an update everywhere protocol
using a middleware based scheduler. There is a single scheduler in the system. It is required that all tables to be
accessed in a transaction must be indicated at the start of the transaction. Upon start of a transaction, the scheduler
assigns a unique version number to the transaction. Then, the scheduler requires locks for the tables to be accessed
on each database replica in the order of version number. Thus, all conflicting operations are enforced to execute in an
identical order in all database replicas and 1-copy-serializability is obtained. After being successfully scheduled, the
client can submit one by one several read and write operations belonging to this transaction. The scheduler forwards
each write to all database replicas and returns to the client once one database replica has executed the write. A read
is sent to a single database replica. This replica must have executed all previous update operations of this transaction.
Therefore, the approach is called conflict aware scheduling.

The distributed versioning protocol [5] is similar to the conflict aware protocol [4] except that [5] uses a distributed
version number per table instead of a lock. C-JDBC [11] also works similarly. It does not require the knowledge of
all operations of a transaction in advance. The scheduler implements a table-based lock manager and uses strict 2PL.
The scheduler waits until it receives responses from all database replicas involved in the operation (one for reads, all
for writes) before it returns a response to the client.

Since the centralized middleware represents a similar architecture to the one of Ganymed, all these approaches are
not suitable for WANs.

3.3.2 Update everywhere with group communication system

In recent years many replica control protocols have been proposed [20, 23, 30, 3, 2, 24, 27], taking advantage of
multicast primitives provided by Group Communication Systems (GCS) [14]. Replicas build a group and multicast
messages to all group members. The semantics of the typical multicast primitives provided by GCS can be categorized
by two parameters. The ordering semantics that are interesting in the context of database replication are unordered,
FIFO (messages of one sender are received in sent order by all members), and total (for each two members receiving
m and m’, both receive them in the same order). The reliability semantics are unreliable (no guarantee that a message
will be received at all members), reliable (whenever a member receives a message and does not fail for sufficiently
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long time, then all other group members will receive the message unless they fail), and uniform reliable (whenever a
member p receives a message, all other members will receive the message unless they fail, even if p fails immediately
after the reception).

It has been shown in the previous sections that sending a message for each operation prevents protocols from
working well in WANs. If we want to avoid this, we can either multicast the whole transaction before execution (see
Figure 6.(a)) or multicast the changes performed by a transaction after execution (see Figure 6.(b)).

[20, 3, 2] work as Figure 6.(a). They require that all operations of a transaction must be known at start time.
Read-only transactions are executed locally. A transaction request for an update transaction is multicast in uniform
reliable and total order. Since total order guarantees transaction requests are delivered in the same order in all sites, the
commit order of transactions can be the same without further coordination among sites. [3, 2] apply the transactions at
each site serially. In [20] transactions will request all necessary locks on tables in the same total order in all sites upon
receiving the transaction request. [20] defines different primary sites for different transactions. A transaction will be
executed only in its primary after all its locks are granted, then its changes will be multicast to other sites. Other sites
will apply these changes again in the correct lock order. [20, 3, 2] guarantee 1-copy-serializability.

Postgres-R [32] works as Figure 6.(b). All databases provide SI. A transaction executes first locally. After ex-
ecution, its writeset is multicast in total order to all sites for validation. If it conflicts with a concurrent transaction
whose writeset was delivered earlier, it will be aborted. Otherwise, its writeset will be applied serially at remote sites
according to the delivery order which is identical in all sites. This sacrifices the concurrency of the system although it
does guarantee strong 1-copy-SI as defined in Section 2.2.2. Postgres-R is integrated into the kernel of PostgreSQL.

GlobData [30] also performs execution before multicast, as Postgres-R. Each data item has a version number which
will be increased upon a change being committed. Conflict detection is based on the version number of data accessed
by transactions. In order to detect both read/write and write/write conflicts both the version numbers of data items read
and the changes are multicast. Conflict detection is done upon receiving such message in total order, possibly leading
to aborts. GlobData uses a GCS designed specially for WANs. The Database State Machine [28] works similarly
to GlobData. However, unlike GlobData, after local execution, only identifiers of the data items read and written by
update transactions and the changed values are multicast to other sites, and read-only transactions just commit locally
and their read sets are not multicast. All sites will apply and commit the changes serially if no conflicts are detected.
Both GlobData and Database State Machine provide 1-copy-serializability.

