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Origins and Genesis

C. Berge® and J.L. Ramirez Alfonsin®
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b Forschungsinstitut fiir Diskrete Mathemaltik, Universitat Bonn, Germany

1.1 Perfection

Perfection is freedom from fault or defect, an exemplification of supreme excellence,
an unsurpassable degree of accuracy. Can perfection be achieved?

C. Berge introeduced, to some extent, perfection to graph theory when investigating
new combinatorial properties of graphs, involving some well-known invariants, and
defining perfect graphs. Perfect graphs were very much motivated by Shannon's notion
of the zero-error capacity of a graph [22].

In the next section, we briefly discuss Shannon's work on commnunication theory. In
the rest of the chapter, we reproduce some of the earliest published works concerning
peefect graphs, as well as the page of Shannon's paper where he defines the zero-
etror capacity. Rather than presenting a history of the early days of perfect graph
theory, we reproduce C. Berge's paper, ‘Motivations and history of some of my
conjectures’ {9], in Section 1.3. We also reproduce (from [4]} what are, as far as we
are aware, the first explicit written statements of the strong and weak perfect graph
conjectures, and translate the abstract of the talk in which Berge first defined perfect
graphs [2].

Despite many important results on the subject, the perfect graph conjecture remains
unsolved. Does perfection exist? In any ease, characterizing perfection turned out to be
very hard! Various researchers’ failed attempts to do so have generated an important
body of work which will still be very interesting even if the perfect graph conjecture
is solved.

1.2 Communication Theory

Information is often, passed from a sender to a receiver vin a physical transmission
channel. This transfer of information (say, signals) may be subject to the
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9 BERGE AND RAMIREZ ALFONSIN

uncontrollable ambient noise and imperfections of the physical signalling process itself.
Thus each input symbol may give rise to a variety of output symbols. We say that two
input symbols are confoundable if they can give rise to the same output symbol. More
generally, we say that two string of inputs are confoundable if there is some string of
output symbols which may be caused by both of them.

In [22], Shannon discussed restricting the messages sent through a channel to a set
no two of which are confoundable, thercby ensuring that no errors will be introduced
during transmission.

One way of doing 5o is to restrict ourselves to a set of symbols no two of which are
confoundable. For if P is a transmission channel with input symbols set £, and X’ is
a subset of ¥ no two of whose elements are confoundable, then no two elements of
(=)™ (the set of ordered n-tuples with elements in ¥'} are confoundable, indeed we
can determine the input by considering the output, one symbol at a time.

Thus, if we let ¢(P) be the size of the largest subset of £, no two of whose clements
are confoundable, then there are t{ P} m-symbol messages which can be transmitted
through / without risk of error.

However, by being clever we can often find larger sets of m-symbol messages no two
of which are confoundable. Consider, for example, a transmission channel P for which
E = {a,b,¢,d, ¢} such that the pairs of confoundable symbols are {ab, be, cd, de, ea}.
Then clearly {{P) = 2. On the other hand the messages {ab, bd, ca, de, ec} arve clearly
unconfoundable {for example, bd cannot be confused with ca because although b can
be confused with ¢, d cannot be confused with a). So, using these five codewords, we
can construct 5%/ m-symbol messages no two of which are confoundable. This is
a significant improvement on the 2™ messages obtained using two nonconfoundable
symbols,

More generally, using any set C of codewords of length n, no two of which are
confoundable, we can construct _Q_.::.:_. that is, essentially 292Gl 1 svmbol
messages no two of which are confoundable.

Thus, letting N{n, P) be the maximum size of a set of codewords over I, no two
of which are confoundable, we see that there are 20%/5ilog ¥(n P} 1 gembol messages
which can be transmitted through P without danger of error.

This motivated Shannon to define the zerv-error capacily of a transmission channel
P as )

= 13 AT
Co ..G.wr o log N(n, P).
Remark 1.1 [t 15 not difficult to see that this It enists because concalenating
codewonds implies Llog N(n, P) < Ltog N(kn, P) and log|Z| is an upper bound
on Co{P).

As the above remark shows, Cy(P) is the theoretical limit of the bit-per-symbol

error-free transmission rate of the channel P. |
Formally, Shannon considered a discrete memoryless channel given by input
alphabet £y = {z,...,z4} and output alphabet X2 = {y,...,ym} and a

transmission probability matrix P, where F,; represent the probability that output
y; is obtained on input x;. Then two symbols z; and z; are confoundable if, for
some j, both F; and Fj; are positive. Such channels are distinet from those which
have infinite continuous input alphabets, such as the reals. They are also distinet
from those in which the occurrence of neise of some type during the transmission
of one symbol suggests that similar noise may occur during the transmission of the
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next symbol (for then the matrix P should vary according to the strings of previous
output and input}. However, it was not necessary for us to introduce this level of
precision.

Indeed, as we now show, the capacity of a channel P depends only on the graph
G(P) that has as vertex set E and in which two symibols are adjacent precisely if they
are confoundable. To see this, note first that ¢(P) is the size of a largest set of vertices
in G(P) no two of which are adjacent. Such a set is called stable and the size of a
largest stable set in G is denoted a(G). Thus ¢{P) = a(G(P)).

The product G| x G2 of graphs G|, = (V}, E)} and Gz = (V,, E3) has vertex set
W xVs m:mrﬁ..ur%mzsnn pairs (a, b} and (e, d) are adjacent if and only if (i} eithera = ¢
orac € Ey, eu(ii) either b= dorbd € Ea. Welet G! = Gand G* = G~ 'xGlori > 2.
Then it is easy to see that N(n, P) = a(G(P)") and Co{ P) = limn—.» & loga(G(P)").
Thus we can speak of the Shannon capacity of a graph G as

o1 n
Co(G) = :E.uo ql__cmoﬁn. ).

Determining the above limit for a general graph is wide open. Even the simplest
nontrivial case, the pentagon, had withstood attack for more than twenty years, until
L. Lovész [18] proved that Co(Cis) = 4 log5. That Co(Cs) > 1 log 5 was proved above.

Lovasz's proof that Co{Cs} < w_cmm involved an important new invariant of a
graph theory, called the theta function; see Chapters 11 and 12 for further details.

It is easy to verify that a(G"™) = (a(G))" as for any stable set S, in G, 5" is a
stable set in G™. Thus, Cy(G) > log(a{G)). In [22], Shannon asked which graphs
satisfy Co(G) = log{a(G)).

In attempting to answer this question, we need to bound a(G") from above. We
can obtain an upper bound on a by considering the cliques in G—those subgraphs
in which all pairs of vertices of G are adjacent. The clique cover number of G,
denoted #(G), is the minimum number of cliques into which the vertices of & can
be partitioned. Clearly a < 8. Furthermore, 8(G*) = (6(G))? as is easy to verify. So,
Co(G) < log (G).

Thus if @ = # then Cp(G) = log a{G). This was the motivation for Berge to study
the graphs satisfying a = 8, which led to the birth of perfect graph theory.

