
Applying Database Replication to Multi-player Online
Games∗

Yi Lin
McGill Univ.

Montreal
ylin30@cs.mcgill.ca

Bettina Kemme
McGill Univ.

Montreal
kemme@cs.mcgill.ca

Marta
Patiño-Martı́nez
Univ. Politecnica

de Madrid
mpatino@fi.upm.es

Ricardo
Jiménez-Peris
Univ. Politecnica

de Madrid
rjimenez@fi.upm.es

ABSTRACT
Multi-player Online Games (MOGs) have emerged as pop-
ular data intensive applications in recent years. Being used
by many players simultaneously, they require a high degree
of fault tolerance, scalability and performance. In this paper
we analyze how database replication can be used in MOGs
to achieve these goals. In data replication, clients can read
data from any database replica while updates have to be
executed at all available replicas. Thus, reads can be dis-
tributed among the replicas leading to reduced response time
and scalability. Furthermore, the system is fault-tolerant as
long as a replica is available. However, we are not aware
of any previous study on the application of database repli-
cation to MOG. In this paper, we present a system, Mid-
dleSIR, which provides database replication support. We
illustrate different replication protocols implemented in the
system along an example, explaining how data consistency
and fault tolerance can be achieved. From there, we design
a small multi-player typing game to demonstrate how to ap-
ply database replication to MOG. We will discuss how dif-
ferent replication protocols affect the semantics of the game.
Our experiments show that database replication can provide
good scalability and performance in both Local Area Net-
works (LAN) and Wide Area Networks (WAN).

1. INTRODUCTION

1.1 Multi-player Online Games
Multi-player Online Games (MOG) represent a very popu-

lar application area which requires technology support from
many different domains, such as databases, graphics, and
networks. The general architecture for MOG is the client-
server architecture. Servers are responsible for storing and

∗This work has been partially supported by the Spanish Re-
search Council, MEC and MITYC, under projects TIN2004-
07474-C02-01, FIT-340000-2005-144, and by the Madrid Re-
gional Research Council under project TIC-000285-0505.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Netgames 2006, Oct 30-31, 2006, Singapore
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

managing all the data related to game state (such as play-
ers’ credits, equipment, and position of players and objects).
Clients are responsible for displaying these data graphically.
MOGs are a very data intensive application. As players per-
form actions, the game state continuously changes, and all
these changes should be visible to all players in real-time.
Currently, many online games have a central server to which
all clients are connected. This limits the fault tolerance,
scalability, and performance of the games.

Fault tolerance is a crucial issue since any down-time of
the game server has a negative effect on the “game expe-
rience”. For example, when the server running Blizzard’s
World of Warcraft crashed on Jan 21, 2006, thousands of
players complained, which finally led to player compensa-
tion [13].

Furthermore, as more players join a game, the central
server becomes overloaded. It is desirable to scale the sys-
tem to accept more clients. Current solutions partition the
game world into zones. Each player is assigned to a zone
and only sees actions within this zone. With this, different
zones can be handled independently by different servers, and
each server has only a small number of clients. These solu-
tions for scalability limit the total number of players which
can play with each other (i.e., only those in the same zone
can play with each other). Moreover, if a player wants to
move from one zone to another, a complex state transfer and
coordination protocol is needed.

Finally, a centralized solution might provide different qual-
ity of service to the different players. If a player is close to
the central server, it will receive fast response to its queries,
while the response times for remote players might be worse.

1.2 Database Replication
Clients interact with the database by issuing transactions.

A transaction has one or more read and/or write requests,
and terminates with a commit/abort operation. A transac-
tion is atomic in the sense that either all or none of its write
requests will persist in the database depending on whether
it commits or aborts.

In a replicated database, there are several copies of the
database (replicas) at different sites. A replication protocol
is in charge of keeping data consistent at all replicas all the
time. That is, after a transaction commits, all copies of
the database should have the updates of the transaction.
Ideally, a replicated database should behave as if there is
only one database. Most of the replication protocols follow
the Read-One-Write-All-Available (ROWAA) approach. A
write request is executed in all database replicas while a read

request only in one database. Reading from one replica is
possible because the replicas all have the same state.

Recent research [19, 5, 8] has shown that ROWAA based
database replication can improve fault tolerance, scalabil-
ity, and performance of the system. Fault-tolerance means
that in the case a replica crashes, the data is still available
because clients can connect to one of the available replicas.
Performance is achieved since a client can read data from
the a database replica that is geographically close to it (it
is referred to as a local replica). Scalability can be achieved
since the system is able to handle increasing numbers of read
requests by adding new replicas to the system. Note that
the system cannot scale if all requests are writes, because in
ROWAA a write request must be executed at all databases.

1.3 Applying Database Replication to MOG
Looking at the properties database replication can pro-

vide, it seems very promising to apply replication technology
to MOGs. Being fault-tolerant, MOGs can provide continu-
ous service to their clients. Furthermore, clients can be dis-
tributed to different MOG server replicas. Thus each MOG
server only needs to serve a few clients similar to when zone
partitioning is used. In contrast to zone partitioning, how-
ever, all clients can access the same (replicated) game world.
Regarding performance, each client can connect to a close
replica, thus the response time for all clients can be short
and relatively similar. In MOGs, there are many updates
(player actions). These have to be executed at all servers and
must be synchronized with read operations. Data replica-
tion provides techniques to propagate and apply all updates
efficiently at all replicas. Furthermore, it provides concur-
rency control for any read/write synchronization.