All these approaches have potential for WANs because only one message (except two messages in [20]) is sent
per transaction. However, the approach shown in Figure 6.(a) requires to distinguish between read-only and update
transactions and must know all operations in advance. Hence, it is inflexible. The approach shown in Figure 6.(b)
seems to have the great potential for low communication overhead and flexibility. However, GlobData and Database
State Machine require to send read sets to provide 1-copy-serializability, what we believe is infeasible and also not
needed for 1-copy-SI. Postgres-R is the closest to what we want. However it is implemented within the kernel of
the database, increasing the complexity. Hence it will be difficult to implement any further optimizations that might
be needed for WANs. The question is whether we can design a middleware based approach with at least the same
functionality and optimal for WANs. Moreover, Postgres-R applies changes serially at the remote sites. This sacrifices
the concurrency of execution.
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3.4 Contribution to be achieved

In summary, the objective of my thesis is to develop a replication solution working well in WANs despite long
communication delay. It should provide strong consistency by guaranteeing 1-copy-SI which is based on SI, a popular
centralized transaction isolation level. The solution will overcome the restrictions exhibited by current approaches,
e.g., read-only transaction do not need to be marked in advance, neither do all operations of a transaction be known
in advance. The solution will be middleware based for simple implementation and for adaptability to all kinds of
databases. In contrast to most existing middleware based approaches, it will provide concurrency control on a record
basis and not a table basis.

4 Basic SI replication protocol for LANs

In this section, I will first present a protocol working in LANs. The protocol guarantees strong 1-copy-SI. However,
there is a deadlock problem when it works with real databases. I will show how the problem is solved. This work will
be published in [25].

4.1 Basic idea

Figure 1.(a) shows the architecture of the system. There is a centralized middleware instance for all database
replicas, each of which provides SI. A client will submit its operations (e.g., begin, read, write, commit/abort) one by
one to the centralized middleware.

The execution flow of a transaction is as following. At start of a transaction, the middleware chooses one database
replica to execute the transaction (called local database replica). The client submits operation by operation to the
middleware which forwards it to the local database replica to execute. Upon receiving the commit of a transaction,
the middleware will retrieve the writeset of the transaction from the local database replica. The writeset contains the
new values and the identifiers of the data items written by the transaction. If there is no writeset (i.e., the transaction is
read-only), the transaction will commit locally. Otherwise, the middleware validates the transaction against concurrent
transactions that have already committed. If the validation succeeds (i.e., there is no conflict), the writeset of the
transaction will be sent to all database replicas in FIFO order. Upon delivering writesets, remote database replicas will
apply the writeset and all database replicas will commit the writesets in FIFO order.

This protocol does provide strong 1-copy-SI because all database replicas agree to commit the transactions in the
identical order, which is determined uniquely by the centralized middleware. The challenge of this protocol resides in
the validation, i.e., how to detect if two transactions are concurrent and conflicting. Note that the protocol is based on
SI so that we are not worried about read/write conflicts. Hereafter, we call two transactions conflicting transactions if
and only if they have write/write conflicts.

To detect if two transactions conflict, we can simply look at their writesets. Since a writeset contains identifiers
for data items it modified, if two writesets have overlapping identifiers, the transactions have write/write conflicts.

To detect if two transactions are concurrent is more tricky. Recall that it is defined in Section 2.1 that two trans-
actions are concurrent if one starts before the other commits/aborts and vice versa. Since the centralized middleware
knows when transactions start and commit, it can detect concurrent transactions. It will be explained in detail in the
next section.

4.2 Basic protocol

The basic protocol is based on the assumption that write/write conflicts of transactions will be detected at the
commit time and thus, writesets of transactions can be retrieved after their execution. The detailed protocol running in
the centralized middleware is shown in Figure 7. The middleware maintains a queue (

�(' )+*,'�-
) for all the transactions

which have been validated but not committed yet. The writesets of these transactions will be sent to all database
replicas for being executed and committed in identical order. However, different database replicas may apply and
commit the writesets at different speed. The middleware has to keep track of the latest status of each database replica by
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1. Initialization:

(a) .&/ �0- -1*123�546�
(b)

�(' )+*,'�-7�84:9�;
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(e)
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vi. return to client
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i. execute in local = > and return to client

(c) else (commit)

i.
� W,X8[:\ �84^] / -1� P *Z- / ' / -S� � >W � from local = >

ii. if
� W_X [:\ 4K`

, thena commit and return
iii. end if
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vi. elsea release
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vii. end if

(d) end if

3. Upon
� W is first in

-,A � ACB�BI*Z- ECF / F / H
(a) if

� W is remote, then
a begin

� >W at = >a apply
� P *Z- / ' / - W to = >

(b) end if
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(e)
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2 M B�F0- / � H
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Figure 7. Simple SI replication protocol for LANs

two data structures, a queue (
-,A � ACB�B�*D- ECF / F / H ) which contains writesets to be executed and committed at database

replica = > and an identifier (
) � 'G- � ACB�BI*Z-1- / 2 -1*12 H ) which is the last committed transaction tid at = > .

