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Abstract. We analyze the performance of single-parameter mechanisms for markets in
which there is competition amongst both consumers and suppliers (namely, two-sided
markets). Specifically, we examine the proportional allocation mechanism for two-sided
markets. This mechanism is the natural generalization of both Kelly’s proportional
allocation mechanism for demand-competitive markets [8] and Johari and Tsitsiklis’
proportional allocation mechanism for supply-competitive markets [7].

First we consider the case of a market for one divisible resource, for example band-
width on a single-link network. Under the standard assumptions of decreasing marginal
valuations for buyers and increasing marginal costs for suppliers, we show that a Nash
equilibrium always exists for the proportional allocation mechanism, provided there are
at least two suppliers. The effectiveness of the mechanism in achieving high social welfare
is dependent upon the curvature of the suppliers marginal cost functions. We measure
this effectiveness in terms of the welfare ratio (price of anarchy), the worst case ratio of
an equilibrium against an optimal social solution. In the case of convex marginal costs,
the welfare ratio is about 0.5887. This ratio is tight, there are examples achieving the
bound (the odd looking bound itself arises from the solution to a quartic equation). The
level of competition in the market also affects the welfare performance of the mechanism.
For example, the worst case bound arises when the demand-side is highly competitive
and the supply-side is a duopoly, but improves to 0.64 when the supply-side is fully
competitive. In sharp contrast, the welfare ratio increases as demand-side competition
decreases, reaching a maximum of 0.718 in the case of a monopsony.

For concave marginal cost functions the welfare ratio depends upon the degree of
non-linearity in the corresponding cost function. This is illustrated by consideration of
cost functions of the form C(x) = cx1+ 1

d which produce a welfare ratio of Ω( 1
d2 ), for any

fixed d.
We complement these results by showing that the proportional allocation mechanism

uniquely achieves the optimal welfare ratio amongst a class of two-sided single-parameter
market-clearing mechanisms.

Furthermore, our worst case bounds extend to the case of multiple resources. In
particular, our results extend to the case of bandwidth markets over arbitrary networks,
as well as to general multi-item markets.

1. Introduction

How to produce and allocate scarce resources is the most fundamental question in econom-
ics.1 The standard tool for guiding production and allocation is a pricing mechanism. However,
different mechanisms will have different performance attributes: no two mechanisms are equal.
Of particular interest to computer scientists is the fact that there will typically be an inherent
trade-off between the economic efficiency of a mechanism (measured in terms of social welfare)
and its computational efficiency (both time and communication complexity). Socially optimal
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allocations can be achieved using pricing mechanisms based on classical VCG results, but imple-
menting such mechanisms generally induces excessively high informational and computational
costs [15]. In this paper, we study this tradeoff from the opposite viewpoint: we examine the
level of social welfare that can be achieved by mechanisms performing minimal amounts of
computation. In particular, we restrict our attention to so-called scalar-parametrized pricing
mechanisms. Each participant submits only a single scalar bid that is used to set a unique
market-clearing price for each good. Evidently, such mechanisms are computationally trivial to
handle; more surprisingly, they can produce high welfare.

The chief practical motivation for considering scalar-parametrized mechanisms (both in our
work and in the existing literature) is the problem of bandwidth sharing. Namely, how should
we allocate capacity amongst users that want to transmit data over a network link? The use
of market mechanisms for this task has been studied in Asynchronous Transfer Mode (ATM)
networks [18] and the Internet [17]. In fact, the Internet is made up of smaller interconnected
networks that buy capacities from each other. Physical connections are formed in central clearing
houses, called internet exchanges, which act as marketplaces for bandwidth. Indeed, the market
mechanisms we consider are closely inspired by the structure of the Internet. Specifically, we
would like our solutions to be scalable to very large networks. This requirement for scalability
forces us consider only simple mechanisms, such as those that set a unique market clearing price.
The computational requirements of more complex systems, e.g. mechanisms that perform price
discrimination, become impractical on large networks [1].

We remark that unique price mechanisms are also intuitively “fair”, as every participant is
treated equally. This fairness is appealing from a social and political perspective, and indeed
these systems are used in many real-world settings, such as electricity markets [19].

1.1. Background and Previous Work. A basic method for resource allocation is the pro-
portional allocation mechanism of Kelly [8]. In the context of networks, it operates as follows:
each potential consumer submits a bid bq; bandwidth is then allocated to the consumers in
proportion to their bids. This simple idea has also been studied within economics by Shapley
and Shubik [16] as a model for understanding pricing in market economies. In a groundbreaking
result, Johari and Tsitsiklis [5] showed that the welfare loss incurred by this mechanism is at
most 25% of optimal.

Observe that Kelly’s is a scalar-paramterized mechanism for a one-sided market: every partic-
ipant is a consumer. Johari and Tsitsiklis [7] also examined one-sided markets with supply-side
competition only. There, under a corresponding single-parameter mechanism, the welfare loss
tends to zero as the level of competition increases. We remark that we cannot simply analyse
supply-side competition by trying to model suppliers as demand-side consumers [3].

Of course, competition in markets typically occurs on both sides. Consequently, understanding
the efficiency of two-sided market2 mechanisms is important problem. In this work, we analyze
the price of anarchy in a mechanism for a two-sided market in which consumers and producers
compete simultaneously to determine the production and allocation of goods. This mechanism
was first proposed by Neumayer [11] and is the natural generalization of both the demand-side
model of Kelly [8] and the supply-side model of Johari and Tsitsiklis [7].