Although it seems promising to use database replication
for MOGs we are not aware of any system that attempts to
develop a MOG architecture based on database replication.
Thus, it is very unclear how exactly replication technology
can be applied to MOG in a real scenario, what the chal-
lenges will be, how the response time and scalability will
look like, and if different replication protocols have an im-
pact on the design of MOG. In this paper, we answer these
questions by designing a small multi-player typing game us-
ing database replication.

We first present a framework, MiddleSIR which accom-
modates several typical replication protocols in Section 2.
Then, in Section 3 we illustrate those replication protocols
by using an example execution, explaining how these proto-
cols achieve data consistency and fault tolerance. In Section
4 we show the design of the multi-player typing game on
top of MiddleSIR. Section 5 shows the results of our experi-
ments in both LAN and WAN. In Section 6 we discuss some
related work. Section 7 concludes the paper.

2. MIDDLESIR SYSTEM ARCHITECTURE
In [8], we developed a framework, MiddleSIR, which al-

lows the implementation of different database replication
protocols. Figure 1 shows the architecture of MiddleSIR.
Each site has a MiddleSIR replica and a database replica.
MiddleSIR provides a standard JDBC database interface to
its clients, i.e., to the clients, MiddleSIR appears to be the
database backend. We implemented MiddleSIR in such
a way that it allows easy plug-in of different replication
protocols. There are three components (i.e., communica-
tion, transaction and connection managers) in a MiddleSIR

client
JDBC driver

comm Mgr

DB

tran Mgr

conn Mgr

client
JDBC driver

comm Mgr

DB

tran Mgr

conn Mgr

replica
Middleware Middleware

replica

Figure 1: MiddleSIR architecture

replica. When a client submits an operation (such as an
SQL SELECT or UPDATE, or a transaction commit), the
JDBC driver forwards the operation to the communication
manager of a MiddleSIR replica. The communication man-
ager takes care of sending and receiving messages to indi-
vidual or all sites. The transaction manager implements
the replication protocols. Upon receiving messages from
its communication manager, it will perform replica control
to synchronize the commit/abort of concurrent conflicting
transactions. The transaction manager will ask the con-
nection manager to perform any database operations in the
database.

The architecture allows for the implementation of different
replication protocols. Different protocols have different com-
binations of communication manager and transaction man-
ager. For example, two protocols may share the same com-
munication manager because their communication mecha-
nisms are the same, for instance they use TCP/IP sockets.
Currently, MiddleSIR only works with PostgreSQL. Thus,
all protocols share the same connection manager.

If a middleware replica fails, the clients connected to that
failed middleware replica will be automatically reconnected
to another middleware replica. Thus the system provides
transparent fault-tolerance. The failover logic is implemented
within the JDBC driver. The driver keeps the IP addresses
of other middleware replicas. When it looses the connec-
tion to the middleware replica is connected with, the driver
connects to another automatically.

3. REPLICATION PROTOCOLS
In order to build a MOG on top of a replicated database,

it is good to know how database replication works. In a
database system, all operations are executed within the con-
text of transactions. A transaction is a sequence of read and
write operations on data items of the database. From the
application point of view, it represents a logical unit of work.
The application indicates the termination of a transaction
with a commit request. Transactions provide atomicity, i.e.,
either all of their operations succeed and the transaction
commits, or the transaction aborts, and does not change
any state. In the abort case, if the transaction has already
executed some write operations, they have to be undone.
Furthermore, the concurrent execution of transactions has
to be controlled such that no inconsistencies occur. The
concurrency control module of a database guarantees that
the execution of concurrent transactions is equivalent to a
serial execution of the same transactions. This issue is more
complicated in a replicated environment, since concurrent

updates can occur at different replicas. For example, as-
sume transaction T1 sets the value of a data item x to 1 and
transaction T2 sets the value of x to 2 (We say that T1 and
T2 have a write/write conflict in this case). It is possible
that T1 and T2 are submitted to two different sites A and
B concurrently. If T1 commits before T2 at site A while T1

after T2 at site B, the final values of x after both T1 and
T2 commit at site A and B will be different (i.e, x is 2 in
site A while 1 in site B). It is the task of replica control to
handle conflicts occurring at different sites. Some replica-
tion protocols schedule T1 and T2 to execute sequentially in
a unique order at all sites. Others will only allow either T1

or T2 to be able to commit at all sites.
[3] categorizes different replication protocols based on two

factors, i.e., where updates can be executed and when the
changes of a transaction are propagated to the rest of the
replicas. The protocol is called a primary copy approach if
all write transactions must be executed by a given replica,
called the primary. The primary is responsible for propagat-
ing the updates to the secondary replicas which apply them.
The secondary copies themselves may only execute read op-
erations from clients. By executing all update transactions
at a single site, the local concurrency control mechanism of
the database will detect and handle any conflicts. In con-
trast, if transactions with write operations can be executed
at any replica, the protocol follows an update everywhere
approach. Replica control then has to schedule transactions
globally. A replication protocol is lazy if the changes of a
transaction are propagated to the rest of the replicas after
that transaction commits Otherwise, the replication proto-
col is eager. All replication protocols are a combination
of these two factors, i.e., either lazy or eager, and either
primary copy or upate everywhere. Actually, the previous
example corresponds to the execution of a lazy update ev-
erywhere approach. Since lazy update everywhere proto-
cols may produce inconsistencies which are very difficult to
resolve, we will not consider them further. In fact, most
existing replication protocols fall into the categories of lazy
primary copy or eager update everywhere approaches.