1.3 The Perfect Graph Conjecture!

I 1958-1959, I started to investigate new combinatorial properties of a graph G with
an emphasis on three invariants: a{G) (called first, with von Neumann, the ‘coefficient
of internal stability’, then the ‘stability number', or also the ‘independence number”),
6(@) (the ‘partition number’, the minimum number of cliques needed to cover the
vertex set), and ¢(G) (the zero-error capacity introduced by Claude Shannon for a
noisy channel). These investigations concerned the four following classes:

{1} a graph G is in Class 1 if (G} = alG);*

{2) agraph G is in Class 2if a(G") = 6{G"} (the ‘Beautiful Property’) for all induced
subgraphs &' of G;

! Reproduced from Section 2 in [9] with kind permission of Elsevier Science.
2 This should be &(G) = loga{G) (Ed.).
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{3) a graph G is in Class 3 if 4(G") = w(G") (the chromatic number® is equal to the
clique number?) for every induced subgraph G';

{4) a graph @ is in Class 4 if G contains no induced Cayoy, the odd cycle of length
2k + 1 = 5 (called odd fole} and no induced complement of an odd hole (called
odd antthole).

It i5 easy to see that every graph in Class 2 is also in Class 4; the Perfect Graph
Conjecture says that Classes 2 and § are equivalent.

To trace back the history of perfect graphs, we shall distinguish different steps:

June 1957 When he heard that [ was writing a book on graph theory, my friend
M.P. Schutzenberger drew my attention to an interesting paper of Shanunon [22] which
was presented at a mecting for engineers and statisticians, but which could have
been missed by mathematicians working in algebra or combinatorics. In this paper,
Shannon posed two problems:

(1) what are the minimal graphs which do not belong to Class 17 {He knew that Cy
was the smallest one.)
{2) what is the zero-error capacity of the graph Cs?

The second problem was solved by Lovasz (18] several years later. The first
problem, completed by my young student Alain Ghouila-Houri {Shannon overlooked
the antiholes), was discussed in January 1960 at the seminar of Professor Fortet where
I asked:

Is it true that every graph in Class 4 is alse in Class 17

(sec Ghouila-Houri [13]). This conjecture, somewhat weaker than the Perfect Graph
Conjecture, was motivated by the remark that for the most usual channels, the
graphs representing the possible confusions between a set of signals (in particular
the interval graphis) have no odd holes and no odd antiholes, and are optimal in
the sense of Shannon. [ developed this idea at the General Assembly of U.R.5.L
{Information Theory) in Tokyo [3] where my research paper [4] was distributed to
all the participants; this paper appeared much later in a book edited by Caianello
{5], but at the time I had the possibility to add in the galley proofs new references
and an appendix with some results proved in [6}, in order to make the conjecture
more plausible and more interesting. In fact, at that time, no one really cared about
such a problem except Ghouila-Houri: unfortunately, in 1966, this remarkable young
mathematician committed suicide, and all the notes concerning his results about the
zerc-error capacity of the antiholes were definitively lost.

October 1959: Invited by T. Gallai, I attended the first international meeting
on Graph Theory at Dobogéké (Hungary), with A. Stone, W. Tutte, A. Rényi, P.
Erdés, G. Dirac, G. Hajos, H. Sachs, and others. A this meeting, Hajnal and Surdnyi
presented an elegant result [14] which could be rephrased as follows. Every triengulated
graph belongs to Class 2 (a graph is ‘trigngulated’, or ‘chordal’ if every cycle of length
{arger than 3 has a chord).

3 The chromatic nmmber of a graph G, nowadays denoted by y(©3), is the smallest cardinality of a
set K for which there is a function f: V(G) — K such that two adjacent vertices have different
elements from K.

4 The clique number w(G) of a graph @ is the largest cardinality of a set of vertices every two of
which are adjacent.
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April 1960: Tnvited by H. Sachs, I attended the second international meeting on
Graph Theory at the Martin Luther University, Halle-Wittenberg, with G. Hajos, G.
Dirac, A. Kotzig, and G. Ringel and I presented a new result:

Every triangulated grapht belongs to Class 3.

At that time, 1 was trying to find all the minimal counterexamples to Class 3
(because [ suspected that the only oncs were the holes and the antiholes, conviction
which appeared later to be equivalent to the Perfect Graph Conjecture). In the
extended abstract of my talk in Halle published in German [2], as in & more developed
text published simultaneously in French [1], 1 stressed the importance of holes and
the antiholes for this problem.

A first remark was that all the graphs which were known to belong to Class 3 are
without odd holes. In honour of T. Gallai, 1 proposed to call ‘semi-Gallai' a graph
which Las no odd holes. However, a terminology change was imposed by the editor of
the Proceedings of Halle-Wittenberg, who added to my paper the following footnote:
“The original title of the presentation given in Halle was Colouring of Gallai, resp,
semi-Gallai, graphs.® Gallai informed us, however, that this was an oversight since he
had not concerned himself closely with these graphs. Therefore thg Hﬁuq_m was changed
with the author’s agreement following a suggestion by Dirae._ Cr e :\n\

It is not true that every graph ....:_.c_._z..o_ﬁ%wfosmm to Class 3, and the ?:m:ﬁp
counterexample, published in [1, 2|, is the antihole of size 7. Clearly, no‘antihole
belongs to Class 3, but we had also to check that thefantiholes of size > 7 do not
contain d hole, and are minimal with respect to the nonmembership in Class 3. At
that time, we were pretty sure that there were no other minimal obstructions; for that
reason, at the end of my talk in Halle, I proposed the following open problem: If a
graph G and its complement are semi-Gallai graphs, is if true that v(G) = w(G)?

Clearly, this statement is equivalent to the Perfect Graph Conjecture.

July-August 1961: During a long symposium on Combinatorial Theory at Rand
Corporation (with R.C. Bose, G. Dantzig, J. Edmonds, L. Ford, R. Fulkerson, A.
Hoffiman, N. Mendelsohn, Ph. Wolfe, and others), I presented a new result: Every
unimedular graph is in Class 2 and in Class 3.

{1 call “totelly unimodular’a matrix which was called at that time a ‘matriz with the
unimodularity property’, and a ‘unimodular graph’is a graph with a totally unimodular
clique-incident matrix). At this meeting, I met for the first time Alan Hoffman,
who mentioned to me interesting new problems about comparability graphs. Also,
the fruitful discussions we had together encouraged me to write a paper in English
about all the graphs for which ! could prove their membership in either Class 2 or
Class 3 (with the obvious conclusion that each graph in Class 2 seems to belong
to Class 3 and vice versa). When I came back to France, [ sent my manuscript to
Alan, at Yorktown Heights, for comments and hopefully for submission to some US
journal.

March-April 1964: 1 attended a NATO Advanced Study Institute on Graph Theory
organized by Dr. E. Aparo at the beautiful Villa Monastero in Frascati, ltaly,
with L.V, Beineke, P.R. Bryant, A.L. Dulmage, J. Groenveld, P.\V. Kastelyn, N.S.
Mendelsohn, J.W. Moon, R.C. Read, W.T. Tutte and W.T. Youngs. For one weck
I had the opportunity to present this new concept. 1 had received a few months

5 At that time triangulated graphs were known as Gallai graphs.
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carlier an answer from Alan who discussed the problem at. the 1.B.M. Research Center
of Yorktown Heights with Paul Gilmore and Harry McAndrew and suggested some
improvements to my paper: so, before the end of the meeting, I could hand over to ‘il
Direttore’ (Frank Harary) a final version, with proper acknowledgements to ‘Dr. A.J.
Hoffman and Dr. P. Gilmore for suggestions and helpful discussions’ and to ‘Dr. ML H.
MeAndrew for the proof of Theorem 5 which is shorter than our original version®.
Unfortunately, my paper did not came out until three years tater [6].