When a transaction
� W begins, it will be assigned a local database replica and a

� W_X �S/�P - which is the last committed
transaction id of this replica (step 2a). We denote

� >W as the copy of
� W executing in = > . The read and write operations

of
� W will be executed in the local database replica (step 2b). When a commit operation arrives (step 2c), the writeset of

the transaction will be retrieved by the middleware from the local database replica (step 2(c)i). If the writeset is empty,
this is a read-only transaction so that it can commit in the local database replica and the client receives a response
(step 2(c)ii). If

� W is an update transaction, a validation is performed against all transactions which have passed their
validations (step 2(c)v).

The validation will check if there is a concurrent conflicting transaction that passed validation already. To deter-
mine if an uncommitted transaction

� W is concurrent to a transaction
� d

that already validated, we just need to compare� W,X �S/�P - and
�0d X -1*Z2 . If

� W_X ��/GP - is larger than or equal to
�0d X -1*12 , they are not concurrent. Otherwise, we know

� W has
started before

�0d
validated and thus

� W and
�0d

must be concurrent. The validations of transactions must be serial.
Otherwise, a transaction might not validate against a concurrent conflicting transaction validating at the same time.

If there is a concurrent conflicting transaction,
� W will be aborted (step 2(c)vi). Otherwise,

� W succeeds the
validation and is allowed to commit. A unique identifier tid is assigned to

� W , and
� W is put into

�i' )�*,'G-
and-,A � ACB�BI*Z- ECF / F / H for all database replicas. The writeset of

� W will be applied in remote database replicas se-
rially (step 3a). In the local database replica, it only needs to commit. All database replicas will increase their) � 'G- � ACB�BI*Z-1- / 2 -1*12 H at the time of committing

� W (step 3e). Note that committing a transaction at a database replica
(step 3d and 3e) and starting a transaction (step 2(a)iv and 2(a)iii) are mutually exclusive to each other.
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Figure 8. Deadlock on strong 1-copy-SI

The protocol detects concurrent conflicting transactions in the centralized middleware, and only allows the transaction
that validated first to commit. All writesets are applied serially and all transactions are committed serially in the same
order at all database replicas. Hence, data consistency and strong 1-copy-SI is guaranteed. Please see [25] for a proof.

4.3 Deadlock problem when working with real databases

The previous section shows in detail how the protocol works to provide data consistency and strong 1-copy-SI. It
assumes that write/write conflicts will be detected at the time of commit so that each transaction can perform write
operations without being blocked. However, most existing databases such as Oracle and PostgreSQL will detect
write/write conflicts during execution by means of strict 2PL. In these real databases, when a transaction

���
tries to

write a data item, it will be blocked from execution if there is already another transaction
�	�

writing the same data
item (i.e., holding the lock on this data item). If

���
commits,

���
will be aborted. If

���
aborts, the lock will be released

and
���

will be able to continue. If there is a local deadlock, one of the transactions will be aborted. Using such a
database as replica, the protocol of the previous section might run into a deadlock spanning across the database and
the middleware. Let’s look at an example.

In Figure 8, there are three transactions,
� �o�0�p�+���G���Oq � �r�g�s�� !�#"��Oq ��$ �g�p�+���utv�O�u�p�� !�utv�

.
� �

executes locally in
database replica A, and

� �
and

��$
in B.

� �
and

� �
execute completely.

�&$
performs w(x,3) and waits on

� �
to release

its lock on y. Now in the middleware
� �

validates first, then
� �

, and they have to commit in this order at database
replicas A and B.

� �
’s writeset is now applied at database replica B.

� �
is blocked by

��$
because

��$
is holding a lock

on x. As a result, there is a deadlock spanning across the database and the middleware in that
� �

waits for
� �

’s commit
in the middleware,

���
is waiting for

� $
on x, and

� $
is waiting for

�&�
on y in the database.

4.3.1 Solution to deadlock

The deadlock described in the previous example is due to the fact that
� �

must commit after
� �

even though they do
not have write/write conflict. In order to avoid the deadlock, we have to allow concurrent commit of non-conflicting
transactions, i.e.,

� �
and

� �
can commit concurrently in the previous example. Since

� �
and

� �
do not have write/write

conflicts, no matter in which order they commit, the data will be consistent at both database replicas. However, if
� �

and
� �

happen to commit in different order at two database replicas, the global schedule will provide weak 1-copy-SI,
since there may be two transactions reading two contradicting snapshots at two database replicas respectively, as has
been discussed in Section 2.2.2.

If we still want to keep strong 1-copy-SI guarantee, we have to delay the start of local transactions. The basic
idea is as following. We allow concurrent commit of non-conflicting transactions at each database replica in order to
break deadlocks. Thus, transactions may commit in different order at different database replicas and the snapshots
provided by different database replicas may be different. However, we only allow local transactions to read data from
certain snapshots that can be produced by a SI schedule in one centralized database. Note the problem is that, if a
transaction

� W commits before a transaction
�Ld

who validated before
� W , it may create a snapshot not existing at other

database replicas. We call this a hole in the commit order. We disallow any local transactions to read this snapshot
by disallowing start of transactions if there are holes. The start of these transactions will be delayed until there are no
holes, i.e., there are no uncommitted transactions who were validated before a committed transaction.