In the following we show how some of these protocols work
by using an illustrating example. In the example, three
transactions T1, T2 and T3 are submitted concurrently to
three sites (called their local sites) respectively. In the fol-
lowing we denote as ri(x) (wi(x)) that transaction Ti has
read (write) operation on data item x. A ci denotes the
time where the commit request for Ti is submitted. T1 is
a read-only transaction with a single read r1(x). T2:w2(x)
and T3:r3(x), w3(x) are write transactions with a write/write
conflict. We will show how different replication protocols
achieve data consistency.

3.1 Lazy Primary
Our first approach is a lazy primary copy approach similar

to the one proposed by Ganymed [14]. It requires that trans-
actions must be marked as read-only or not at their submis-
sion times. All clients are connected to a primary MiddleSIR
replica and the individual operations (read/write/commit
requests) are submitted via the JDBC driver. Our Middle-
SIR version of a primary copy approach allows a client to
submit all its transactions to its local MiddleSIR replica.
If a transaction is an update transaction, each individual
operation will be forwarded to the primary.

As shown in Figure 2, a read-only transaction T1 can ex-

r3(x)

time time time

Site B (Primary) Site CSite A
r1(x) w2(x)

r3(x) exe

w2(x) exe

c1

abort msg

apply ws2apply ws2

c2

w3(x)

r1(x) exe

commitcommit
T3 abort

Figure 2: Lazy Primary Copy Example

ecute and commit locally without contacting the primary
(site B). For a write transaction, all of its operations must
be submitted to the primary for execution. In Figure 2, the
local replica of T2 is the primary so that the primary Mid-
dleSIR will simply forward w2(x) to the primary database
replica for execution. T3 is not submitted to the primary so
that its local MiddleSIR replica (called secondary MiddleSIR
replica) forwards it to the primary MiddleSIR replica. The
primary MiddleSIR replica then forwards r3(x) to the pri-
mary database replica for execution. The response of r3(x)
is sent back to the client in Site C and the client submits the
next operation w3(x) which is again forwarded to the pri-
mary replica. T2 is successfully committed at the primary
and the primary replica sends the writeset (the transaction
changes) to all secondaries where they are applied. w3(x)
is also successfully executed. But when the commit request
c3 arrives, the primary database replica detects a conflict
and aborts T3. The abort message is sent back to the client.
That is, all sites apply T2 while T3 aborts.

3.2 Symmetric
[7] presents three eager update everywhere approaches us-

ing a group communication system (GCS). These protocols
are based on the protocol presented in [5]. In here, we
present the basic idea of one of the protocols, Symmetric. A
client submits all operations associated by a transaction to
its local MiddleSIR replica. Read-only transactions can exe-
cute and commit locally. Write transactions are executed at
all replicas in the same order. For that, the local MiddleSIR
replica multicasts the update transaction to all MiddleSIR
replicas using a uniform reliable and total order multicast
provided by the GCS. Uniform reliable multicast guarantees
that all sites will deliver a message unless the site crashes.
Total order multicast guarantees that all sites will deliver
messages in the same order. Thus, all MiddleSIR replicas
receive write transactions in the same order and execute
them on their local databases according to that order.

Figure 3.2 illustrates Symmetric with the benchmark ex-
ample. T1, T2, and T3 are submitted to their local replicas.
Note that all operations of a transaction must be known
when the transaction starts. By checking the SQL state-
ments, site A knows that T1 is a read-only transaction so, it
can execute and commit T1 locally. Site B and C multicast
T2 : w2(x) and T3 : r3(x), w3(x) in uniform reliable and total
order. T2 is delivered before T3 at all replicas. Hence, T2 is
scheduled to execute before T3.

r1(x) exe
c1

Site A Site C

time time time

w2(x) exec2
c2
r3(x) exe

w3(x) exe
c3

c3
w3(x) exe

w2(x) exe
c2

exe
total order
multicast

c3

T2:w2(x) T3:r3(x),w3(x)
Site B

T1:r1(x)

w2(x)

w3(x) exe

Figure 3: Symmetric example

3.3 SRCA-REP
SRCA-REP [8] is an eager update everywhere approach

using GCS which does not have any restrictions on the inter-
face. The basic idea is as follows. A client executes all op-
erations of a transaction in its local database replica before
commit (using standard JDBC driver). After a local trans-
action successfully finishes execution, it submits its commit
request. A read-only transaction can commit immedately,
For update transactions, the writeset is multicast in uni-
form reliable and total order to all replicas MiddleSIR repli-
cas. Each replica then checks if there are any conflicting
transactions executing concurrently in other replicas. The
checking (called validation) is performed in all replicas ac-
cording to the delivery order. If no other concurrent con-
flicting transaction is validated before, a transaction is suc-
cessfully validated and allowed to commit. Otherwise, it
will be aborted in its local replica and discarded in other
replicas. SRCA-REP uses the writeset to detect conflicts
among transactions and a timestamp to detect concurrent
transactions. A writeset contains the changes made by a
transaction identified by the primary keys. Two transac-
tions conflict if the intersection of the primary keys of their
writesets is non empty. SRCA-REP records the start time
and end time of a transaction in terms of an incremental
timestamp in the local replica. The timestamp of a replica
will be increased consecutively if one transaction succeeds
in validation. If a transaction’s start time is between the
start time and end time of the other transaction, they are
concurrent. For more details, please refer to [8].