In fact, this approach led Gilmore to an attempt to axiomatize the relevant
properties of cliques in graphs and to a rediscovery of the Halle open problem. This
strengthened my conviction that the conjecture in s strongest version was valid,
even if 1 was more interested in trying to prove that the graphs of Class 2 (the
‘a-perfect’ graphs) are the same as the graphs of Class 3 (the *y-perfect’ graphs).
This became the ‘weak’ conjecture, which seemed easier to settle than the ‘stronger’
conjecture. The weak conjecture was proved in 1971 by Lovdsz [16] who made this
terminology obsolete: since {‘a-perfect’) and (*y-perfect’) are synonymous, both of
them may be replaced by ‘perfect’, and the ‘strong conjecture’ became the ‘Perfect
Graph Conjecture’.

1965-1969: During that period, I did not do much research in combinatorics: 1
was in Rome as efected Director of the International Computation Center, and 1 was
obliged to postpone the ‘Seminar on Combinatorial Problems’ of the University of
Paris which we founded with M.P. Schutzenberger in 1961.

In July 1966, T organized in Rome an international symposium on graph theory with
Andrisfai, Balas, Behzad, Dantzig, Dénes, Edmonds, Erdés, Hajos, Jewell, Kastelyn,
Kotzig, Lawler, Minty, Motzkin, Mycielski, Nash-Williams, Nivat, Raynaud, Rosa,
Rosenstiehl, Sabidussi, Sachs, and others, and I invited Gilmore to be the Chairman.
During the meeting, I worked with Hajds on some properties of the Gallai graphs
that we presented together to the symposium. Gallai [12] had a generalization of the
Hajnal-Surdnyi theorem: If in a graph each of the odd cycles of length at least 5 has
twe noncrossing chords, then the graph belongs to Class 2.

In fact, he proved meore, but his proof was complicated and for that reason, Surdnyi
published separately a shorter proof [23]. In a letter, Gallai told me that he knew also
that his graphs belong to Class 3, but here again, he did not produce a shorter proof.
Our proof was simple, but not as short and elegant as the proof produced by Meyniel
[20] in 1972 for a stronger result (rediscovered nearly simultaneously in Armenia by
Markosian and Karapetian [19]), which can be restated as follows: If each odd cycle
af length at least 5 has af least two chords, then the graph belongs to Class 8.

In 1967, 1 gave several talks on perfect graphs, in particular at the Bose symposium
at Chapel Hill where Mark Watkins published a short report {an addendum to [7])
which contributed to making the Perfect Graph Conjecture popular. It was not. always
so, and the first sytnposium lecture about perfect graphs from other mathematicians
was delivered by Horst Sachs [21] at the Calgary conference in 1969. We learned from
him that E. Olaru defended his doctoral dissertation on perfect graphs at Ilmenau in
1969; his thesis was the first one on this topic.

At the Waterloo conference in 1968, [ proposed for the Perfect Graph Conjecturc a
completely different approach. A new idea at that time was to treat a general family of
nonempty sets [called ‘edges’) the same way as the family of edges of a graph in order
to obtain a theorem which reduces to a graph theory theorem when the ‘edges’ are
2-glement subsets. In a paper of Lovdsz [15], this point of view was used to extend the
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concept of chromatic number, and this family was called a 'set-system’. In my paper
[8). it was called a ‘graphoid’, and this le me to discover a new class of perfect graphs,
the ‘balanced graphs’, which generalize the line-graphs of bipartite graphs. We must
add that it is because of the simplicity of this new point of view that L. Lovisz found
in 1971 a proof of the Weak Perfect Graph Conjecture, published simultaneously in
the context of hypergraph theory {16] and in the context of graph theory [17]. He gave
later another equivalent formulation with the polyhedral point of view, and this was
followed by several nice results (of e.g. R.G. Bland, V. Chvital, R. Giles, R.L. Graham,
H.C. Huang, M.W. Padberg, A.F. Perold, L.E. Trotter, A. Tucker, S.H. Whitesides).

Lovisz’s proof of the Weak Perfect Graph Conjecture was closely related to an
earlier work of Ray Fulkerson on antiblocking pairs of polyhedrat (especially his ‘max-
min inequality). Ray proved that the conjecture was cquivalent to another statement,
which he found too strong to be true; when I sent him a posteard from Waterloo to
inform him that the validity of the conjecture had just been established by Lovisz,
he was able to supply the missing link in only a few hours. Later, Ray invited me to
publish the whole story in a volume that he was editing [11].

The most significant results obtained before 1980 have been assembled in [10)], but
many classes of perfect graphs have been introduced since then by different anthors,
using completely different arguments. Other papers deal with recognition algorithims
for specific classes, complexity of optimization problems in perfect graphs (of e.g.
Grétschel, Lovédsz and Schrijver). Other important results have been found in the last
decade but, after more than 30 vears, the Perfect Graph Conjecture remains open.

1.4 Shannon’s Capacity

Figure 1.1 is a reproduction of the page of Shannon’s paper where he defines the
Zero-error capacity.

1.5 Translation of the Halle-Wittenberg Proceedings®: Colouring of

graphs, all eycles or all odd cycles of which are rigid®

Let (7 be a graph, X be the sot of its nodes and U be the set of its edges. A complete
subgraph of G is called a clique. The chromatic number of G is denoted by 4(G) {this
is the smallest number of colours allowing a colouring of the nodes of (7 sueh that two
nodes joined by an edge never have the same colour). w(G) is the number of nodes of
a largest clique of G. w(G} < v(G) does always hold, and we want to study certain
classes of graphs for which w(G) = (&) holds.

A graph G is called a Gallai graph if every elementary cycle of size greater than 3 has
a chord, i.e. an edge connecting two nonconsecutive nodes of the cycle. For example,
the Husimi trees, which are studied in physics (and which are connected graphs
without elementary cycles of length different from 3) are Gallai graphs. Similarly,

5 Translated from [2] with kind permission of Wiss. Z. Martin-Luther Unie. Halle- Wettenbery.

7 The title of the talk presented in Halle, was originally: Colouring of Callai and semi-Gallai graphs
respectively, Mr. T, Gallai communicated that there was a misunderstanding, since he had not
studied this type of graphs more closely. Therefore, the title has been changed according to a
suggestion of Mr. Dirac with the author’s agreement. ‘The carresponding changss in the text could
not be made for typographical reasons {subeditor’s note).
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The suin of two channels is the channel formed
by uwsing inpots from either of the two glven
channels with the game transition probabibities
to the set of output letters conssting of the
logical sum of the two alphabets. Thus the sum
channcl is defined by a transition matrix forined
by placing the matrix of one chanael below and to
the right of that for the other channel and filling
the remaining two rectangles with zeros. [f pi(7)
and ||p, (31| are the individual matrices, the sum
has the following matrix:

m(l) - mir) 0 - 0
ml} - om0 0
(] 0 pyl1) o opifrd
0 e P P

The product of the two channels is the channel
whose input alphabet consists of all ordered pairs
{1,i') where i is a letter from the first channel
alphabet and * from the second, wliose output
alphabet is the similar set of ordered pairs of
letters from the two individual cutput alphabets
antt whose transition probability from {i,i") to
(3.3) is pi(2)pi(3)-

The sum of channels corresponda physically to
a situation where cither of the two channels may
be used (but not both}), a new choice being made
for each tranamitted letter. The product channel
correaponids to a situation where both channels
are used each unit of time. [t is intcresting to
note that multiplication and addition of channels
are both associative and commutative, and that
the product distributes over o sum. Thus one can
develop a kind of algebra for chanrels in which
it is possible to write, for example, a polynominl
3" an K™, where the a, are non-ncgative integers
and K is a channel. We shall not, however,
investigate here the algebraic properties of this
systemn.