In order to examine how the generalized proportional allocation mechanism performs in a two-
side market, it is important to note that there are three primary causes of welfare loss. First,
the underlying allocation problem may be computationally hard. Secondly, even if the allocation
problem is computationally simple, the mechanism itself may still be insufficiently sophisticated
to solve it. Thirdly, the mechanism may be susceptible to gaming; namely, the mechanism may
incentivize selfish agents to behave in a manner that produces a poor overall outcome. As we will

2It should be noted that “two-sided market” often has a different meaning in the economics literature than the
one we use here. There it refers to a specific class of markets where externalities occur between groups on the
two sides of the market.
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see in Section 3, the first two causes do not arise here: the proportional allocation mechanism
can quickly find optimal allocations in two-sided markets. Thus, we are concerned only with
the third factor: how adversely is the proportional allocation mechanism affected by gaming
agents? That is, the mechanism may be capable of producing an optimal solution, but how will
the agents’ selfish behaviour affect social welfare at the resultant equilibria?

In this paper we prove the proportional allocation mechanisms does perform well in two-sided
markets. Specifically, in quite general settings, the mechanism provides a constant factor welfare
ratio (that is, a constant factor price of anarchy guarantee). Moreover, we will show that there
is large family of mechanisms among which ours uniquely achieves the best possible price of
anarchy guarantee. We state our exact results, in Section 2.4, after we have described the model
and our assumptions.

2. The Model

2.1. The two-sided proportional allocation mechanism. Here, we formally present the
two-sided proportional allocation mechanism due to Neumayer [11]. There are Q consumers and
R suppliers. Each consumer q has a valuation function Vq(dq), where dq represents the user’s
allocation, and each supplier r has a cost function Cr(sr), where sr is the supplier’s production
quota. The consumers and suppliers respectively input bids bq and br to the mechanism. By doing
so, consumers are implicitly selecting a bq-parametrized demand function of the form D(bq, p) =
bq
p , and suppliers are selecting a br-parametrized supply function of the form S(br, p) = 1 − br

p .
A high bid by a consumer indicates a high willingness to pay for the product, and a low bid by
a supplier indicates a high willingness to supply (alternatively, a high bid indicates a high cost
supplier). The actual choice of constant used for the supply functions does not affect our results,
and so we choose it to be 1.

Observe that the parametrized demand functions are identical to the ones in the demand-side
mechanism of Kelly [8], and the supply functions are identical to the ones in the supply-side
mechanism of Johari and Tsitsiklis [7]. The peculiar form of the supply functions comes from
the interesting fact that for most scalar-parametrized mechanisms, in order to have a non-zero
welfare ratio, the supply functions have to be bounded from above. In other words, suppliers’
strategies must necessarily be constrained in order to obtain high welfare; see Appendix J for
the precise statement of this fact. This rules out, for instance, Cournot-style mechanisms where
suppliers directly submit the quantities they wish to produce.

More detailed justifications for this choice of model can be found in [11], as well as in [8] and
[7]. Further justification for the mechanism will be provided by our results. Specifically, the
proportional allocation mechanism generally produces high welfare solutions and, in addition, it
is the optimal mechanism amongst a class of single-parameter mechanisms for two-sided markets.

Given the bids, the mechanism sets a price p(b) that clears the market; i.e. that satisfies∑Q
q=1

bq
p =

∑R
r=1(1− br

p ). The price therefore gets set to p(b) =
P
q bq+

P
r br

R . Consumer q then
receives dq units of the resource, and pays pdq, while supplier r produces sr units and receives a
payment of psr. In the game induced by this mechanism, the payoff (or utility) to consumer q
placing a bid bq is then defined to be

Πq(bq) =

{
Vq(

bqP
q∈Q bq+

P
r br∈R

R)− bq if bq > 0

Vq(0) if bq = 0

and the payoff to supplier r placing a bid br is defined as

Πr(br) =


P
q∈Q bq+

P
r∈R br

R − br − Cr(1− brP
q∈Q bq+

P
r∈R br

R) if br > 0P
q 6=r bq+

P
r∈R br

R − Cr(1) if br = 0
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2.2. The Welfare Ratio. The social welfare produced by the mechanism on bids b is defined
as

W(b) =
Q∑
q=1

Vq(dq(b))−
R∑
r=1

Cr(sr(b))

If the agents act as “price-takers”, we show in Section 3 that the mechanism maximizes social
welfare. However, since the price is a function of their bid, each agent is a “price-maker”. If
agents attempt to exploit this market power then a welfare loss may occur at a Nash equilib-
rium. Consequently we are interested in maximizing (over all equilibria) the welfare ratio more
commonly known as the price of anarchy, W

NE

WOPT . Equivalently, we wish to minimize the welfare
loss, 1− WNE

WOPT .

2.3. Assumptions. We make the following assumption on the valuation and cost functions.

Assumption 1. For each consumer q, the valuation function Vq(dq) : R+ → R+ is strictly
increasing and concave. For each supplier r, the cost function Cr(sr) : R+ → R+ is strictly
increasing and convex.

Assumption 1 corresponds to decreasing marginal valuations and increasing marginal costs.
The assumption is standard in the literature. It certainly may not hold in every market3, but
without it there will be a natural incentive for the number of agents to decline on both sides of
the market. In this paper, we will also assume that our functions are differentiable over their
entire domain; this property is assumed primarily for clarity and is not essential.

Assumption 1, however, is not sufficient to ensure a large welfare ratio (small welfare loss). In
fact, the welfare ratio depends upon the curvature of the marginal cost functions. Specifically,
if the marginal cost functions are convex, then we show, in Section 3, that the welfare ratio is
at least 0.58. For concave marginal cost functions, we obtain constant welfare ratios, provided
the cost function is sufficiently non-linear; see Section 4. As the marginal cost functions tend
to constants, the welfare ratio tends to zero; an example of this is given in Appendix E (see
Neumayer [11] for another example).

Our main result concerns convex marginal cost functions. Formally, for most of the paper, we
assume that

Assumption 2. For each supplier r, the marginal cost function C ′r(sr) is convex. Furthermore,
we assume that Cr(0) = C ′r(0) = 0.