Figure 4 shows our example with SRCA-REP. T1, T2, and
T3 are submitted operation by operation to site A, B, and
C respectively. They all successfully execute in their local
replicas and submit their commit requests. Since T1 is read-
only it can commit locally. The writesets of T2 and T3 are
multicast in uniform reliable and total order. In all replicas,
T2 performs validation before T3 because T2 is delivered be-
fore T3. Thus, T2 succeeds its validation while T3 fails. Then
all replicas apply T2’s writeset (if not the local site of T2)
and commit. T3 is aborted in its local replica.

3.4 SEQ
SEQ [9] is similar to SRCA-REP except that it does not

use a GCS. In order to reach the same validation decision at
all replicas, SEQ uses a replica as the sequencer. All replicas
send their writesets to the sequencer for validation. The
sequencer sends the validation results (including writesets
if the validation succeeds) to all replias in the validation
order. All replicas will apply the writesets according to the

r1(x) exe

c1

Site A Site C

time time time

T1: r1(x), T2: w2(x), T3: r3(x), w3(x)
c: commit

Site B

w2(x)exe

r3(x)

r3(x) exe
w3(x)c2

c3

commit
apply ws2

T2 val. succ

r1(x) w2(x)

T2 val.
succ

T3 val. fail
disgard T3

T2 val. succ

w3(x) exe

T3 val. fail
disgard T3

T3 val. fail
abort T3

commit
apply ws2

c2

, val: validation, succ: succeed

Figure 4: SRCA-REP example

r1(x) exe

c1

Site A Site C

time time time

T1: r1(x), T2: w2(x), T3: r3(x), w3(x)
c: commit

Site B

w2(x)exe

r3(x)

r3(x) exe
w3(x)c2

c3

r1(x) w2(x)

w3(x) exe

T3 val. fail
abort T3

, val: validation, succ: succeed

c2
apply ws2
commit

apply ws2
commit

apply ws2
blockedT3 val.

fail

succ
T2 val.

Figure 5: SEQ example

validation order. Thus, the data are consistent.
Figure 5 applies SEQ to our benchmark example. Site B is

the sequencer replica. T1 is read-only so it can execute and
commit locally. T2 and T3 must perform validation in site
B. T2’s local replica is the sequencer so that it can validate
immediately upon commit request. The validation succeeds
and T2’s writeset is sent to all other replicas. Applying T2’s
writeset will be blocked in site C since T3 is writing on the
same data item x. Since T3’s local replica is not the se-
quencer, it must send its writeset to site B for validation.
The validation fails because T2 is concurrent and has already
been validated. An abort message will be sent back to site
C to abort T3. After the abort of T3, T2’s writeset will be
applied and committed.

3.5 Fault-tolerance
We mentioned before that when a MiddleSIR replica fails

the JDBC driver of a client connected to this replica will
automatically be redirected to another MiddleSIR replica.
However, there might be a transaction being executed (called
active transaction) when the replica crashed. The active
transaction either (i) has not submitted a commit request
or (ii) has submitted the commit request but has not re-
ceived the response yet. In case (i), the JDBC driver can
just simply return an abort message to the client since the
changes made by the transaction have not been written per-
manently to the database yet (shown in Figure 6.(a)). In
case (ii), the transaction may have been committed but the

Site A Site BClient’s JDBC
w(x)

time

Client’s JDBC Site A Site B

time

w(x)

msg
exceptionabort

resp

commit

commit
resend

resp
msg commit/abort

(a) commit not sent (b) commit sent but no response

exception

replication
processing

replication
processing

Figure 6: MiddleSIR failover

response message is lost, or its commit has not taken place
when the replica crashed. Hence, the JDBC driver has to
resend the commit request to the newly connected replica
to know the decision. This is shown in Figure 6.(b).

In the lazy primary copy approach, the primary copy
presents a single point of failure. Ganymed resolves this by
using a backup primary. All write requests go through the
backup primary site before they execute in the primary site.
When the primary site crashes, the backup primary site will
take over. When the driver reconnects to a different replica
which does not know the outcome of the transaction (case
(b) in the figure), this replica can ask the new primary for
the outcome The Symmetric and SRCA-REP use uniform
reliable multicast. Thus, it is guaranteed that a transaction
is received by all surviving sites. Hence, when the driver
reconnects to a new replica and asks for the outcome, the
decision is known. Since SEQ does not use uniform reli-
able delivery it might be that the sequencer validates and
commits a transaction but no other site receives the write-
set of this transaction before the sequencer fails. Thus, the
transaction is lost. As with the lazy primary copy approach,
we could have redirected all writesets through a backup se-
quencer to avoid this problem.

4. A MULTI-PLAYER TYPING GAME
In the last two sections, we have shown a middleware-

based framework, MiddleSIR, providing replicated database
functionalities, and illustrated how different replication pro-
tocols achieve data consistency and fault tolerance. In this
section, we will show how to design a multiplayer typing
game on top of MiddleSIR. Although it is a small game,
it is designed to show the basic rationale of how to exploit
database replication for multi-player games.

4.1 Game description
The game allows users to practice keyboard typing. Fig-

ure 7 shows the Graphical User Interface (GUI) of the game.
The GUI is mainly composed of a game field in the center, a
score panel on the right, and a typing text area at the bot-
tom. Strings in black color appear at the top of the game
field, then move to the bottom at a certain speed, where they
disappear from the field. The goal is to type the strings be-
fore they disappear. Once a player has successfully typed
a string, he/she gets points for the string and the string
appears in the color of the player. Then, automatically, a
bullet with the same color will be fired from the bottom of
the game field to shoot the string and let it disappear.