For example, in Figure 8,
� �

validates before
� �

. We allow concurrent commit of non-conflicting transactions so
that

� �
may commit before

� �
in database replica A while

� �
commits after

� �
in B. B commits

� �
and

� �
in an order
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different from the validation order. If a local transaction
� %

wants to start after
�&�

commits but before
���

commits,
its start will be delayed. Otherwise,

� %
could read data from a snapshot not existing in A.

� %
will be allowed to start

after
���

commits. Thus, it will read data from a snapshot after both
�w�

and
���

commit. Hence, all transactions in all
database replicas will see snapshots that conform to the validation order. Thus, strong 1-copy-SI is guaranteed.

4.3.2 Concurrent execution of writesets and liveness problem

Although the concurrent commit of non-conflicting transactions solves the deadlock problem, the concurrent execution
of remote writesets introduces an additional problem, namely a liveness problem. We might delay the start of a local
transaction indefinitely if there are always holes (i.e., livelock). A solution to this liveness problem is to disallow new
holes when there are already local transactions waiting to start. Only transactions that remove holes or do not create
new holes are allowed to commit. Of course, this has to be coordinated in such a way as to guarantee that no new
deadlocks can arise. [25] discusses this issue in more detail.

We would like to note at this point that concurrent execution of writesets increases concurrency and hence de-
creases response time. All other similar protocols (e.g., Postgres-R [32], GlobData [30] and Database State Machine
[28]) just apply writesets serially.

5 SI replication protocol for WANs

In the previous section, I have discussed a basic replication protocol working well in LANs. In this section, I will
present some optimizations which make the protocol work well in WANs.

5.1 Optimization 1: decentralized middleware with GCS

The basic protocol in Figure 7 does not work well in WANs because of its centralized middleware for exactly the
same reasons as other middleware based approaches (e.g., Ganymed [29] or conflict aware scheduler [4]). Therefore,
I propose an approach with decentralized middleware replicas based on the basic protocol in Figure 7.

The architecture is as in Figure 1.(b). Each site has a middleware replica connecting to a local database replica.
Clients will submit their requests to their corresponding local middleware replicas. As in the basic protocol (Figure 7),
the requests will be executed optimistically in the local database replicas. Upon commit, the writeset of a transaction
will be retrieved and the middleware replicas perform validation. This validation has to be coordinated in order to
guarantee that the transaction commits or aborts at all database replicas. In Section 3.3.2, I have introduced total order
multicast which guarantees that all messages will be delivered to all group members in the same order. We can take
advantage of this characteristics of GCS to guarantee that all middleware replicas take the same validation decisions.

In each middleware, after the writeset of a local transaction is retrieved, it will be multicast in total order to all
middleware replicas including the sender. Because of total order delivery semantics, writesets will be delivered to all
middleware replicas in the same order. Let’s perform validation according to the delivery order one by one. Thus,
in each middleware replica, each transaction will be validated against those transactions delivered before it. If two
transactions are concurrent and conflicting, and the first to be delivered passed validation, then the second has to fail
validation. For that, we have to have a mechanism to determine at each middleware replica whether two transactions,
even if executed at two different sites, are concurrent or not. If we are able to do this and since all transactions are
validated in the same order in all middleware replicas, it is guaranteed that all middleware replicas will take the same
decision to commit and abort transactions depending on if their validations succeed or fail.

5.1.1 Example

Let’s look at an example here. In Figure 9,
���

and
���

both modify a data item x so they have write/write conflict.
They are concurrent to each other because they start simultaneously in sites A and B respectively. The writesets of

���
and

���
will be multicast in total order after execution. Assume the writeset of

�w�
is delivered before that of

�&�
. At

each site’s middleware replica,
���

performs its validation against no transaction. So
���

will pass the validation. In A’s
database replica,

���
just needs to commit. In B’s database replica, the writeset of

�w�
will be executed and committed.

Now assume the writeset of
�&�

is delivered.
���

will fail its validation at both middleware replicas since the concurrent
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Figure 9. Decentralized approach with GCS
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Figure 10. Decentralized approach without GCS

conflicting transaction
� �

has been validated before. So in B’s database replica, where
� �

has executed,
� �

will abort.
In A’s middleware replica, the writeset of

� �
will be discarded. The example shows that both sites reach the same

decision to commit
� �

but abort
� �

.
The mechanism to determine that

� �
and

� �
are concurrent is similar to the centralized case. Transactions receive

a transaction identifier if they pass validations. At start time the transaction receives a cert timestamp that is equal to
the validation timestamp of the last transaction that committed at the local database replica. This cert timestamp is
piggybacked with the writeset and helps identifying concurrent transactions.