The Zero Error Capacity

In a discrete channel we will say that two input
letters are adjacent if there is an ocutput letter
which can be caused by either of these two. Thus,
i and j are adjacent if there exists a ¢ such that
bioth pi{t} and p;(t) do not vanish....

I€ alt input lctters are adjacent to each other,
any code with more thian one word has probability
of error at the receiving point greater than zero.
In fact, the probability of error in decoding words
satisfics

M=,
Po 2 =4 Paia

where ppin is the smallest (Ron-vanishing) among
the pi(f), n is the length of the code and Af is

the number of words in the code. To prove this,
note that any twe words have a possible output
word in commnon, namely the word consisting of
the sequence of common cutput letters when the
two input words are compared letter by letter
Each of the two input words has a probability at
least p,,,, of producing this common output word.
In using the code, the particular input words will
cach occur oY of the time and will cause the
common cutput ..’-_:..m.: of the time. This output
can be decoded in only one way. Hence, at least
ane of these situations leads to an error. This
error, Ay pi,. I8 nssigned to this code word, and
from the remaining Al — 1 code words another
pair is chosen. A source of error to the amoumt

Pimia 13 nssigned in similar fashion to one of
these, and this is a disjoint event. Caunting in this
manner, we obtain a total of at _aEpEamu..ﬁu._s os
probabitity of error.

If it is not true that the input letters are all
adjacent te each other, it is possible to transmit
a1 a positive rate with zero probability of error
The least upper bound of all rates which can be
achieved with zero probability of error will be
called the zero error capacity of the chatnel and
tlenated by Co. If we let Mg(n) be the largest
number of words in a code of length n, no two
of which are ndjacent, then Cy is the least upper
bound of the numbers 1ifo{n) when n varies
through all possible integers.

One might expect that € wonld be equal to
log Ma(1}, that is, that if we choose the largest
possible set of non-adjacont letters and form all
sequenced of these of length n, then this would be
the best orror free code of length n. This is not,
in gencral, true, although it holds in many cases,
particularly when the number of input letters is
small. The first failure occurs with five input
letters with the chanpel in Fig. 2. In this chaonel,
it is possible to choose at most two non-adjacent
letters, for example 0 and 2. Using sequences of
these, 00, 02, 20, and 22 we obtain four words in
a code of length two. However, it is possible to
construct a code of length two with Bve membera
no two of which are ndjacent as follows: 00, 12, 24,
31, 43. 1t is readily verified that no two of these
are adjacent. Thus, Cp for this channel is at least

1 log 5.

Fig. 2

Figure 1.1 Shannon's Capacity. Reproduced from [22] with kind permission of LE.E.E.
Publications.
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it can be shown that those graphs which represent sets of intervals and which have
been considered here by G, Hajds, are also Gallai graphs.

A graph is called a semi-Gallai graph if every odd elementary cycle of length > 3
has a chord. Hajnal and Surdnyi® have shown that in a Gallai graph ¢ the minimum
number of cliques in which the set of nodes X can be partitioned? is the internal
stability number of G, i.e. the maximuwm number of nodes that can be chosen such
that no two of them are connected by an edge.

If G is a semi-Gallai graph, then w(G) = (G) holds ‘almost always’. This can be
seen by the following examples.

Example 1: Gallai graphs. A Gallai graph is obviously a semi-Gallai graph. One
can easily show that for a Gallai graph G, (G} = +4(G) holds.

Example 2: Simple graphs. G is called a simple graph il it consists of two disjoint
node sets X and X3 and some edges connecting Xy to Xz. Since such a graph has
no odd cycles, it is obviously a semi-Gallai graph. On the other hand,

w(G)
w(G) =1

2 = %(G), if G has at least one edge;

~+[G), if G has no edge.

Example 3: Adjoint graphs of simple graphs. The adjoint graph G* of the graph G
is, by definition, the graph whose nodes represent the edges of G such that two nodes
are joined by an cdge if and only if the edges that they represent share a common
node in G.

If G is a simple graph, then the adjoint graph G* is a semi-Gallai graph, otherwise
" would have a chordless cycle of length 2k + 1 > 3, namely uj, u3,...,u3, . This
would correspond to a sequence of edges uy, ..., us41 giving rise to an elementary
cycle of length 2k + 1, which is immpossible, since G is a simple graph.

On the other hand, w(G*) = 7(G*) since v(G*) is the minimum number of colours
allowing a colouring of the edges of G, which is the maximum degree of &, i.e. w(G*),

by a well-known theorem of Kénig for simple graphs.!®

Example 4: The perfect graphs by Shannon:'! One can show that these graphs,
considered in information theory, are semi-Gallai graplis, and satisfy the relation
w(G) =1(G).

8 [10} p. 113.
9 That is, every node of G belongs to exactly one of the cliques,
10 \We have proved the following result in addition. A necessary and sufficient condition for o graph

(7 to be an adjoint graph of a simple multigraph is that:

1. G is a semi-Gallai geaph. o
2. For every node x, the set {z} Uz is the union of two cliques . and Oz, where the disjoint

gots Ay — By and Br — A, are not connected by any eidge. {[z denotes the set of nodes
adjacent to node z.)

The first condition alone has the following meaning. Let G° be a graph adjoint to some graph [T
Then € is a semi-Callai graph if and only if it docs not contain any cycle of odd length = 3. The
second condition is necessary and sufficient for G to be adjoint to some graph G without any triangles.
11 Compare C. Berge, Théorie des Graphes, Paris, 1959, pp. 37-3%.
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N

=N

Figure 1.2

In view of such a large number of examples one could conjecture that for all semi-
Gallai graphs w(G) = ¥(G) holds, but this is not true, as is shown by the following
counterexample given by one of our students, Mr. Ghouila-Houri: C is a graph with
nodes a, b, ¢, d, e, f, g and edges ac, ad, ae, a f, bd, be,bf by, ce,cf, g, df, dg, eg. One can
easily show that G is a semi-Gallai graph with w(G) = 3 but ¥(G) = 4. (See Figure 1.2).

1.6 Indian Report

F mm..::u L3 is a reproduction of what are, as far as we are aware, the first explicit
written statements of the strong and weak prefect graph conjectures [4]-

Vi CONJECTURES

The problem of characterizing a-perfect and v-perfect graphs seems
difficult, but the preceding results enable us to state several conjectures.

For instance:

Conjecture 1. A graph is a-perfect if and only if it is y-perfect

Conjecture 2. A graph is y-perfect if and only if it does not contain an elementary odd
cycle of one of the following types:

type 1: the cycle is of length greater than 3 and does not possess any chord;
type 2: the cycle is of length greater than 3, and does not possess any triangular chord,

_.=._n possess all its non-triangular chords (a chord is triangular if it determines a triangle
with the edges of the cycle)

Conjecture 3. A graph is a-perfect if and only if it does not contain an elementary odd
cycle of type 1 or 2,

It is ensy to show that conjecture 2 is equivalent to conjecture 3, and implies conjecture 1.