Convex marginal cost functions (for example, as often occur with quadratic or higher degree
polynomial functions) are extremely common in both the theoretical and the practical literature
on industrial theory [20], so this assumption is not particularly restrictive. As noted, though, we
may also obtain good guarantees for concave marginal cost functions. In Assumption 2 we also
set C ′r(0) = 0 but, as we show in Appendix D, constant welfare ratios still arise whenever C ′r(0)
is bounded below one (it cannot be higher than one or the firm is uncompetitive). Finally, we
remark that Assumption 2 was also used in Johari, Mannor and Tsitsiklis [4].

2.4. Our Results. In this paper we prove that:

Theorem 1. A competitive equilibrium exists for the two-sided proportional allocation mecha-
nism and it optimizes social welfare.

Theorem 2. The mechanism has a unique Nash equilibrium for R ≥ 2.

Given Assumption 2, our main result is:

3For example, in markets exhibiting economies of scale.
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Theorem 3. The worst case welfare ratio for the mechanism involving R ≥ 2 suppliers equals
s2((R− 1)2 + 4(R− 1)s+ 2s2)

(R− 1)(R− 1 + 2s)
where s is the unique positive root of the quartic polynomial

γ(s) = 16s4 + (R− 1)s2(49s− 24) + 10(R− 1)2s(3s− 2) + (R− 1)3(5s− 4)

Furthermore, this bound is tight.

This shows us that the mechanism gives a constant factor welfare ratio. Moreover, it allows
us to examine how the level of competition in the markets affects welfare. Specifically, we find

Corollary 4. The worst case welfare ratio occurs for a duopoly (R = 2) and is 0.588727.

Corollary 5. If the supply side is fully competitive (R→∞) the welfare ratio is 0.64.

Consequently, as supply-side competition increases, the welfare ratio improves. Surprisingly,
the welfare ratio decreases as demand-side competition increases. The best welfare ratios arise
when there is only one consumer (Q = 1), that is, in the case of a monopsony. For example, we
obtain

Theorem 6. For a monopsonist facing a fully competitive supply-side the welfare ratio is 0.718.

Recall that for a fixed demand welfare loss tends to zero when the supply side is fully com-
petitive [7]. In contrast, no such result holds in two-sided markets. This follows as in two-sided-
markets the situation most closely corresponding to a fixed demand is that of a monopsony, but
Theorem 6 tells us that there can then be welfare losses.

Removing Assumption 2, the welfare ratio is zero for linear cost functions. The rate at which
the welfare ratio tends to zero for concave marginal cost functions is illustrated by a class of
polynomial cost functions with degree 1 + 1

d that give a constant welfare ratio for any fixed d.

Theorem 7. The welfare ratio for cost functions Cr(sr) = cx1+ 1
d is Ω( 1

d2
).

The two-sided market for a single resource can be generalized to the case of multiple resources.
An important multi-resource setting is that of bandwidth shared on a network of links. A
network version of our market can be defined, as can more general multi-resource markets (see
Appendix G) and our welfare guarantees still apply.

Theorem 8. The welfare ratio in networks equals that of the single-resource model.

Theorem 9. The welfare guarantees hold for more general multi-resource markets.

Finally, we show that the proportional allocation mechanism is optimal in the following way:

Theorem 10. In two-sided markets, the proportional allocation mechanism provides the best
welfare ratio amongst a class of single-parameter market-clearing mechanisms.

Our proof techniques are inspired by the approaches and techniques developed to analyze
single-sided markets by Johari [3], Johari and Tsitsiklis ([5], [6] and [7]), Johari, Mannor and
Tsitsiklis [4], and Roughgarden [14]. Due to space limitations, most of our results will be deferred
to the appendices. Here, in the main text, we will focus upon the proof of Theorem 3.

3. Optimization in Eight Steps

The proof of the main result, Theorem 3, is presented below in eight steps. We formulate
the efficiency loss problem as an optimization program in Step III. To be able to formulate
this we first need to understand the structure of optimal solutions and of equilibria under this
mechanism. This we do in Steps I and II, where we give necessary and sufficient conditions for
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optimal solutions and for equilibrium. (Moreover, there is always a unique equilibrium provided
the supply market is not a monopoly.) This leads us to an optimization problem that initially
appears slightly formidable, so we then attempt to simplify it. In Steps IV and V, we show
how to simplify (eliminate) the demand constraints in the program. Then in Steps VI and VII,
we simplify (eliminate) the supply constraints in the program. This produces an optimization
program in a form more amenable to quantitive analysis; we perform this analysis in Step VIII.

Step I: Optimality Conditions. The best possible allocation is the solution to the system:

(OPT) max
Q∑
q=1

Vq(dOPTq )−
R∑
r=1

Cr(sOPTr )

s.t
Q∑
q=1

dOPTq =
R∑
r=1

sOPTr

0 ≤ sOPTr ≤ 1

dOPTq ≥ 0

Since the constraints are linear, there exists an optimal solution at which the Karush-Kuhn-
Tucker (KKT) conditions hold. (The solution is optimal because the objective function is con-
cave, the first order conditions are thus sufficient.) These conditions imply that

C ′r
(
sOPTr

)
≤ λ if 0 < sOPTr ≤ 1

C ′r
(
sOPTr

)
≥ λ if 0 ≤ sOPTr < 1

V ′q
(
dOPTq

)
≤ λ if dOPTq = 0

V ′q
(
dOPTq

)
= λ if dOPTq > 0

where λ is the dual variable corresponding to the equality constraint.
We remark that a competitive equilibria, where the agents act as price-takers with respect to

the mechanism, exists and maximizes social welfare. A proof of this (that is, of Theorem 1) is
given in Appendix C.

Of course, agents are clearly price-makers under this mechanism, so competitive equilibria are
not our focus. Consequently, our goal now is to understand equilibria given this fact.

Step II: Equilibria Conditions. Here we describe necessary and sufficient conditions for a
set of bids b to form Nash equilibrium.