5.1.2 Fail-over and recovery

[25] discusses a mechanism that was developed at Universidad Politecnica de Madrid and I am planning to adopt this
approach. A client is connected to a middleware replica. We need to consider the failures of the middleware replica
and the underlying database replica. For simplicity, we assume that the client can be notified of both failures. When
the middleware replica or underlying database replica crashes, the client will be redirected to another middleware
replica. If the crash happened in the middle of execution of a transaction, the client will be informed about the abort
of the transaction. If the client had already submitted the commit request the transaction might have committed before
the crash or aborted. The client will transparently receive the correct outcome. This is implemented in a special JDBC
driver which handles the connection between the client and the middleware replica. Part of this driver code runs at the
client, other parts run on the middleware replica. For details please refer to [25] and the special JDBC driver developed
for the ADAPT project [1].

Currently the recovery procedure and joining of new sites are not considered yet. They will be done in the future.

5.2 Optimization 2: disregard GCS, use sequencer for validation

5.2.1 Basic idea

Section 5.1 presents a decentralized approach by using total order delivery provided by GCS. However, GCS is a
complicated software. The total order delivery provided by GCS is an expensive process due to coordination overhead
between different members. Some of this coordination overhead is unnecessary for replica control purposes. This
motivates me to not use GCS for WAN but instead integrate the features of the GCS that the replica control uses into
the replica control system itself.

[14] gives a comprehensive survey of different total order algorithms. I also did extensive experiments on testing
the performance of different total order algorithms in WANs. Due to space limitations, I will not show my experiments
here. My experiments discover that a sequencer based total order algorithm is generally more stable, faster and
more scalable than the rest of algorithms in WANs. In the typical sequencer based algorithm, a message is sent
to a sequencer, which attaches a sequence number and then multicasts it to all members. Thus, all sites can deliver
messages in the same order according to the sequences attached to the messages. The simplicity and good performance
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of sequencer based total order algorithm motivates me to use a middleware replica as a sequencer in order to achieve
total order validation. The basic idea is as following.

There is a sequencer site in the system. All middleware replicas will send their writesets to the sequencer middle-
ware replica for validation. If the validation fails, the sequencer will send back an abort decision to the transaction’s
local middleware replica. Otherwise, it will forward the writeset and the commit decision to all middleware replicas
in FIFO order (e.g, through TCP/IP socket). Since there is only one sequencer, the decision will be unique in all sites.

With this, we have actually a combination between a centralized and a distributed middleware. Clients are con-
nected to a local middleware replica in order to keep communication between client and middleware fast. Additionally,
a dedicated middleware replica is responsible for concurrency control. Communication overhead to this dedicated
middleware replica is constant per transaction and does not depend on the number of operations in the transaction.

5.2.2 Example

Figure 10 shows an example using a sequencer instead of GCS.
�w�

,
���

and
� $

start simultaneously in 3 sites respec-
tively. They are concurrent to each other because they do not see each other’s commits.

� �
and

� �
have write/write

conflict on a data item x.
� �

and
��$

have write/write conflict on a data item y. The writesets of these three transactions
will be sent to the sequencer’s middleware replica after their executions. Assume the arriving order of writesets at
the sequencer’s middleware replica is

� �
,
� �

and
��$

.
� �

will perform validation first and succeed because there is no
concurrent conflicting transaction validated so far.

� �
will be able to commit and send its writeset to other sites’ mid-

dleware replicas in FIFO order. Their corresponding database replicas will execute and commit the writeset without
validation.

���
will perform its validation after

�&�
in the sequencer’s middleware replica. The validation will fail since

concurrent conflicting transaction
�&�

is allowed to commit. So the writeset of
���

will be discarded in the sequencer’s
middleware replica and an abort decision will be sent back to A,

�w�
’s local site. Upon receiving the abort message,

A’s database replica will abort
���

. Then comes the validation of
� $

in the sequencer’s middleware replica. Although
there is a concurrent transaction

�&�
which has passed the validation,

�&�
does not conflict with

� $
. Hence,

� $
passes its

validation, its writeset will be executed, and
� $

commits in the sequencer. At the same time, its writeset will be sent
to A and B. A’s database replica will execute and commit the writeset while B’s database replica only needs to commit��$

. The example shows that all three sites reach the same decision to commit
� � 
x�!$

and abort
� �

.