It is also easy to show that if a graph is y-perfect {or a-perfect), then it does not contain
an elementary add cycle of type 1 or 2.

Figure 1.3 Indian Report. Reproduced from [4] with kind permission of the Indian
Statistical Institute (Macmillan, Calcutta).
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From Conjecture to Theorem

Bruce A. Reed

CNRS, Equipe Combinatoire, Universite Pierre et Marie Curte, Paris 6, France

We recall Berge's definition of a perfect graph and his two seminal conjectures
concerning these objects, which were discussed in the previous chapter.

A graph G is perfect if for each induced subgraph H of G, the chromatic number of
H, denoted y(H), is equal to its clique number, w{). A graph is menimal smperfect
if it is not perfect but all of its proper induced subgraphs are. Berge proposed:

The Weak Perfect Graph Conjecture A graph is perfect if and only if its
complement is perfect.

The Strong Perfect Graph Conjecture A graph is minimal imperfect 1f and only
if it is a chordless cycle with 2k + 1 vertices for k > 2 or the complement of such a
cyele.

To provide evidence for the weak perfect graph conjecture, Berge noted that for
many well-known classes of graphs, both the graphs in the class and their complements
are perfect. The two' best-known examples are the triangulated graphs and the
comparability graphs.

Comparability graphs, which are discussed in more detail in the next chapter,
permit a transitive orientation of their edges, that is, an acyclic orientation such
that if £J is an arc and #% is an arc then £% is an arc. This implies that every oriented
path of the graph induces a clique. Further, acyclicity implies that il £ is an arc then
any oriented path ending at = can be extended to an oriented path ending at y. These
two remarks imply that we can w{G)-colour a comparability graph G by colouring
each vertex with the length of a longest oriented path ending at that vertex. Since
every subgraph of a comparability graph is also a comparability graph (we restrict
the transitive orientation to the subgraph}, these graphs are perfect.

The fact that complements of comparability graphs are perfect is equivalent to a
classical theorem of Dilworth [3]. 1lis theorem, which was stated in terms of chains
and antichains in partial orders, says that the minimum number of oriented paths

Perfect Graphs, Edited by J. L. Ramirez Alfonsin and B. A. Reed
© 2001 John Wiley & Sons, Lid
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needed to partition the vertices of a comparability graph is equal to the size of a
largest stable set in the graph. Since these oriented paths induce cliques, we obtain
that comparability graphs are perfect.

Remark 2.1 Diworth's theorem s also cquivalent o carlier theoremns of Konig,
Menger and others, although these equivalences are not quite as direct (see {13]). One
of these theorems states that hipartite graphs are A edge-colourable which, as noled
by Derge (1], implies that the line-graphs of bipartite graphs are perfect.

In the next section of this brief chapter, we prove that triangulated graphs and their
complements are perfect. We then go on to discuss two proofs of the weak perfect
graph conjecture and their polyhedral and algebraic consequences. In particular, we
shall see that Lovasz's proofl of the weak perfect graph conjecture pointed out the
fundamental role that perfect graphs play in polyhedral combinatorics.

2.1 Gallai’s Graphs

We call a graph triangulaied or chordal if it contains no induced cycle of length 4 or
more. As discussed in Chapter 1, in the late 1950s and early 19G0s these were known
as the Gallai graphs. Indecd, Berge called the graphs without odd holes semi-Gallai,
and would have used this term in the title of his famous 1961 talk, except that Gallai
objected.

The proof that Gallai graphs are perfect relies on the following result, first proved
by Dirac {6].

Definition 2.2 For twe verlices x and y in a graph G, a set S of vertices of G is an
(z, y)-separator if there are ne paths between = and y in G = §. S is a minimal verter
separutor 1f there 1s no (x,y)-separator properly contained within 5.

Theorem 2.3 Every nunimal vertez separator in a Gallar graph i1s a clique.

Proof. Let § be a minimal (z, y)-separator for some pair of nonadjacent vertices
T and y in G. Let U, be the component of G — § containing 2 and U/, be the
component. containing y. Assume that S contains two nonadjacent vertices u and
v. The minimality of S implies that every vertex of S sees a vertex of Uy, Thus there
is a chordless path Pr between u and v in u + v + U;. Similarily, there is a chordless
path P, between u and v in u + v+ Uy. The union of these two paths is a chordless
cycle of length at least 4 in the Gallai graph G. This is a contradiction. 0

Corollary 2.4 A graph ts Gallut precisely if, for each of its induced subgraphs H,
cvery munimal separator of fI is a clique.

Proof. One direction of the implication follows by applying the above theorem to each
of the (Gallai) subgraphs H of a Gallai graph. The other direction holds because
every induced cyele with four or more vertices contains a minimal separator which is
not a clique. Indeed, every minimal separator in such a graph is a pair of nonadjacent
vertices. n

Definition 2.5 A clique cutset 15 a cutset whose vertices tnduce a chique.

Corollary 2.6 Fuvery Gallai graph which 15 nol a cligue has a cliqgue culset.

FROM CONJECTURE TO THEOREM 15

Proof. For every nonadjacent pair of vertices ¥ and y in a graph, VV — x — y is an
{x, y)-separator and therefore contains a minimal (z, y)-separator, o

It follows easily that no minimal impetfect graph is Gallai:
Theorem 2.7 No minimal imperfect graph contains a clique cutsel,

Proof. Let C be a clique cutset in a minimal imperfect graph G. Let U be a component
of G = C. We can obtain an w(G)-colouring of G — I/ since it is perfect. We can obtain
an w(G)-colouring of the subgraph of G induced by C + U since it is perfect. As C is
a cliqque, both these colourings use |C| distinct colours on C. By renaming the colours
we can make the two colourings agree on C. We thereby obtain an w(G)-colouring of
G. This contradiction yields the desired result. |

Corollary 2.8 2| Every Gallai graph is perfect.

Proof. Any imperfect Gallai graph contains a minimal imperfect Galini graph. This
grapl cannot be a elique, so by Corollary 2.6 it hins a clique cutset. But this contradicts
Theorem 2.7. This is impossibie. o

This theorem is a useful tool in & much more general setting {it also has even
more useful generalizations; see Chapters 6 and 8). Gallai [8] proved that the class of
i-triangulaled graphs, i.e. those in which every cycle of odd length has at least two
noncrossing chords, is a class of perfect graphs. He did so by proving that any such
graph cither has a clique cutset or is complete multipartite (i.e. can be partitioned
into k stable sets such that any two vertices in distinct stable scts of the partition are
adjacent} and hence clearly satisfies y = w, and then applying the theorem above.

Gallai did not prove that the complements of the i-trinngulated graphs are perfect.
To do so, he would only have needed to show that the complement of a minimal
imperfect graph does not have a clique cutset, but it is not immediately apparent
how to do this.

There is, however, a strengthening of Corollary 2.6, due to Dirac [6], which does
allow us to prove simply that the complements of Gallai graphs are perfect.

Definition 2.9 The neighbourhood of a verter v, denoted Nv), is the set of vertices
to which it is edjacent.

Definition 2,10 A verter in a graph G is simplicial if its neighbourhood induces a
clique.