First, observe that there must be at least two suppliers, that is R ≥ 2. If not, then we have a
monopolist k whose payoff is is strictly increasing in bk. Specifically,

Πk(bk, b−k) =
∑
q

bq − Ck(1−
bk

bk +
∑

q bq
) =

∑
q

bq − Ck(
∑

q bq

bk +
∑

q bq
)

Next, we show that if b is a Nash equilibrium, then at least two bids must be positive. Suppose
for a contradiction that we have a supplier k and

∑
r 6=k br =

∑
q bq = 0. Then Πk(0) = −Ck(1),

and Πk(bk) = −R−1
R bk when bk > 0. For the second expression, we used the fact that Ck(x) = 0

for any x ≤ 0. Observe that if bk = 0 then the firm can profitably deviate by increasing bk
infinitesimally; on the other hand, if bk > 0 then the firm should infinitesimally decrease bk.
Thus, there is no equilibrium in which either all bids are zero, or a single supplier is the only
agent to make a positive bid. Thus there must be at least two positive bids at equilibrium.

Since at least two bids are positive, the payoffs Πk are differentiable and concave, and the
following conditions are necessary and sufficient for the existence of a Nash equilibrium. For the
suppliers,
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C ′r(sr)
(

1 +
sNEr
R− 1

)
≥ p if 0 < br ≤ p C ′r(sr)

(
1 +

sNEr
R− 1

)
≤ p if 0 ≤ br < p

For the consumers, V ′q (0) ≤ p and V ′q (dNEq )
(

1− dq
R

)
= p if dNEq > 0.

Moreover, if there are at least two suppliers then there is a unique Nash equilibrium. A proof
of this (that is, of Theorem 2) is given in Appendix D.

Step III: An optimization problem. We can now formulate the welfare ratio as an opti-
mization problem.

min
PQ
q=1 Vq(d

NE
q )−

PR
r=1 Cr(s

NE
r )PQ

q=1 Vq(d
OPT
q )−

PR
r=1 Cr(s

OPT
r )

(1)

s.t. V ′q (dNEq )
(

1− dNEq
R

)
≥ p ∀q s.t. dNEq > 0(2)

V ′q (dNEq )
(

1− dNEq
R

)
≤ p ∀q(3)

C ′r(s
NE
r )

(
1 + sNEr

R−1

)
≤ p ∀r s.t. 0 < sNEr ≤ 1(4)

C
′
r(s

NE
r )

(
1 + sNEr

R−1

)
≥ p ∀r s.t. 0 ≤ sNEr < 1(5) ∑Q

q=1 d
NE
q =

∑R
r=1 s

NE
r(6)

C ′r(s
OPT
r ) ≤ λ ∀r s.t. 0 < sOPTr ≤ 1(7)

C ′r(s
OPT
r ) ≥ λ ∀r s.t. 0 ≤ sOPTr < 1(8)

V ′q (dOPTq ) ≤ λ ∀q s.t. dOPTq = 0(9)

V ′q (dOPTq ) = λ ∀q s.t. dOPTq > 0(10) ∑Q
q=1 d

OPT
q =

∑R
r=1 s

OPT
r(11)

dOPTq , dNEq ≥ 0 ∀q(12)

0 ≤ sNEr , sOPTr ≤ 1 ∀q, r(13)
p, λ ≥ 0(14)

Given the cost and valuation functions, the constraints (2)-(6) are necessary and sufficient con-
ditions for a Nash equilibrium by Step II, and constraints (7)-(11) are the optimality conditions
from Step I. We now want to find the worst-case cost and valuation functions for the mechanism.

Step IV: Linear Valuation Functions. To evaluate this intimidating looking program we at-
tempt to simplify it. First, efficiency loss is worst when each consumer has a linear valuation func-
tion. This is simple to show using a standard trick (see, for example, [5]). Thus, we restrict our-
selves to linear functions of the form Vq(dq) = αqdq. Without loss of generality, we may assume
that α1 ≥ α2 ≥ ... ≥ αQ and that maxq αq = 1 after we normalize the functions by 1/maxq αq.
Observe that this implies that dOPT1 =

∑
r s

OPT
r and dOPTq = 0 for q > 1. As a result the objec-

tive function becomes
(
dNE1 +

∑Q
q=2 αqd

NE
q −

∑R
r=1Cr(s

NE
r )

)
/
(∑R

r=1 s
OPT
r −

∑R
r=1Cr(s

OPT
r )

)
,

and the optimality constraints become C ′r(sOPTr ) ≤ 1, ∀r s.t. 0 < sOPTr ≤ 1 and C ′r(s
OPT
r ) ≥

1, ∀r s.t. 0 ≤ sOPTr < 1. With linear valuations, the new optimality constraints ensure sOPTr is
optimal by setting the marginal cost of each supplier to the marginal valuation, α1 = 1, of the
first consumer.

Step V: Eliminating the Demand Constraints. In this step, we describe how to eliminate
the demand constraints from the program. First we show that we can transform constraint (14)
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into 0 ≤ p < 1. Since αq ≤ 1,∀q, we see that constraint (2) implies that p ≤ 1. Furthermore,
if p = 1, then (2) can never be satisfied, and so we must have dNEq = 0, ∀q. The supply equals
demand constraint (6) then gives sNEr = 0, ∀r. This gives a contradiction as the resulting
allocation is not a Nash equilibrium: any supplier can increase its profits by providing a bid
slightly smaller than p (remember that C ′r(0) = 0 by Assumption 2). Thus p < 1. This, in turn,
implies that dNE1 > 0. To see this, note that if dNE1 = 0 then (3) cannot be satisfied for q = 1.
Consequently, constraints (2) and (3) must hold with equality for q = 1. In fact, without loss of
generality, constraints (2) and (3) hold with equality for q > 1. If constraint (2) does not hold
with equality, we can reduce αq, and this does not increase the value of the objective function.
If dNEq = 0 and constraint (3) does not hold with equality, we can set αq = p and the objective
function will be unaffected. So, αq = p