5.2.3 Further optimization, eliminating abort decision message

We can further optimize the validation by eliminating the need for the sequencer to send back an abort decision for
transaction

� W to its local site. This is because in case a
� W fails validation at the sequencer there must have been a

concurrent conflicting transaction
�Ld

that passed validation and was sent to all sites. Upon receiving the writeset of
��d

the local site of
� W can determine the conflict and abort

� W without the explicit abort decision from the sequencer. For
example, in Figure 10 the sequencer does not need to send back the abort decision message of

���
. Upon A receiving

the writeset of
� �

, it is able to detect that
� �

should be aborted because of conflict with
� �

.

5.2.4 Fail-over and recovery

Again, as in the fail-over procedure in Section 5.1.2, we use a special JDBC driver that handles the connection between
client and middleware replicas. If the special JDBC driver running on the client side detects a failure of the middleware
replica during the execution of a transaction T, it will simply inform the client about an abort of T since the commit
request has not been sent. If the failure is detected after the commit request has been submitted and no response is
returned yet, there might be two cases:

1. If the client is connected to a middleware replica that is not sequencer, the driver will be redirected to the
sequencer middleware replica and ask for the decision on T.

(a) If the sequencer middleware replica also fails, refer to Case 2.

(b) Else if the sequencer middleware replica has not yet received T’s writeset, the writeset was lost during
transmission. No commit decision is made and none of the other middleware replicas has seen T. Hence,
an abort message is returned to the client.
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(c) Else (if the sequencer middleware replica had received the writeset), it will finally make a commit/abort
decision on T and broadcast the decision to all other middleware replicas. So the driver can just respond
to the client with the decision.

2. If the client is connected to the sequencer middleware replica, the rest of non-sequencer middleware replicas
have to vote and select one as new sequencer middleware replica. The situation is similar to the coordinator
crash in a 2-phase-commit protocol. From the point of view of all non-failed middleware replicas, they might
or might not receive an explicit decision on T made by the original sequencer middleware replica. Hence, the
new sequencer will have to collect all writesets (including those sent by the original sequencer and those being
sent but no decision was yet returned) at all middleware replicas in order to make a consistent decision.

(a) If all middleware replicas have received the writeset and the commit decision from the original sequencer,
the client will receive the corresponding decision.

(b) Else if only some middleware replicas receive the writeset and the commit decision, the client also receives
the corresponding decision. The new sequencer middleware replica will forward the writeset and the
decision to all middleware replicas which missed this information.

(c) Else (if none of the middleware replicas receive the writeset and the decision), it is possible that a). the
original sequencer middleware replica has passed the validation and committed T, but failed before sending
the writeset and the commit decision, or b). the original sequencer database replica aborted T. There
are no means to determine what happened. We have to resort to the support of hardware. Nowadays
Uninterruptible Power Supplies (UPS) is used extensively for continually supplying power in case of a
unexpected power-off. Once UPS is activated by a poweroff, we let another site to take over the sequencer
site gracefully, without outstanding decisions.

Additionally, it might happen that the sequencer middleware replica crashes after receiving writesets sent by a non-
sequencer middleware replica which does not crash. The non-sequencer middleware replica will detect the failure of
the sequencer and ask the new sequencer for decision. This case is handled in the same way as Case 2.

5.3 Optimization 3: double validation

In the basic protocol shown in Figure 7, a transaction is validated only once, i.e., after its writeset has been
delivered. For example, in Figure 11.(a) after the delivery of its writeset, transaction

�wy
performs its validation against

two concurrent transactions
���

and
���

. Let’s look closely at Figure 11.(a).
���

is delivered before
��y

multicasts its
writeset while

���
is delivered after the multicast. It could be better if

��y
performs its validation against

���
right

after execution and before multicast. Thus, if
���

conflicts with
��y

,
�&y

will abort itself earlier and there is no need
to multicast its writeset. Note that the second validation after the delivery of the writeset is still necessary because
there may be some concurrent transactions whose writeset were not yet delivered at the time of the first validation
but arrived before

��y
’s writeset (e.g.,

���
in Figure 11). The corresponding example of double validation is shown in

Figure 11.(b) and (c). In (b),
� y

conflicts with
� �

and is aborted early. In (c),
� y

conflicts only with
� �

and hence, its
writeset is multicast.

The double validation optimization is applicable both when using GCS and the sequencer approach. Before send-
ing the writeset of a transaction to the sequencer middleware replica, each middleware replica can perform locally the
first validation of the transaction against transactions which have been validated and then propagated by the sequencer
middleware replica. Only if the first validation does not fail, the writeset will be sent to the sequencer middleware
replica for further validation.

Double validation can provide the opportunity to abort transactions earlier and eliminate the unnecessary message
exchange. Since the message latency is high in WANs, this optimization might be good for performance.