Theorem 2.11 Every Gallai graph G which is not a cligue confains two non-adjecent
simplicial vertices.

Proaf. We proceed by induction, the base case when G is a vertex being trivial.
By Corollary 2.6, G has a clique cutset C. By the inductive hypothesis, for each
component U of G — €, the graph Hy induced by V{U) U C either is a clique or
contains two nonadjacent simplicial vertices. In the first case, every vertex of U is
simplicial in Hy. In the second case, at least one of any pair of nonadjacent simplicial
vertices of Hy is in U. Hence, in either case, there is a simplicial vertex of Hy in
U, which is clearly also simplicial in G. By considering two different components of
G — C, the result follows. ]
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Lemma 2.12 If G 5 minimal imperfect then @ does not contain a simplicial verter.

Proof. For any vertex z of G, w(N{r)) < w(G) -1, and hence N (z) has an (w(G) - 1)-
colouring. If z is simplicial in G then G — N(z) is a stable set 5. So §, along with our
(«{G) = 1)-colouring of N{x), yields an w()-colouring of G, a contradiction. O

L
Corollary 2.13 The complement of any Gallat graph 1s perfect.

Proof. Since stable sets are perfect, this result follows immediately {from Lemma 2.12
and Theorem 2,11, o

Remark 2.14 This corollary was originally proven by Hagnal and Surdnyi in
1938 (see [10]). They were motivaled by a result of Gallai which showed tha! the
complements of infcrval graphs, a special type of Gallai graph, satisfied x(G) = w(G).
Hajnal and Surdnyi used the fact thal for any verter x in a Gallai graph, any pair of
vertices in N{x) joined by e path in G = & — N(z) are adjacent. This fact also holds
in the infinite case, in which they were inferested (in contrast, infinite Gallai graphs
need not conlain simphciel vertices; consider an infinite tree).

Gallai's contribution to the study of perfect graphs was not limited to the study of
triangulated and i-triangulated graphs. He also wrote a seminal article characterizing
comparability graphs, a translation of which can be found in the next chapter.

In that paper he studied the notion of the geschlossene Menge (literally: closed
set) which nowadays we would call a module or a lomogeneous set. This notion has
turned out to be a very useful tool in algorithmic graph theory (see Chapter 5, where
its importance in the study of Py-structures is highlighted). It is also the key to the
proof of the perfect graph theorem.

Remark 2.15 Lovds: tniroduced this idea independently in the contex! of normal
hypergraphs.

2.2 The Perfect Graph Theorem

Jovisz [11] proved the weak perfect graph conjecture in 1972. For this reason, it is
now also called the perfect graph theorem. The key to Lovasz’s proof is the replication
lemma.

Definition 2.16 Ve replicate a vertez T in a graph G by adding a verter ' adjacent
to = + N(x).

Definition 2.17 Substituting a graph H for a vertex x in a graph G yields a new
graph with vertex set V{(GQ)—x+V(I) such that the vertices of G =z induce G—x, the
vertices of H induce H and each verter y of H i3 adjacent lo precisely those vertices
of G — = which are in N(z); see Figure 2.1.

Definition 2.18 A homogenous set in a graph G is a set S of vertices with 2 < |5 <
|V{G) — §| such that for every vertez v not in S, either v sees all of S or v sees none

QH.W..

Remark 2.19 Replicaling a vertex x is the same as substituting an edge for . A
graph has a homogeneous set if and only if it arises vie substitution.

FROM CONJECTURE TO THEOREM I

The new graph
Figure 2.1 A substitution.

Lemma 2.20 (The replication lemma) If & is obtained from a perfect graph by
replicaling a vertex then G s perfect.

Prosf. Consider a graph G’ obtained from a perfect graph G by replicating a vertex
z. Every induced subgraph H’ of G’ is either a subgraph of G or obtained from a
subgraph H of G by replicating x. So, it is enough to show that for any graph H’
obtained by replicating a vertex = in a perfect graph #, we have: x(H') = w{H'}).

To do s0, we note that if T is in a maximum clique of H then w{H') = w(H) +1,
so we can colour H with w{H) colours and use a new colour on z’. This yields the
desired w{ H')-colouring of H'.

If z is not in a maximum clique of H then we consider an w( H)-colouring of H
and let S be the colour class containing . Clearly, S meets every maximum clique of
H, and hence so does § — x. Thus since i — (§ — x} is perfect, it has an w(H) =1
colouring. Combining this with the stable set § — x + 2’ yields the desired w{H’)
colouring of H'. n]

Corollary 2.21 If G is oblained by substituting a cligue for a vertex in a perfect
graph then G is perfect.

Proof. We can perform this substitution via a series of replications. |
Theorem 2.22 [11] If G is perfect then so is G.

Proof. It is enough to show that if G is perfect then x{G) = w(G), i.e. that the vertices
of G can be partitioned into a(G) cliques. Let G be a minimal counterexample to this
statement.

Let ¢ be the total number of maximum stable sets of G and, for each vertex z,
let ¢, be the number of maximum stable sets containing x. Create a new graph G*
by substituting a clique C, of size ¢, for each vertex z of G (whatever order these
substitutions are performed in, we obtain the same G*). We label each vertex of C;
by a distinct maximum stable set containing z. These labels point out a t-colouring
of G*. -

Clearly, G* has ta(G) vertices and a(G*) = a(G). Thus x(G*) = mmm.%_ = {. So,
x{G*) =t and since, by Corollary 2.21, G* is perfect, we know that G* contains a
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clique C of size ¢t. No two vertices of C can be _n.cm.:.%m.g. the same stable set and so
C contains a vertex labelled by each stable set, Thus, if we let G’ be the set”of tiose
vertices x in @ such that C; N C £ @ then C' intersects every maximmun stable set 6f
G, so oG — C') < a{G) - 1. Furthermore, C' is clearly a clique because C is.

Now, by our inductive hypothesis, G — C' can be covered with a{G) — 1 cligues.
These, along with C', yield a covering of G using a(G) cliques, a contradiction. O

2.3 Some Polyhedral Conscquences

A linear programming problem {an LI*) in n real-valued variables z, ..., Ty, involves
maximizing a linear function of these varinbles subject to a set of linear inequalities.
That is, for an integer m, and reals €1, ... Cn, 01, .. by .o, @0, a0, -0,
A2y yAm Ly e -y Gy We wish to solve:

maximize M._U C;T;

subject Lo: !
W air, <bhfori=1....m
wn.h._N Dforg=1....,n

Or, in matrix terminology, for some m x n matrix A, row vector ¢ of length n and
column vector b of length m, we want to solve:

maximize c-x
subject to:
Ax < b,
=0

In polyhedral terms we want to find a point of the polytope P4y given by Az < b,z =
0, which is furthest in the direction pointed to by e
In an integer programmming problem (an [P}, we wish to solve:

maximize c¢-x
subject to:
Ar <b,
z20,
x; integer fori=1,...,n.

Thus, we want to find the point in P44 with integer-valued coordinates which is
furthest in the direction pointed to by c.

As discussed in Chapter 11, there is a polynomial-time algorithm to solve LPs.
In contrast, determining if the solution to an H? is above a certain threshold is NP-
comnplete,

Given an IP in the form above, its fracttenal reloration is the LP obtained by
dropping the integrality condition; see Figure 2.2. Often an optimal, or near optimal,
solution can be obtained for an IP from an optimal solution to its fractional relaxation.
In particular, if there is an optimal solution which has integer-valued coordinates then
it is clearly also an optimal solution to the IP. It is of great interest to determine when
this will be the case.