The system provides a set of strings to players. Typically,
players will see the same strings. We have also implemented

Figure 7: Typing Game GUI

Thread Task at certain time interval
background
thread

Move strings and bullets

updating thread
of each player

process characters typed by player

reading thread of
each player

read game states (e.g., strings, bul-
lets, scores etc)

Table 1: Analysis of thread tasks at certain time interval

a publish/subscribe scheme where each player can subscribe
to a subset of strings. Thus players might have different, but
possibly overlapping string sets. For space limitations we
do not discuss the publish/subscribe system in more detail.
On the score panel, each player will see the scores of other
players. Once a player successfully types a string, his/her
score will be increased, and all related players’ score panels
will be updated.

4.2 Analysis based on threads
The typing game is inherently a multithreaded application

because it has lots of parallel actions. We identify several
threads and their regular tasks in Table 1.

Initially a background process will load a list of strings
from a file and publish them. In order to simulate the move-
ment of strings and bullets, the background process updates
the positions of strings and bullets at certain time intervals
(e.g., increase Y values of strings by 10 pixels every 500 ms).

Upon starting, the game client instance of each player
starts an updating thread and a reading thread. The up-
dating thread accepts input from the player. The game se-
mantics guarantees that all words shown on the game field
start with different characters. Thus, when a player enters
the first character, the update thread can determine which
word the player tries to type. After finding a target string,
the update thread will check if the following typing is cor-
rect. If yes, the correctly typed character will be appended
to the string’s typing buffer. If the whole string is typed
completely, a bullet will be fired and the points for the string
will be added to the player’s score.

The reading thread is responsible for refreshing the game
field of the player. It determines the full game state infor-

mation (such as player scores, strings, bullets, their colors,
and their positions) each time interval (e.g., 1000 ms), and
presents it on the client screen.

4.3 Modelling based on transactions
Looking at the thread implementation above, the game

is actually a reader-writer problem on game state (such as
strings, bullets and players). While the state is being read,
it might be changed by different events. For example, if
a player types a string correctly, the string’s color will be
changed to the player’s color. The points for the string
will be added to the player’s score while the score is being
read. Conflicting writers might also run concurrently. For
example, two players may type the same string at the same
time. In sum, there is a considerable amount of concurrency
control issues. These issues become only more severe if any
kind of distributed architecture is used.

However, by using a database system for storing game rel-
evant information, the database system will automatically
take care of these concurrency issues. Recall that transac-
tions are atomic and that the database system isolates con-
current transactions via concurrency control mechanisms.
Thus any conflicts are detected and resolved, guaranteeing
the consistency of the data.

This still holds true if we use a replicated database (such
as in Figure 1), since the replication protocol takes further
care of concurrency control problems across the entire dis-
tributed architecture. That is, it provides the application
the illusion that there is only a single logical database. Thus,
the game itself does not even need to be aware of the distri-
bution.

4.4 Game and database design
As typical for MOGs, we have implemented the typing

game in a client/server architecture. Each game player runs
a game client application with an updating and reading
thread as described above. There is also an independent ap-
plication which runs a so-called background thread. We will
discuss this application shortly. Both the game client appli-
cation and the application running the background thread
are clients of our MiddleSIR (please refer to Figure 1).

In our design, we store all game state information in the
database. The schema of the database is shown in Table
2. There are four tables, i.e., player, string, bullet, and
color. A player tuple has attributes like name, score, color
ID (i.e., cid), the ID of the string being typed (i.e., psid),
the part of the string typed correctly so far (i.e., ptyping).
A string tuple has attributes like x and y coordinate values,
characters, and a status which determines on which game
fields the string should be displayed. A bullet has x and y
coordinate values, and the ID of string being shot. A color
has 3 integers to represent its RGB value.

We model different read and write requests on these data
as read and write transactions, as described in Table 3. We
allocate different transactions to different threads identified
in Table 1. The background thread will update x and y coor-
dinate values of strings and bullets in a write transaction of
type (1). Once a string moves out of game field (i.e., y coor-
dinate value of the string is larger than the height of game
field), a write transaction of type (2) will be executed to
update the status of the string to be NOT-DISPLAYED. A
write transaction of type (2) will be also triggered once a bul-
let shoots a string (i.e., y coordinate value of bullet is smaller

Thread transaction
background thread (1) update strings and bullet posi-

tions
(2) update status of string to be dis-
played or not
(3) delete a bullet once it shoots a
string.

reading thread (4) read strings, bullets, their posi-
tions, their colors, all scores;

updating thread (5) update the ptyping attribute
until a string is complelely typed
(6) increse one player’s score;
(7) create a bullet;

Table 3: Definitions of different transactions

than that of its target string). At the same time, the bullet
will be also deleted from the database (i.e., write transac-
tion (3)). The reading thread of each player will execute at
certain time intervals a read-only transaction which reads
all game state data containing information about strings,
bullets, and scores etc. We model typing a string as a trans-
action of type (5) and typing a character as an operation
(i.e., appending the character to the ptyping attribute of
the player). It is executed by the updating thread of each
player. Once a string is successfully typed, a transaction of
type (6) is triggered to increase the score of the player, so
will a transaction of type (7) to create a new bullet.