5.4 Optimization 4: hybrid protocol for WAN applications with several LANs

5.4.1 Basic idea

The protocols discussed so far make the assumption that the communication latency between any two sites is approxi-
mately the same. For example, each site is connected with each other via a WAN. However, in the real world, it is more
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Figure 11. Double validation optimization
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Figure 12. Hybrid protocol

reasonable to consider that there might be more than one site in one LAN. We call all sites within a LAN a cluster.
Some clusters may have more sites than others. For example, a Chinese news website would like to have many sites in
the company’s headquarter located in Beijing and only a couple of sites dispersed around the world because most of its
readers are in China. Since the communication latencies between different sites variate a lot, especially between sites
in the same LAN and across the WAN, we can take advantage of this characteristics in designing a hybrid protocol for
such advanced applications.

Suppose there are clusters (LANs) with more than one site and many clusters in the whole system. The basic idea
of the hybrid protocol is shown in Figure 12. Let’s assign a cluster as the primary cluster and others as secondary
clusters. A transaction will be validated within its local cluster first and then sent to the primary cluster for further
validation (i.e., double validation). Within the primary cluster, we use the replica control protocol with GCS (as
discussed in Section 5.1). Within the secondary clusters, we use the protocol with a sequencer (as discussed in 5.2).
For the coordination between the primary and secondary clusters, we follow the same idea of using a sequencer as in
Section 5.2. But we have to modify the protocol slightly to fit the problem.

When a transaction is submitted to a site in a secondary cluster, it follows the same procedure as discussed in
Section 5.2 until it passes the second validation in the sequencer of the local cluster. After that, it can not commit yet
because there may be some concurrent conflicting transactions in other clusters. Hence, its writeset has to be sent to
a site (named as global sequencer) in the primary cluster. Once the global sequencer in the primary cluster receives a
writeset from secondary clusters, it will multicast the writeset to all sites in the primary cluster. All sites in the primary
replica will process the writeset as before. The global sequencer will do additional work. It will send all writesets
of the transactions which have passed the second validation in the primary cluster to all sequencers of the secondary
clusters. These sequencers will forward the writeset transactions to all sites in their individual clusters.

When a transaction is submitted to a site in the primary cluster, it just follows the protocol as discussed in Section
5.1. The global sequencer will also send the writesets of transactions to other sequencers of secondary clusters if they
pass the second validation.

5.4.2 Discussion

The hybrid protocol takes into account the different network latencies between different sites. The hybrid protocol
groups sites according to their physical locations, e.g., within one cluster. A secondary cluster only needs to com-
municate with the primary cluster. They communicate with each other through a representative (i.e., sequencer). A
writeset message to be broadcast to all sites in a secondary cluster C is only sent to C’s sequencer, which will then
broadcast the message within the LAN. Thus, the WAN network bandwidth will be saved. The sites in the primary
cluster will response to their clients very fast because the multicast does not involve the sites in the remote clusters
and the final decision to commit or abort can be made locally in the primary cluster. The sites in secondary clusters
can abort transactions very fast if there are conflicts detected locally. But to commit a transaction, they still have to
communicate with the primary cluster.

The approach could be generalized to tree structures with a depth larger than two for certain configurations. With
that we might be able to release the global sequencer. Further study is needed into this issue.
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Figure 13. Response times for TPC-W
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Figure 14. Response times of updates for small DB

6 Performance Evaluation

Currently I have implemented the basic protocol with the optimizations of GCS and double validation but without
fail-over support. I tested the protocol on different workloads in LANs in order to understand its performance behavior.
Further experiments in WANs will be conducted in the future. In this section, I first present results with running the
TPC-W benchmark to see how the protocol behaves under a real application. Then, in order to compare protocols
providing weak and strong 1-copy-SI, I run experiments on my own simplified benchmark. All experiments are run
on a cluster of standard PCs (Pentium 4, 2.66 GHz with 0.5 GByte RAM) running Linux. In each test run a certain
number of clients are connected to each middleware replica. Within a transaction, a client submits the next SQL
statement immediately after receiving the previous one, but it sleeps between submitting two different transactions in
order to achieve the desired system workload.

6.1 TPC-W

TPC-W [31] simulates an online bookstore with three kinds of workloads that vary in the ratio of update vs. read-
only transactions. I choose the ordering workload that consists of 50% update and 50% read-only transactions. The
database has eight tables, and the size of each table is determined by the items and clients in the system. My configu-
ration has 1000 items and 144 000 client records. This results in a relatively small database of around 200MBytes.