FROM CONJECTURE TO THEOREM 12

Figure 2.2 Feasible regions for an LI and corresponding IP.

In this context, it is important to note that an IP problem is really just a special
type of LF presented in a compact form. To sce this, we consider the polytope P},
which is obtained by taking the convex hull of the points in P4, with integer-valued
coordinates (i.e. a vector x is in P} , if and only if it is a convex combination of points
in Py with integer-valued coordinates). The vertices of this polyhedron clearly have
integer-valued coordinates, Now, for any objective function ¢ the maximun of ¢-x over
a polyhiedron (if it exists) is obtained at a vertex. In particular, then, the maximum of
c-T over muu.... is obtained at a point y of Py with integer-valued coordinates. So, since
every point = of P4, with integer-valued coordinates is in £ ,, and hence satisfies
¢z < ¢y, we see that this maxinumn is indeed the solution to the corresponding IP.

The main reason why IPs are harder to solve than LPs is that the constraints
needed to define P, may be difficult to oblain from those used to define Py . For
one thing, there may be many (c.g. exponentially) more of them. However, if the
IP is well structured we may be able to efficiently construct a description of P,
from the constraints for Py 4. In particular, if every vertex of Py has integer-valued
coordinates then the two polyhedra are the same,

It turns out that, as Chvidtal [4} (see also [7}) pointed out, the perfect graph theorem
implies that perfect graphs can be used to characterize those (0, 1) matrices A such
that P, has vertices with integer-valued coordinates (the 1 here and below denotes
a vector all of whose coordinates are 1). This characterization depends heavily on the
perfect graph theorem. To state it precisely, we need some definitions.

Definition 2.23 A vector x dominates a vector y 1f each of its coondinates is at least
as large as the corresponding coordinate of y.

Definition 2.24 A malriz is reduced if none of its rows is dominated by another.

Observation 2.25 If a row of a matriz A is dominated by another row then, letting
A’ be the matriz obtnined from A by deleling the domenated row, we have Py, = Py ).

Proof. For any nonnegative x, the constraint given by the dominated row will hold if
the constraint given by the row dominating it does. O

It follows foriz our observation that in characterizing those matrices for which
Py = Py, we need only consider reduced matrices.

Definition 2.26 A matrir A is a chque-node tncidence matrz of a graph G if ils
rows are the characteristic vectors of the (inclusionunse) marimal cliques of G. Thatl
15, for a graph G with V(G) = vy, ..., vn and some enwmeration of the mazimal cliques
of G as Cy,...,Cy, we have that the eniry tn the tnfersection of the ith column of A
with the jth row of A 1s I tf v, 15 in C, and 0 olherunse.
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Note that we can move between any two clique-node incidence matrices of G by
reordering rows, and thus the polytope P, is the same for any clique-node incidence
matrix A for . So, we sometimes speak of the clique-node incidence matrix Ag for
G.

The characterization we are interested in is the following:

Theorem 2.27 For a (0,1) reduced mairiz A, we have that Py = P!y, if and only

if A ts the clique-node incrdence mairir of a perfect graph.

Remark 2.28 As we shall see in Chapler 11, this characterization allows us to
oplimize over Py for perfect G, and thereby solve the colouring and eltque number
problemns on such graphs.

We prove this theorem in a moment.

First, however, we note that a vector x satisfies Agr < 1 precisely if it satisfies
Mc_ ee T = 1 for every clique of G. Thus, a vector £ with integer-valued coordinates
is in Py, 1 if and only if it is the characteristic vector of a stable set (that is, for some
stable set S, we have x, = 1 if v; € § and x; = 0 otherwise).

We define the stabic set polytope for G, denoted STAB(G), to be P}, that is,
the convex hull of the characteristic vectors of the stable sets for G. We define the
fractional stable set polytepe for G, denoted QST AB(G) {the @ here stands for the
rationals) to be P, 1. We see that STAB{G) C QSTAB(G), and our theorem tells

us that these two polytopes are the same precisely if G is perfect.

Proof. We first show that if Pa; = Pjy, then A must be the clique-node incidence
matrix of some graph. We then show that this graph cannot be imperfect. Finally, we
show that for any perfect graph G, Pajg)a = ..‘:E; thereby completing the proof.

We turn now to the first step. Consider a matrix A, and the graph G, whose
vertices are the columns of A and in which two vertices are adjacent precisely if there
is a tow with a 1 in both of the corresponding columns.

Every row of A corresponds to a clique of G 4. So, if A is not a clique-node incidence
matrix for G 4 then either there is a maximal clique of G4 which does not correspond
to a row of A or one of the rows of A corresponds to a nonmaximal clique of G 4.
Since A is reduced, in either case, there is a clique of G, such that no row of A has
a 1 in all of the columns of this clique. We let /' be a smallest such clique.

Since each edge of G4 comes from a row of A, || = 3. Further, by the minimality
of K, we have: :

for every C in I, there is a row of ¢ which has a 1 in all of the columns )
of K - C.

We let ¢ be the cost vector such that ¢; is 1 if the ith column isin A and 0 otherwise.
We claim that the maximum of ¢ - z over = in P, exceeds max ¢- y over the y in
P,y with integer-valned coordinates, which implies P4y # P) ;. To prove our claim,
we note first that by (x), any vector y in P4y with integer-valued coordinates has a 1
in at most one of the columns of K, and hence ¢-y < 1. On the other hand, consider
the vector z for which x, = 0 if the ith column is not in K and z; = dﬂ__.||_ if the
ith column is in K. Since no row of A has a 1 in all the columns of K, this vector
is clearly in P4 ,. Further,c.z = _uh_al_l > 1. This proves the claim and hence shows

that Py, # P .

FROM CONJECTURE TO THEOREM 2

We now show that for an imperfect graph &, Py, # Pl ,, ie. STAB(G) #
QSTAB(G). To this end consider a minimal imperfect subgraph H of G. Let ¢ be
the vector such that ¢, = 0 if v; € I and ¢; is the number of maximun cliques of H
containing v, for v, € . Let y be the vector such that y, is 0 if v, is not in H and
= m%': for v, in M.

Clearly, y € Q5T AB(G). Further, letting C(f{) be the set of maximum cliques of
H, we have:

o
o
I

1 L : .
M ﬁrﬁ of eliques of C{H) containing v, }
EeEN
l

EAIEU M {# of vertices in C} = |C(H)|.

CEC(i)

On the other hand, for the characteristic vector z of a stable set S ol G, ¢ z
is the number of maximum cliques of H which have a nonempty intersection with
8. Now, S cannot intersect all of C(#) for then w(#H — S) = w(H) — 1 and so an
{w(H) — 1)-colouring of H — S along with H 0 § yields an w(H)-colouring of H,
contradicting the fact that it is minimal imperfect. So, for any vertex = of STAB(G),
we have ¢- z < c- y. Thus, for any vector ¥ in STAB(G) we have ¢+ 2 < ¢- y; hence,
STAB(G) # QSTAB(G).

