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Proof. We set § = n%6'3 and apply Theorem 11.33 to obtain a subgraph H of
G and a colouring of G — H with 22 = 2p9387 ¢olours. We embed H in R"

5
using (approximately) unit-length vectors so that the dot product corresponding
+ 5, choose j random

to every edge is less than —3 + L. We set j = [log, 6]

hyperplanes through the origin, and assign vertices in the same orthant the same
colour. This provides a colouring of all the vertices of H which are not incident to a
bad edge.

As discussed earlier, the expected number of bad edges is at most |E(H)|(3 + Ly <
LEG)] < §- If we obtain more than 2 bad ed es, we make a new independent choice
163 8 1 g

of the hyperplanes. The probability that this happens is at most % So we expect to
perform this step at most twice. Once we have J hyperplanes for which there are at
most % bad edges, we have a semi-colouring of G with 27 4 22 = O(n%387) colours,
as we simply leave the vertices in bad edges uncoloured. ]

This is a randomized algorithm, which can easily be derandomized using the method
of conditional expectations.

A better algorithm

We can now discuss the proof of Theorem 11.30. Bec

ause of our auxiliary results, we
need only show:

Theorem 11.37 There is a polynomial-time algorithm which semi-colours any 3-
3 1
colourable graph of mazimum degree nt using O(ni (log n)2) colours.

Proof. Once again, we construct an embedding of G in R
length and the dot product corresponding to every edge is not much more than
—%. Now, however, we choose Cn%(log n)% random unit vectors Y1,...,Y, for an
appropriate constant C' and colour z; with colour 7 if it is closer to y; than any other

Y- Kargar, Motwani and Sudan verified that the expected number of bad edges under

this procedure is less than 8- So, repeating the process until there are at most %

so that the z; are unit-

1
such edges, which means on average we perform two or fewer iterations, we will have
obtained the desired semi-colouring. ]

This randomized algorithm can be derandomized, but the details are tricky; see [26].

11.8 The Theta Body

We now discuss Grétschel, Lovasz and Schrijver’s algorithm for optimizing over perfect
graphs. To do so, we need to consider the stable set polytope, the fractional stable set
polytope, and the theta body. We recall that the stable set polytope of G, denoted
by STAB(G) and defined in Chapter 2, consists of all those vectors which can be
written as convex combinations of the incidence vectors of stable sets. The fractional
stable set polytope, denoted by QSTAB(G) and also defined in Chapter 2, consists
of all those nonnegative vectors z = (21,...,2,) in R™ such that for every clique Q
of G, ZvieQ z; £ 1. The theta body, which we define now, is a convex body which
contains STAB(G) and is contained in QSTAB(G).

To define the theta body, TH (G), of an n vertex graph G, we consider the following
set of constraints on n 4 1 vectors of dimension 7 + 1:

2020 = 1L,Yu; € V,al. 2/ = ¢f ', and Vi, v; € E(G), z'- 27 = 0.
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Then, TH(G) consists of the vectors (z1,...,z,) such that there are n + 1 vectors
satisfying the above constraints fo1 which z?-2' = z;. We can maximize over the theta
body by maximizing ) ;. ", wi(z' - z') subject to the above constraints.

We note that for any stable set S, we can obtain a solution to our constraint set
showing that the characteristic vector of S is in TH(G) as follows:

(i) Set 2° to be the vector whose first coordinate is one and whose other coordinates
are 0.
(ii) For v; & S set 2' = 0.
(iii) For v; € S set z¢ = 20,

More generally, if z can be expressed as the convex combination of the characteristic
vectors of stable sets then it can be so expressed using the characteristic vectors of
at most n + 1 stable sets (since we can restrict ourselves to linearly independent
stable sets), say, z = Y. a; X7 for characteristic vectors X'%,..., X"*1 of stable
sets S1,...,Snt1. Let 20 be the vector with 2¥ = /a; and for 1 < j < n let 2/
be the vector with 'L{ = a; if v; is in S; and 0 otherwise. It is easy to verify that
these vectors certify that 2 is in TH(G). So, we have shown that STAB(G) is indeed
contained in TH(G).

To see that TH(G) is contained in QSTAB(G), we consider a vector (z,...,z,)
in TH(G) and the corresponding vectors 2%, ..., 2™ satisfying the above constraints
with z; = 2’ . z'. Note first that letting ' be the unit vector with the same direction
as @' choosmg i 5o that ' = r;y*, and letting [; be the length of the projection of
y' onto 20, we have:

li= (2% ¢y = l(.'l;D cat) = i(’L' sty =y
7 7
Since z; = r7 we obtain that z; = (20 - y#)2.

Now for any set Y of unit- length vectors every pair of which forms a 90° angle,
and any unit-length vector 2% in R", basic linear algebra yields $° yev(E®-y)? <L
Applying this for every set Y of veltlces corresponding to a clique, we see by the
above remarks that (z1,...,2,) is in QSTAB(G), as required.

So, we have obtained STAB(G) C TH(G) C QSTAB(G). For perfect graphs, as
STAB(G) = QSTAB(G), these three bodies are the same. As discussed above, we
can solve WOPT on TH(G) for arbitrary graphs by solving the corresponding SDP,
which has a polynomial number of constraints (this is one advantage it has over the LP
formulation; of course, there are also an infinite number of half-planes enforcing semi-
definiteness, but as we have seen we can efficiently test if any of these are violated).
As discussed in Section 11.2.2, since TH(G) is the constraint set of an LP when G is
perfect, we can use an algorithm which solves WOPT to solve SOPT over TH(G) for
such graphs. In particular, for any perfect graph G, we can find a maximum-weight

. stable set in polynomial time for any weighting of V(G).

We now present an algorithm for colouring perfect graphs with w colours. The core
of the algorithm is a subroutine from [14] which expresses a point of a feasible region
R of an LP as a convex combination of vertices of R (we omit its description).

Our approach to colouring perfect graphs is recursive. We simply find a stable set
S which meets every maximum clique in the input graph G. Then, G — § is a perfect
graph with x(G — 5) = x(G) — 1 so a recursive call allows us to (w(G) — 1)-colour it.
Adding S as a new colour class yields the desired w(G).

1 ——
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To find our desired stable set S, we note that every stable set with nonzero weight
in a fractional w(G)-colouring of G meets every maximum clique K, for we have also
fractionally w-coloured K. So we need only find a fractional w(@G)-colouring of G.
But having expressed (5, e %) as a convex combination of characteristic vectors of

stable sets ¢ agXs, we can obtain the desired fractional colouring by assigning each
stable set S the weight wag.

So, our algorithm proceeds as follows:

1. Compute w(G) by optimizing 3" z* over TH(G).

- Apply our subroutine with R = TH(G) = STAB(G) to obtain an expression for
(5:---,2) as a convex combination of stable sets of G.

- Let S be any stable set assigned a nonzero multiplier in this expression.

. Use S as a colour class and recursively colour G — S.

[\&]

= W

The above discussion shows the algorithm is correct. It is easy to verify that it runs
in polynomial time.
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