Note that most MOGs only use a database for storing data
related to the client’s performance information such as pass-
word and credit. They manage the game state information
in main memory instead of the database. In our work, we
take advantage of databases in different ways. We not only
store static data related to clients but also dynamic data
related to game states. We also take advantage of the con-
currency control mechanisms provided by the database to
control and serialize the execution of the game application.

4.5 Lessons learned from the design
In Section 3, we have looked in detail at different repli-

cation protocols. We must be aware that some replication
protocols have certain limitations. These limitations might
lead to different implementations or even different game se-
mantics. For example, a lazy primary approach requires
each transaction to be marked as read-only or not. Thus, we
have to call JDBC setReadOnly() in the implementation of
the game using the lazy primary copy approach. Symmetric
requires all operations to be known at begin of transaction.
Thus, in MiddleSIR, Symmetric requires an application to
submit all SQL statements in one statement. As a con-
sequence for the typing game, the player has to first type
the full word, then press enter, and only then all letters are
sent in a single SQL statement to MiddleSIR. In contrast,
for the other protocols, each character typed will be sent
immediately to MiddleSIR, Thus, type checking can occur
immediately. In summary, the lazy primary copy approach
and Symmetric put some restrictions on the game imple-
mentation, while SRCA-REP and SEQ did not have any
restrictions.

By taking advantage of transaction properties, we do not
need to be concerned with concurrency issues when design-
ing the game. However, we need to carefully design our
database tables in a reasonable way. In fact, we might

Table primary key attr1 attr2 attr3 attr4 attr5
player pid pname pscore pcid(refer cid) psid(refer sid) ptyping
string sid sx sy stxt sstatus
bullet bid bx by bsid(refer sid)
color cid cr cg cb

Table 2: Database schema for the typing game

consider different table schemes depending on which repli-
cation protocol is used. For example, two transactions of
type (1) and type (5) do not conflict and should be able
to run concurrently. The transaction of type (1) changes
a string’s y coordinate value. The other appends a char-
acter to ptyping. According to the schema shown in Table
2, these two transactions do not have write/write conflicts.
However, if our database schema defined ptyping as an at-
tribute of the string table, the two transactions would have
write/write conflicts. Recall that the lazy primary copy
approach, SRCA-REP, and SEQ will commit only one of
several concurrent transactions with write/write conflicts.
Thus, either the transaction of type (1) or type (5) would
be aborted. If the type (1) transaction, which updates the
positions of strings, aborted, the player would see as ef-
fect that strings do not move. If the type (5) transaction,
which updates ptyping, aborted, the color of a fully typed
string would not change. In Symmetric, concurrent con-
flicting transactions do not lead to an abort but they are
executed serially. Thus, ptyping and the string position can
be in the same table without possibility of abort. Thus,
one can see how different replication protocols might lead to
different game experience.

Clearly, one also has to be aware of the different fault-
tolerance properties provided by the different protocols and
as discussed in Section 3.5.

5. EXPERIMENTS
We now show experiments that show how well Middle-

SIR provides scalability and fast response time to the typ-
ing game. [9] has compared different replication protocols
and concluded that SEQ has the best response time in both
LAN and WAN. Hence, we only show the results for SEQ.

5.1 Experiment setup
We conduct experiments in both LAN and WAN. Each

machine runs a MiddleSIR replica (including middleware
replica and database replica). We just refer to these ma-
chines as servers. In the LAN setup, all servers are located
in one LAN. We use PCs with Pentium(R)4 2.6GHz cpu,
512MB memory, Linux 2.6.16-gentoo-r6, and 100Mbps net-
work connection. In the WAN setup, we use Emulab [2]
to simulate the network topology, in which the round trip
time between any two servers is 50 to 100 milliseconds and
the bandwidth is 5Mbps. The power of PCs is Pentium4
3.0GHz CPU, 1GB memory. The operation system is Linux
2.4.20-31.9.

Since we cannot manually run many game clients at the
same time, we implemented a simulator to simulate the work
load of game clients. The simulator starts a number of
virtual clients. The difference between virtual clients and
real clients is that virtual clients do not perform any graph-
ics processing tasks. Each virtual client performs a read-
only transaction each 1000 ms to the read game state (i.e.,

30 strings, bullets, their positions and colors, and player
scores). Each client also submits write transactions every
2000 ms. A write transaction is composed of 3 random char-
acters on average. The write transaction simulates that a
player types a string randomly. Note that in all experi-
ments the virtual clients are connected to their local server
and each server has the same number of virtual players.

It is widely accepted that response time of player’s ac-
tion is very important in experiencing MOGs. Hence, we
measure the performance in terms of the response time of
transactions at the game clients (i.e., how fast a player can
read game state from the server, and how fast the effects of
typing a word are received by the client). We do not take
into account the time spent in displaying the strings, bullets
and scores, because it depends on the power of the players’
machines.

5.2 Experiments in LAN
Scalability
Figure 8 shows how the system scales from 1 server to 6
servers in a LAN. The system scales quite well from 1 sever
to 4 servers. However, it scales badly when there are more
than 5 servers. This is due to the ROWA property of SEQ.
Recall that in a ROWA protocol a read request only needs
to be executed in one site while a write request must be ex-
ecuted in all sites. Hence, as long as there is an increasing
number of reads but a relatively stable number of writes in
the system, adding new servers will help handling the in-
creasing load. However, since writes have to be executed
at all replicas, adding more servers will not enable the sys-
tem to handle more write requests. In our game environ-
ment, each player has both read and write transactions,
thus, scalability is limited. If the game had more read tasks
per player, the system could handle more players by adding
more servers.