Finally, to complete the proof, we consider a clique-node incidence matrix A for a
perfect graph G. We show that for any nonnegative integer-valued objective function
¢, the maximum of ¢ -z over z in @QSTAB(G) is obtained on a stable set of G. It
follows, using basic caleulus, that the same statement holds for arbitrary c. Hence
STAB(G) = QSTAB(G), i.e. Py, = P4, as required.

Note first that if ¢ is the vector 1, then the fact that G can be covered by a(G)
cliques yields that ¢-z < a(G) for any = in QSTAB(G). Thus the characteristic
vector of a maximum stable set maximizes ¢+ x over QST AB(G). For arbitrary c,
we will use the replication lemma to obtain an auxiliary graph G,, such that a{G.)
is the maximum of ¢ -  over all characteristic vectors of stable sets, and then use
a clique covering of G. to show that it is also the maximum of ¢ -z over x in
QSTAB(G).

Specifically, let G, be the graph obtained by substituting a stable set S; of size ¢;
for vertex v; (this involves deleting v; if ¢; = 0). Since G, is obtained by substituting
cliques into G, the replication lemma and the perfect graph theorem imply that G,
is perfect.

Now, for a stable set § in G, if N 85, is not empty then SU S, is a stable sct. So,
for any maximum stable set T of G, for each v, either TNS, =0or TNS; = 5.
Thus, there is a stable set T* of G with characteristic vector z such that |T| =¢-z.
Conversely, given any stable set 7¥ of 7, we sce that T = Uy, e7+S; is a stable set of
G, satisfying |T| = ¢ - z, where z is the characteristic vector of 7. So, the maximum
of e- z over the characteristic vectors of stable sets of G is a(G).

On the other hand, since G, is perfect it has a covering by a = a(G.) cliques:
K1,..., Ka. Letting K7 be the clique {v;]S; N K; # 8} in G, we see that K,..., K
is a family of cliques covering each vy exactly ¢, times. Now, for any veclor & in
QASTAB(G) and each K}, we have: MU:E_& z, < 1. Summing over all the o cliques,
we see that ¢-x < a, as required. o
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2.4 A Stronger Theorem

Shortly after proving the perfect graph theorem, Lovdsz (12] proved the stronger
result that a graph is perfect if and only if every induced subgraph # satisfies
a(H)yw(H} = |V(H)|. His proof was phrased in terms of normal hypergraphs. We
give a proof below due to Gasparian [9] which has a more graph-theoretic Havour. If
H is perfect then an w(ff)-colouring of H shows |V{H)| < a{H)w(H}. So, to prove
Loviisz's result, we need only show:

Theorem 2.29 If G is minimal imperfect then |V{G)| = a(G)w(G} + 1.

Pruof. For any vertex v of G, the fact that G — v is perfect implies that |V{G)| =
V(G =v)|+ 1 <a(G - v)w(G-1v)+1 < a(Glw(G) + 1. Hence, we need only prove
that |[V(G)| 2 a(G)w(G) + 1.

To this end, consider a maximum stable set Sy = {v,,...,t4iq} in G. Since
G is minimal imperfect, for each v € Sy, G ~ v has an w(G) colouring. We let
S(i-1)a(G)41+- -+ Sialqy be the stable sets in the colouring of G — v,. For each i
between 0 and a(G)w(G), if w(G = §,) = w(G) — 1 then it is perfect, and so has an
(w(G} = 1)-coloutring. But this colouring, along with §;, yields an w{G)-colouring of
@, a contradiction. So, for each such S, we can choose a maximum clique of G, K,
disjoint from S,.

The following observation is crucial to the proof:

Observation 2.30 Each w(G) chigue is disjoint from ezactly one S,.

Proof. If an w(G}-clique A is disjoint from Sy then it is w{G)-coloured in the w({G)-
colouring of G — v; for each u, in Sp, and hence intersects 5, for all i between 1 and
a(G)w(G). ,

If A intersects Sy in v; then, for the same reason, it intersects every colour class
in our w(@)-colouring of G — v; for 3 # i. Also, K — v; intersects exactly w(G) — 1
colour classes in our colouring of G — v;. The result follows. O

This observation implies that Sy,...,Sqcu(c) are distinct, as are Ko,...,
Kaciar :

Now, for each 5, we let * be its characteristic vector (recall that this means that
we have ' = (z{,...,z}), where 2} is 1 if v; € 5; and is 0 otherwise). We claim that

the z* are lincarly independent, i.e. for any reals w, ..., w, such that Mum.nﬁmuca. wert

is the zero vector, we have, for all i, w; = 0.

To prove our claim we fix an arbitrary i, and note that since |S; 0 /| = 1, for
all j # i, we have 3~ o wyr] = w;. Thus, M.:m. T ek, Wit = 3 4 w;. Since S,
does not intersect iy, we have that Ms €K, wyr} = 0. Combining these two equations,
we obtain 3, Msm:.. wym = 3wy I Muﬁ_uunm_.r.%....u wiz® is the zero vector then

2uek: 2y w;z] = 0. Combining the last two equations we obtain 2wy =0, and

hence w; = Mﬂﬂcau

be zero, as claimed.
It is a basic result of linear algebra that we cannot have more than n linearly
independent vectors of length #n, so |V(G)| 2 a{G)w(G) + 1, as desired ]

w;j. So the w, must all be equal. But now we see they must all

Actually, ns pointed out by Padberg [15] and Bland, Huang and Trotter [3], linear
algebra tells us much more about the sets of maximum cliques and maximum stable
sets in a minimally imperfect graph. For example, we have:
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Theorem 2.31 If ¢ is a munumal imperfect graph then:

{1) G has |V(G)| mazrmum stable scis,

(i) G has |V(G)| mazimum cliques,
{11t} each vertex is in a(G) marunum stable sets,
{1} each verter is in w{G) mazimum cliques.

Proof. We need only prove that G has at most |V{G)| maximum cliques. Then, by
considering G we sce that & has at most |V(G)] maximum stable sets and hence the
set Sp, ..., Sag)wie) of the previous proof is exactly the set of maximum stable sets
of G. Thus, (i) and (iii) hold and so, by considering G, so do (i} and {iv).

To see that G has at most [V(G)] maximum cliques we consider the |V(G)| by
|V (G)] matrix A such that the ith row of A is the characteristic vector =’ of the
stable set S, from the previous proof. For any maximum clique R of G, we let y*
be the column vector which is the characteristic veetor of K. Then, Ay¥ is a column
vector (zf,...,zF), where =K is |5, 0 K|. So, the crucial fact from the previous proof
implies that exactly one of the z* is 0 and the rest are 1. That is, Ay% = AyH* for
some i, This itmplies that A(y™ — ™) = 0. Since the rows of A are independent, we
obtain y™ = y* and hence K = K,. Thus, Ky, ..., Koimwic is the set of maximmum
cliques of G. a

Further results on the maximum cliques and stable sets of a minimal imperfect
graph, proved in the same manner, are discussed in Chapter 9.

We note that the key property of a minimal imperfect graph G used in the proofs
of Theorems 2.29 and 2.31 was:

For every vertex 5 of G, G — v can be partitioned into a cliques of size &
and w stable sets of size o.

Graphs which satisfy this property for some a and w are partitionable. It is easy
to mimic the proofs above to show that the characteristic vectors of the maximum
cliques in a partitionable graph are independent and that Theorem 2.31 stil holds if
we replace minimal tmperfect by partitionable.
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