1−dNEq /R
for all q. Substituting into the objective function:

min
dNE1 +p

PQ
q=2

dNEq

1−dNEq /R
−
PR
r=1 Cr(s

NE
r )PR

r=1 s
OPT
r −

PR
r=1 Cr(s

OPT
r )

(15)

s.t.
(

1− dNE1
R

)
= p(16)

C ′r(s
NE
r )

(
1 + sNEr

R−1

)
≤ p ∀r s.t. 0 < sNEr ≤ 1(17)

C
′
r(s

NE
r )

(
1 + sNEr

R−1

)
≥ p ∀r s.t. 0 ≤ sNEr < 1(18) ∑Q

q=1 d
NE
q =

∑R
r=1 s

NE
r(19)

C ′r(s
OPT
r ) ≤ 1 ∀r s.t. 0 < sOPTr ≤ 1(20)

C ′r(s
OPT
r ) ≥ 1 ∀r s.t. 0 ≤ sOPTr < 1(21)

dNEq ≥ 0 ∀q ≥ 2(22)

dNE1 > 0(23)
0 ≤ sNEr , sOPTr ≤ 1 ∀r(24)

0 ≤ p < 1(25)

Now, observe that the objective function is convex and symmetric in the variables d2, ..., dQ,
when all the other variables are held fixed. Convexity holds because our function is a sum of
functions dNEq

1−dNEq /R
, q = 2, ..., Q, that are convex on the range [0, R]; note that dNEq ≤ R by (6),

(12) and (13). Therefore, for any given fixed assignment to the other variables, we must have
d2 = ... = dQ := x(p, s, d1). Otherwise, we could reshuffle the variable labels and obtain a second
minimum, which is impossible by the convexity of the objective function. So, after replacing
every dq by x(p, s, d1), constraint (19) becomes x(p, s, d1) =

(∑R
r=1 s

NE
r − dNE1

)
/ (Q− 1). After

inserting constraint (16) and the new constraint (19), the numerator of the objective function
(15) becomes

(1− p)R+ p(Q− 1)
x

1− x/R
−

R∑
r=1

Cr(sNEr )

= (1− p)R+ p(Q− 1)

(∑R
r=1 s

NE
r − dNE1

)
/ (Q− 1)

1− 1
R

(∑R
r=1 s

NE
r − dNE1

)
/ (Q− 1)

−
R∑
r=1

Cr(sNEr )

= (1− p)R+ p

∑R
r=1 s

NE
r − (1− p)R

1−
(∑R

r=1 s
NE
r − dNE1

)
/R (Q− 1)

−
R∑
r=1

Cr(sNEr )
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where we have replaced the function x(p, s, d1) by an ordinary variable x for simplicity.
Finally, observe that if we increase Q by one, the objective function (1) cannot increase, since

we can set dQ+1 = 0 and at least keep the same objective function value as before. Therefore,
without loss of generality, we can take the limit as Q → ∞.4 Note that this only changes the
objective function, as all the constraints that contained Q have been inserted into the function
and can be eliminated. After these changes, the optimization problem becomes

min (1−p)2R+p
PR
r=1 s

NE
r −

PR
r=1 Cr(s

NE
r )PR

r=1 s
OPT
r −

PR
r=1 Cr(s

OPT
r )

(26)

s. t. C ′r(s
NE
r )

(
1 + sNEr

R−1

)
≤ p ∀r s.t. 0 < sNEr ≤ 1(27)

C
′
r(s

NE
r )

(
1 + sNEr

R−1

)
≥ p ∀r s.t. 0 ≤ sNEr < 1(28)

C ′r(s
OPT
r ) ≤ 1 ∀r s.t. 0 < sOPTr ≤ 1(29)

C ′r(s
OPT
r ) ≥ 1 ∀r s.t. 0 ≤ sOPTr < 1(30)

0 ≤ sNEr , sOPTr ≤ 1 ∀r(31)
0 ≤ p < 1(32)

Hence, we have achieved our goal and completely eliminated the demand side of the optimization
problem. Specifically, all the demand constraints have been replaced with an expression that is
a function of the supply-side allocation. Now we must find the worst such allocation.

Step VI: Linear Marginal Cost Functions We will now show that, in searching for a
worst case allocation, we can restrict our attention to linear marginal cost functions of the
form C ′r(sr) = βrsr where βr > 0. We do this by exhibiting, for any family of cost functions
Cr(sr), r ∈ R, two new families Ĉr() and C̄r() with the property that the Cr have a better
performance ratio than the C̄r which, in turn, have a a better performance ratio than the Ĉr
Furthermore, the Ĉr will be a family with linear marginal costs, as desired. The cost functions
are defined as

C̄ ′r(sr) =

{
C ′r(sr) if sr < sNEr
C′r(s

NE
r )

sNEr
sr if sr ≥ sNEr

and Ĉ ′r(sr) =
C ′r(s

NE
r )

sNEr
sr

where sNEr is the Nash equilibrium allocation to supplier r when the cost functions are Cr(sr).
Observe that the sNEr still satisfy the Nash equilibrium conditions (27) and (28) for both the
new cost functions C̄r and Ĉr. Thus s̄NEr = ŝNEr = sNEr ; consequently, the efficiency at the Nash
equilibrium is identical in all three cases.

We will now show that the performance ratio for the C̄r is better than for the Cr. In particular,
the optimal solution can only get better in the former case. To see this, observe that by the
convexity of C ′r(sr), we have C ′r(sr) ≥ C̄ ′r(sr) for sr ≥ sNEr . Thus

R∑
r=1

sOPTr −
R∑
r=1

Cr(sOPTr ) ≤
R∑
r=1

sOPTr −
R∑
r=1

C̄r(sOPTr ) ≤
R∑
r=1

s̄OPTr −
R∑
r=1

C̄r(s̄OPTr )

(where s̄OPTr is the optimal allocation to supplier r when the cost functions are C̄r).
So our goal now is to show that using Ĉr is not better than using C̄r. Before doing that, we’ll

need to establish some results. First, observe that we must have sNEr > 0 for all r. If sNEr = 0
for some r, then by (28), p = 0, which can only happen when all bids equal 0. As shown in Step
II, this is impossible. Similarly, we have sOPTr > 0 for all r, because at sOPTr = 0, constraint
(30) is violated. Note that in both cases, we have used the fact that C ′r(0) = 0.