Response time in a system with 4 servers
We measured the average response time of read and write
transactions of players in a system with 4 servers. We sepa-
rate the results for SEQ sequencer and SEQ non-sequencers.
It is because SEQ sequencer has more validation overhead
than SEQ non-sequencers.

Figure 9 and 10 show the average response time of read
and write transactions respectively. Both read and write
transactions have fast response time (i.e., 10 to 20 ms for
read and 10 to 40 ms for write). Note that write trans-
actions submitted to the sequencer are slightly faster than
those submitted to non-sequencers. It is because the write
transactions submitted to non-sequencers need to communi-
cate with the sequencer for validation. Thus, one round trip
time between a non-sequencer and the sequencer is included
in the response time.

Figure 11 shows the CPU usage in the server. The se-
quencer has slightly higher CPU usage than non-sequencers.

40
60
80

100
120
140
160
180
200

1 2 3 4 5 6
Number of servers

M
a
x
i
m
u
m

T
h
r
o
u
g
h
p
u
t

(
N
u
m

o
f

p
l
a
y
e
r
s
) SEQ

Figure 8: scalability in LAN

Figure 9: read transactions, 4 servers in LAN

It is because the sequencer needs to perform validation for
all write transactions, while non-sequencers do not. The
figure shows that the validation overhead is not significant.
The system saturates at the throughput of 180 players.

5.3 Experiments in WAN
Scalability
Figure 12 shows the scalability of the system with SEQ. As
in LAN, the system scales well with less than 5 servers. With
more than 5 servers, the system does not scale.

Response time in a system with 4 servers
Figure 13 shows the response time of read transactions in
a system with 4 servers in the WAN. We can see that the
response time of a read transaction is as fast as in LAN
experiments. This is because in SEQ read transactions are
executed in their local servers without any synchronization
with other remote servers. As long as the server is near the
client (e.g., in the same LAN), the response time will be
fast.

Figure 14 shows the response time of write transactions
in a system with 4 servers in the WAN. The SEQ sequencer
responds to its clients very fast. It is because the response
times of write transactions submitted to the sequencer do
not include any WAN communications. The scheduling is
done locally in the sequencer. However, for clients of non-
sequencer servers, the response times of write transactions
are between 60 and 80 ms. This is because the response time
includes one round trip WAN communication. The response

Figure 10: write transactions, 4 servers in LAN

Figure 11: cpu usage, 4 servers in LAN

time difference in LAN was negligible because of the small
network latency in LAN. In a WAN environment, however,
the large network latency has a large impact.

5.4 Discussion
The experiments above show that the game has fast re-

sponse time in both LAN and WAN environments. Read-
only transactions are always very fast (i.e., no more than
20 ms). This is true because read-only transactions are al-
ways executed locally without network communication. For
write transactions, the response times of different protocols
vary. Some research [15, 12] investigated the acceptable re-
sponse time of interactions in MOGs. They concluded that
100 to 300 ms will be a tolerable bound for MOGs players
to continue playing. According to our experimental results,
SEQ produces response times less than 100 ms for the typ-
ing game, even in a WAN with 50 to 100 ms round trip time
delay between servers.

One observation is that database replication can only pro-
vide a certain degree of scalability to the system. This is
because writes must be applied at all sites. If the game had
only write requests, the system would not be scalable. The
typing game has a considerably higher write than read load.
Hence, database replication does not provide very good scal-
ability. In future work, we are planning to analyze what the
typical ratio of reads and writes is in common MOGs to
better understand the potential for scalability.

Another solution to improve the scalability is using partial
replication [18]. Partial replication is different from ROWA
in that each replica has only part of the data. Thus not all

50

100

150

200

250

1 2 3 4 5 6
Number of servers

M
a
x
i
m
u
m

t
h
r
o
u
g
h
p
u
t

(
N
u
m
b
e
r

o
f

p
l
a
y
e
r
s
)

SEQ

Figure 12: scalability in WAN

Figure 13: read transactions, 4 sites in WAN

write requests need to be applied at all sites. However, this
will introduce complexity for read requests since some sites
might not have the data to be read. In regard to research in
database replication, partial replication is still a challenging
and open topic. However, we believe it is possible to design
a practical partial replication protocol for MOGs based on
the characteristics of MOGs. Several game research propos-
als suggest to divide a MOG into different game zones whose
data are mainly disjoint from each other except that players
move from one zone to others [6, 1]. Zone partitioning might
be an interesting starting point to find a good partial repli-
cation protocol. We are particularly interested in extending
our work in this direction.

The current implementation of the typing game is actually
in a pulling mode. All players read different data actively
from the database. This is true because they subscribe to
different subsets of data. But these data overlap a lot. We
can reduce the read load at the database by implementing
the typing game in a pushing mode. For example, we can
implement a game server which reads all data on behalf of all
clients and sends appropriate data to each individual client.
This will reduce the overhead at the database. Note that
the system can still be scalable. If the bandwidth of a game
server is exhausted while the load of the database is still
low, we can add more game servers to handle more clients.
Adding one game server to the replicated database will have
much less load than adding several clients. The trade-off is
that we need to implement a game server application prop-
erly according to the game semantics. We expect that the
typing game system will scale better in pushing mode than

Figure 14: write transactions, 4 sites in WAN

in pulling mode.
Note that by using database replication, the game can also

achieve transparent fault tolerance and data consistency, as
have been discussed in Section 3.