Figure 13 shows the average response time over all update and over all read-only transactions with the increasing
load in the system. Strong 1-copy-SI is guaranteed. There are five connected sites. Each site has five clients. Addi-
tionally, the response times for a centralized system are also presented (it still uses our middleware but the middleware
simply forwards requests to the single database without any concurrency control and writeset retrieval etc.). The
benchmark has many short queries giving queries on average a smaller response time. As expected, the response time
increases with the load in the system until the system is saturated. At 25 transactions per second (tps), the centralized
and the replicated systems have more or less the same response times since the systems are only lightly loaded. At
this load, the overhead of the middleware (communication/validation) is compensated by the fact that queries are dis-
tributed over 5 sites compared to the centralized system. At 50 tps, however, the centralized system is already saturated
while the replicated system can handle up to 100 tps with acceptable performance. Although the database is relatively
small, conflict rates were small, and very few aborts took place (far below 1%). The results shown here are similar
to those shown by other middleware based replication solutions (e.g., [4, 20, 29]). What makes my approach differ-
ent to the previous approaches is that we can achieve this without requiring to predeclare any transaction properties.
Furthermore, if in WANs, my approach will work much better.

6.2 Comparing weak and strong 1-copy-SI

In this experiment, I run two versions of the protocol (i.e., one providing weak, the other providing strong 1-copy-
SI). Recall that the protocol with weak 1-copy-SI allows transactions to start immediately upon arriving at middle-
ware replicas and non-conflicting transactions which have passed validations to commit concurrently, while strong
1-copy-SI has additional synchronization overhead in delaying the start until no holes exist and synchronizing start



7 CONCLUSION AND FUTURE WORK 19

and commit. By comparing these two versions of the protocol, we can get an idea of how costly the synchronization
overhead is. The benchmark used has only a small database, 10MBytes. There are 10 tables and two transaction types,
one update transaction performing 10 simple updates and one query scanning a table.

Figure 14 shows the response times for update transactions with increasing loads for 5 sites. The results for queries
were similar in relative term, and hence, are not presented here. In this setting, we can see that the system with strong
1-copy-SI has worse response time than that with weak 1-copy-SI. The system with strong 1-copy-SI is saturated at
160 tps while the system withe weak 1-copy-SI at 220 tps. My experiment also showed that a centralized system is
saturated at 100 tps. For the system with strong 1-copy-SI, I also analyzed in detail how much time different actions
of a transaction spent within its response time, which is not shown here due to space limitations. I observed that quite
some time is spent in the synchronization of start and commit statements. Especially this synchronization overhead
is high when the load is high. On average, there are holes at around 10-15% of the times a transaction wants to start.
These holes are mainly generated by local transactions that immediately commit after validation, overtaking remote
transactions whose writesets were received earlier but who still have to apply them before commit. Whenever there
are holes, starting transactions have to wait. Whenever transactions start, commit operations have to wait.

Currently, I use mutexes for start and commit of transactions. With this, all start/commit statements are serially
executed. But we could allow concurrent start if there were no holes, and also concurrent commits (only some commits
might be delayed if they produce holes when transactions want to start). I am currently reimplementing the algorithm
to really allow for the true possible concurrency.

7 Conclusion and future work

7.1 Conclusion

Currently, middleware based protocols are widely developed for database replication due to simplicity and flex-
ibility. However, they are not appropriate for WAN applications due to the large communication latency in WAN.
Besides that, the existing protocols have many limitations which restrict them from practical use, mainly as 1) all op-
erations of transactions must be known in advance, 2) transactions must be marked as read-only or update in advance,
3) concurrency control is at table level instead of record level.

My thesis proposes a replica control protocol working well in WANs. The paper also discusses the protocol for the
WAN applications in which there are several clusters and each may have more than 1 replica. The fail-over procedures
are also discussed carefully.

The basic idea of the protocols is to execute the whole transaction locally and then to send a writeset message
with additional information such as primary keys to other sites. Executing the whole transaction locally eliminates
the needs for knowing all operations and distinguishing read-only transactions in advance. Only one writeset message
to be sent for one transaction reduces the communication overhead in the transaction response time. Thus, it has the
potential to work well in WANs. The primary keys contained in the writesets enables the protocol to do concurrency
control at record level instead of table level

Regarding global transaction isolation level, most of previous work attempts to achieve 1-copy-serializability. I
am using a global transaction isolation level, called 1-copy-SI based on Snapshot Isolation. My protocol can provide
two levels of 1-copy-SI. Both levels guarantees data consistency. But strong 1-copy-SI can further guarantee that the
replicated database system works as if there is one database.

7.2 Future work

Currently, I have designed the system without considering recovery. To be a complete system, I have to con-
sider recovery procedures in the future. Right now, I have built a first prototype and the implementation of update
everywhere with GCS has been done, without fail-over support. My next schedule is:

1. By Sep of 2005: 1). Finish implementation and evaluation of all optimizations except the hybrid protocol, 2).
Provide formal descriptions and correctness proofs, 3). Provide JDBC driver with fail-over support. The last is
currently cooperated with a master project student.
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2. By Dec of 2005: Finish implementation and evaluation of the hybrid protocol for WANs with fail-over support.

3. By May of 2006: Finishing recovery procedures.
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[20] R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso. Improving Scalability of Fault Tolerant Database Clusters. In ICDCS’02.
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