4So increased competition on the demand side cannot improve the welfare ratio guaranteed by the mechanism!
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Next, observe that for all r we have sOPTr ≥ sNEr . If sOPTr = 1, the claim holds trivially,
so assume sOPTr < 1. Then we have C ′r(sOPTr ) = 1 > p

1+sNEr /(R−1)
≥ C ′r(s

NE
r ). Here the

equality holds by (29) and (30), the first inequality follows from (31) and (32), and the second
one follows from (27). Since the marginal costs are strictly increasing, our claim holds.

By convexity, Ĉ ′r(sr) ≥ C̄ ′r(sr) for 0 ≤ sr ≤ s̄NEr . Thus ∆r := Ĉr(ŝNEr ) − C̄r(ŝNEr ) ≥ 0;
note that ∆r is exactly the area on the graph between Ĉ ′r and C ′r on the interval [0, sNEr ]. As
sNEr = s̄NEr = ŝNEr , we have

(1− p)2R+ p
∑R

r=1 s̄
NE
r −

∑R
r=1 C̄r(s̄

NE
r )∑R

r=1 s̄
OPT
r −

∑R
r=1 C̄r(s̄OPTr )

≥
(1− p)2R+ p

∑R
r=1 ŝ

NE
r −

∑R
r=1 C̄r(ŝ

NE
r )−

∑
r ∆r∑R

r=1 s̄
OPT
r −

∑R
r=1 C̄r(s̄OPTr )−

∑
r ∆r

=
(1− p)2R+ p

∑R
r=1 ŝ

NE
r −

∑R
r=1 Ĉr(ŝ

NE
r )∑R

r=1 ŝ
OPT
r −

∑R
r=1 Ĉr(ŝOPTr )

To see the equality, recall that s̄OPTr > s̄NEr . Then, because C̄ ′r(sr) = Ĉ ′r(sr) in the range
sr ≥ sNEr , it follows that s̄OPTr = ŝOPTr . For sr ≥ ŝNEr , we also have Ĉr(sr) = C̄r(sr) + ∆r.
Thus, the performance ratio of the Ĉr is at most that of the Cr.

Step VII: Eliminating the Supply Constraints. Assuming linear marginal cost functions,
the optimization problem (26)-(32) becomes

min (1−p)2R+p
PR
r=1 s

NE
r −1/2

PR
r=1 βr(s

NE
r )2PR

r=1 s
OPT
r −1/2

PR
r=1 βr(s

OPT
r )2

(33)

s.t. βrs
NE
r

(
1 + sNEr

R−1

)
≤ p ∀r s.t. 0 < sNEr ≤ 1(34)

βrs
NE
r

(
1 + sNEr

R−1

)
≥ p ∀r s.t. 0 ≤ sNEr < 1(35)

βrs
OPT
r ≤ 1 ∀r s.t. 0 < sOPTr ≤ 1(36)

βrs
OPT
r ≥ 1 ∀r s.t. 0 ≤ sOPTr < 1(37)

0 ≤ sNEr , sOPTr ≤ 1 ∀r(38)
βr > 0 ∀r(39)
0 ≤ p < 1(40)

with the new variables βr, r = 1, ..., R. From sOPTr ≥ sNEr , we can then deduce that (34) and
(35) hold with equality. Suppose they don’t for some r. Then sNEr = sOPTr = 1. Constraint (34)
is βr < p

1+1/(R−1) < p < 1. Hence, βr = p
1+1/(R−1) will be a feasible solution (i.e. constraint (36)

will still be satisfied). Furthermore, increasing βr to p
1+1/(R−1) will only decrease the objective

function since this is equivalent to subtracting a positive number from the numerator and the
denominator. We can further simplify the system by replacing constraints (36) and (37) with
sOPTr = min(1/βr, 1). It is easy to see that sOPTr and βr satisfy the equation above if and only
if they satisfy (36) and (37). The reduced optimization problem now becomes:

min (1−p)2R+p
PR
r=1 s

NE
r −1/2

PR
r=1 βr(s

NE
r )2PR

r=1 s
OPT
r −1/2

PR
r=1 βr(s

OPT
r )2

(41)

s. t. βrs
NE
r

(
1 + sNEr

R−1

)
= p ∀r(42)

sOPTr = min(1/βr, 1) ∀r(43)
0 < sNEr , sOPTr ≤ 1 ∀r(44)

βr > 0 ∀r(45)
0 ≤ p < 1(46)
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We can insert the equality constraints (42) and (43) into the objective function (41) to obtain:

min
(1−p)2R+p

PR
r=1 s

NE
r −p/2

PR
r=1

sNEr
1+sNEr /(R−1)PR

r=1 min(1/βr,1)−p/2
PR
r=1

min(1/βr,1)2

sNEr (1+sNEr /(R−1))

(47)

s.t. 0 < sNEr ≤ 1 ∀r(48)
βr = p

sNEr (1+sNEr /(R−1))
∀r(49)

0 ≤ p < 1(50)

The objective function (47) can be rewritten as:∑R
r=1

(
(1− p)2 + psNEr − p/2

sNEr
1+sNEr /(R−1)

)
∑R

r=1

(
min(1/βr, 1)− p/2

min(1/βr,1)2

sNEr (1+sNEr /(R−1))

)
Consequently, the minimum of the optimization problem (47)-(50) is greater than or equal to

min
(1− p)2 + ps− p/2

s
1+s/(R−1)

min( s(1+s/(R−1))
p , 1)− p

2s(1+s/(R−1)) min( s(1+s/(R−1))
p , 1)2

(51)

s.t. 0 < s ≤ 1(52)
0 ≤ p < 1(53)

We have now reduced the system (33)-(40) to a two-dimensional minimization problem. The
next step is to try to explicitly find the minimum.