6. RELATED WORK
[4] proposed to replicate states in MOG. But it does not

use database replication. [10] proposed to use transactions
in MOG to enhance parallel execution. It considers sim-
ple and complex transactions. A complex transaction will
contain several simple atomic transactions. However, it is
unclear in [10] how to apply transactions in the real design.

Zone partitioning is used in many MOGs studies such as
[6, 1]. [6] studies MOGs in a peer-to-peer system. It divides
the system into regions. The game states of all players in a
region are kept consistent by multicast within the region. If
a player moves from one zone to another, its personal data
must be migrated. [1] studies the load balancing problem
when different servers handle different zones.

[3] proposed the categorization of database replication
into lazy/eager and primary copy/update. [19] did exten-
sive analysis and experiments on update everywhere proto-
cols based on multicast. [5, 11] have shown that a replicated
database system is able to scale in LAN. [7] has shown that
database replication can provide fast response time even in
WANs.

[16] introduces local perception filter to compromise the
inconsistent visual effect different players experience due to
network delays. The method is extended by [17] to realize
the bullet time effect which was firstly introduced in the
file The Matrix. The problem of inconsistent visual effects
seen by different players is also avoided in our approach.
Our approach is different from local perception filter. It
uses database replication instead of adjusting each user’s
perception of the environment depending on network delay.

7. CONCLUSION
Recent advances in database replication have shown that

database replication can provide good fault tolerance, scal-
ability, and fast response time while preserving data con-
sistency. These are exactly the features that are needed
in MOGs. However, we are not aware of any study that
analyzes whether and how database replication can be ap-
plied to MOGs. In this paper, we describe how to do so
by implementing a small multi-player typing game on top

of MiddleSIR, a framework which provides database repli-
cation support. We store the game state in a relational
database. Different player actions are modelled as either
read-only or write transactions on the game state. We take
advantage of transaction semantics to simplify the concur-
rency control overhead in designing the game. Moreover,
the replicated database system guarantees data consistency
across all replicas so that all players read the same game
state even if connected to different servers.

We also discuss different replication protocols implemented
in MiddleSIR and analyze how these protocols may influence
the game semantics and the design of our typing game. We
test the typing game in LAN and WAN environments using
one of the protocols. The results show that database repli-
cation can provide good response time to the typing game.
For scalability, the system scales well up to 5 sites. We also
discuss how scalability can be achieved beyond 5 sites by
using various techniques.

8. REFERENCES
[1] Jin Chen, Baohua Wu, Margaret Delap, Bjorn

Knutsson, Honghui Lu, and Cristiana Amza. Locality
Aware Dynamic Load Management for Massive
Multiplayer Games. In PPoPP, 2005.

[2] Emulab. http://www.emulab.net.

[3] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
dangers of replication and a solution. In SIGMOD’96.

[4] Carsten Griwodz. State replication for multiplayer
games. In Netgames, Portland, Oregon, USA, August
2004.

[5] R. Jiménez-Peris, M. Patiño-Mart́ınez, B. Kemme,
and G. Alonso. Improving Scalability of Fault
Tolerant Database Clusters. In ICDCS’02.

[6] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan
Hopkins. Peer-to-peer support for massy multiplayer
games. In INFOCOM, Hong Kong, China, 2004.

[7] Y. Lin, B. Kemme, R. Jiménez-Peris, and
M. Patiño-Mart́ınez. Consistent Data Replication: Is
it feasible in WANs? In Euro-Par, Sep 2005.

[8] Y. Lin, B. Kemme, R. Jiménez-Peris, and
M. Patiño-Mart́ınez. Middleware based data
replication providing snapshot isolation. In SIGMOD,
June 2005.

[9] Y. Lin, B. Kemme, R. Jiménez-Peris, and
M. Patiño-Mart́ınez. Practical Database Replication
in WANS. In Unpublished manuscript, Nov 2005.

[10] Ian Lintault. A transaction execution engine
architecture for multiplayer online games. In
Netgames, Portland, Oregon, USA, August 2004.

[11] M. Patiño-Mart́ınez and R. Jiménez-Peris and B.
Kemme and G. Alonso. Consistent database
replication at the middleware level. In ACM TOCS,
volume vol.23(4), 2005.

[12] I. S. MacKenzie and C. Ware. Lag as a determinant of
human performance in interactive systems. In
Proceedings of the CHI’93 Conference on Human
factors in computing systems, New York, NY, 1996.
IEEE Computer Society Press.

[13] News. http://pc.gamespy.com/pc/world-of-
warcraft/582134p1.html.

[14] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In

Middleware, 2004.

[15] S.Cheshire. Latency and the quest for interactivity,
1996.

[16] P.M. Sharkey, M.D. Ryan, and D.J. Roberts. A local
perception filter for distributed virtual environments.
In Virtual Reality Annual International Symposium,
1998.

[17] J. Smed, H. Niinisalo, and H. Hakonen. Realizing
bullet time effect in multiplayer games with local
perception filters. Computer Networks, 49(1).

[18] A. Sousa, R. Oliveira, F. Moura, and F. Pedone.
Partial replication in the database state machine. In
IEEE International Symposium on Network
Computing and Applications, 2001.

[19] M. Wiesmann and A. Schiper. Comparison of
database replication techniques based on total order
broadcast. IEEE transactions on knowledge and data
engrineering, 17(4):551–566, 2005.