Step VIII: Computing the Worst Case Welfare Ratio.
To obtain Theorem 3 we need to solve the optimization problem (51)-(53) with R as a pa-

rameter. We show how to do this in Appendix C. Thus we have proved our main result. It has
several ramifications. Firstly, the worst case welfare ratio occurs with duopolies, that is when
R = 2. There we obtain s = 0.566812 · · · which gives a worst case welfare ratio of 0.588727 · · · .
Moreover, observe that this bound is tight. Our proof is essentially constructive; costs and val-
uations can be defined to to create an instance that produces the bound. Secondly, the welfare
ratio improves as the number of supplies increases. Specifically as R →∞, the bound tends to
16
25 . Thus we obtain Corollaries 4 and 5.
So, as supply-side competition increases, the welfare ratio does improves. The opposite occurs

as demand-side competition increases. Specifically, adapting our approach gives Theorem 6.

4. Concave Marginal Cost Functions.

The welfare ratio tends to zero if the cost function is linear, that is if the marginal cost
function is a constant; for an example see Appendix E. We can get some idea of how the welfare
ratio tends to zero for concave marginal cost functions by considering a class of polynomial cost
functions with degree 1 + 1

d . These functions give a welfare ratio of at least 1
d2
, for any constant

d. A proof of this (Theorem 7) is given in Appendix F.

5. Extensions to Networks and Arbitrary Markets.

So we can analyze two-sided markets for bandwidth on a single-link network. We can generalize
these results to the case where bandwidth is shared over an entire network of links. Here agents
can buy and sell bandwidth on numerous links. Each consumer q is associated with a source-sink
pair and its payoff is a function of the maximum (sq, tq)-flow it can obtain using the bandwidth
it has purchased in the network. The welfare guarantees for the network model are the same as
for the single-link case. A formal description of the network model and a proof of Theorem 8
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is given in Appendix G. Moreover, if we identify links e ∈ E with arbitrary resources, then our
results apply to a general class of markets with any number of resources. The exact definition
of these markets and a proof of Theorem 9 are also given in Appendix G.

6. Smooth Market-Clearing Mechanisms

It was shown in [3] and [6] that in single-sided markets, the proportional allocation mechanism
uniquely achieves the best possible welfare ratio within a broad class of so-called smooth market-
clearing mechanisms. This family has a natural extension to the case of two-sided mechanisms,
and we show that, given a symmetry condition, the two-sided proportional allocation mechanism
is optimal amongst that class of single-parameter mechanisms. A description of smooth market-
clearing mechanisms and a proof of Theorem 10 is given in Appendix H.
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7. Appendices

7.1. Appendix A: Competitive Equilibria and Optimal Welfare.
Here we prove Theorem 1; that is, we show that a competitive equilibrium exist and achieves
maximum welfare. A pair (b, p) where b ≥ 0 and p > 0 is a called a competitive equilibrium if:

Πk(bk, p) ≥ Πk(b̄k, p) for all b̄k ≥ 0, for every k = 1, ..., R+Q

p(b) =

∑
q bq +

∑
r br

R
Thus, in a competitive equilibrium, the agents are maximizing their payoffs under the assumption
that they are price-takers. We will show that the necessary and sufficient conditions under which
the demand and supply allocations (d, s) induced by (b, p) form a competitive equilibrium are
identical to the conditions under which (d, s) is an optimal solution to (OPT).

We have already found the optimality conditions in Section 3. So let’s calculate the required
conditions for a competitive equilibrium. For a supplier, the payoff as a function of b is:

Πr(br) = p

(
1− br

p

)
− Cr

(
1− br

p

)
Since this is differentiable and concave for all br ≥ 0 (recall that we assume that the right
derivative exists at br = 0), the maximum occurs when the following conditions are satisfied:

C ′r

(
1− br

p

)
≥ p if 0 < br ≤ p

C ′r

(
1− br

p

)
≤ p if 0 ≤ br < p

To see this, note that when 0 < br ≤ p, we have Π′r(br) ≥ 0. If Π′r(br) < 0 then we can increase
Πr by infinitesimally decreasing br (and on (0, p] we can always choose a smaller br). The first
condition then follows. The second condition is derived analogously. Also observe that we can
let br ≤ p, since at br > 0 supplier r will receive a negative payoff.

Similarly, we can write the payoff of consumer q as a function of bq:

Πq(bq) = Vq(
bq
p

)− pbq
p

This is again concave by assumption, and the conditions are

V ′q

(
bq
p

)
= p if bq > 0

V ′q (0) ≤ p if bq = 0

Next, define br = (1 − sr)λ and bq = dqλ. Then it can be checked that the equilibrium con-
ditions above are satisfied with p = λ. We must have λ ≥ 0 because V ′q (dq) ≥ 0 by assumption,
and λ ≥ V ′q (dq) for all q. Thus there exists a competitive equilibrium and it is an optimal
solution to (OPT). Finally, suppose (b, p) is a competitive equilibrium. Then define sr = 1− br

p

and dq = bq
p . Then we can check that the KKT conditions are satisfied, and the allocation is an

optimal solution to (OPT). This completes the proof of Theorem 1.
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7.2. Appendix B: The Existence of Nash Equilibria.
To prove Theorem 2 we show that the Nash equilibrium conditions obtained in Section 3 are
exactly the necessary and sufficiency conditions for the following system.

(NASH) max
Q∑
q=1

V̂q(dq)−
R∑
r=1

Ĉr(sr)

s.t.
Q∑
q=1

dq =
R∑
r=1

sr

0 ≤ sr ≤ 1
dq ≥ 0

where

V̂q =
(

1− dq
R

)
V ′(dq) +

1
R

ˆ dq

0
Vq(z)dz

Ĉr =
(

1 +
sr

R− 1

)
C ′r(sr)−

1
R− 1

ˆ sr

0
Cr(z)dz

By assumption, the V̂q and Ĉr are differentiable and strictly concave and strictly convex,
respectively. The KKT conditions for (NASH) then give:(

1 +
sr

R− 1

)
C ′r (sr) ≤ λ if 0 < sr ≤ 1(

1 +
sr

R− 1

)
C ′r (sr) ≥ λ if 0 ≤ sr < 1(

1− dq
R

)
V ′q (dq) ≤ λ(

1− dq
R

)
V ′q (dq) ≥ λ if 0 < dq

where λ is the dual variable corresponding to the equality constraint. These are the necessary
and sufficient conditions for an optimal solution. Since the objective function of (NASH) is
strictly convex, the optimal solution is unique.

We now claim that an optimal solution to (NASH) is a Nash equilibrium for the two-side
proportional allocation mechanism. Recall that for these price-anticipators, a Nash equilibrium
is a vector b ≥ 0 such that for every agent k = 1, ..., Q+R,

Πk(bk,b−k) ≥ Πk(b̄k,b−k), for all b̄k ≥ 0

As before, define bq = dqλ and br = (1 − sr)λ. Then one can check that the Nash equilibrium
conditions are satisfied with p = λ. We must have λ ≥ 0 because V ′q (dq) ≥ 0 by assumption and
λ ≥ V ′q (dq) for all q. There are at least two positive bids because otherwise the supply equals
demand constraint of cannot be satisfied.

Conversely, we claims that any Nash equilibrium is an optimal solution to (NASH). To see
this take any Nash equilibrium (b, p). Then define sr = 1 − br

p and dq = bq
p . Then we can

easily check that the KKT conditions are satisfied, and the allocation is an optimal solution to
(NASH). This completes the proof of Theorem 2.
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7.3. Appendix C: Computing the Worst Case Welfare Ratio.
So we have to solve the optimization problem (51)-(53). We will consider R as a parameter. At
the minimum of (51), we will have either

(54)
s (1 + s/(R− 1))

p
≤ 1 or (55)

s (1 + s/(R− 1))
p

> 1

When (54) holds, we solve the following system:

min
(1− p)2 + ps− p/2

s
1+s/(R−1)

s(1+s/(R−1))
2p

(56)

s. t. s(1 + s/(R− 1)) ≤ p(57)
0 < s ≤ 1(58)
0 ≤ p < 1(59)

Now set W = R− 1 and let g be the objective function (60). Thus

g(s) = 2pW
(

(1− p)2

s(W + s)
+

p

(W + s)
− pW

2(W + s)2

)
Differentiating we obtain

∂g

∂s
= − p2W

s2(W + s)3

(
(1− p)2(W + 2s)(W + s) + ps3

)
and this is strictly negative for any W, s. Therefore, the optimal value of s must occur at
one of the boundaries of the feasible region. Since g is strictly decreasing in s, we must have
s(1 + s/W ) = p. Thus it is enough to consider a variant of the second case (55) in which the
inequality is no longer strict. Observe that the point at which the minimum of (56-59) is achieved
is also part of the feasible region of the following new optimization problem:

min
(1− p)2 + ps− ps

2(1+s/W )

1− p
2s(1+s/W )

(60)

s. t. s(1 + s/W ) ≥ p(61)
0 < s ≤ 1(62)
0 ≤ p < 1(63)

Let f denote the objective function (60). We have

∂f

∂s
=

2p
(
2s4 −W 2((p− 1)2 + ps− s2) +Ws(−2(p− 1)2 − 3ps+ 4s2)

)
(pW − 2s(W + s))2

and at s = 1 this becomes
∂f

∂s
(1, p) = −2p(−2 + (−2− p+ 2p2)W + (p− 1)pW 2)

((p− 2)W − 2)2

which is always positive since each term in the numerator is negative. But by the KKT conditions,
∂f/∂s must be negative at s = 1 if that point is the minimum, and therefore we must rule out
that possibility.

Similarly, when constraint (61) is tight, ∂f/∂s becomes

∂f

∂s
= 2

(
2−W − 1

s
+

4s
W
− 4s2

W
− 2s3

W 2
+
W 2 − 1
W + s

)
It can be checked that this is always negative. But, as before, if constraint (61) is tight at the
minimum, ∂f/∂s must be positive, and we again have to rule out that possibility. Finally, we
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cannot have s → 0 at the minimum, since the objective function would go to one in that case.
Thus, at the minimum, we have

∂f

∂s
=

2p
(
2s4 − (S − 1)2((p− 1)2 + ps− s2) + (S − 1)s(−2(p− 1)2 − 3ps+ 4s2)

)
(pS − 2s(S + s))2 = 0

Solving this equation for p, we find that

p± =
S(2− s) + (4− 3s)s±

√
s√
S

√
γ(s)

2(S + 2s)
where

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)
When we plug either p+ or p− into the objective (60), we find (quite surprisingly) that the
objective function reduces to the same simple expression in both cases. The optimization problem
(60)-(63) thus becomes:

min
s2(S2 + 4Ss+ 2s2)

S(S + 2s)
(64)

s. t. 0 < s ≤ 1(65)
0 ≤ p± < 1(66)

s(1 + s/S) ≥ p±(67)
p± ∈ R(68)

It is not hard to show that the objective function (64) is strictly increasing in s. The minimum
value is thus achieved at the smallest feasible s. For condition (68) to be satisfied, we must have
γ(s) ≥ 0. One can check that γ(s) has only one zero s∗ on [0, 1], with γ(s) ≥ 0 for s ≥ s∗.
Furthermore, at s∗,

p± =
S(2− s∗) + (4− 3s∗)

2(S + 2s∗)
> 0

and constraint (66) holds. Finally, one can check using a computer that (67) holds for all s.
Since s∗ is the smallest feasible point in our domain, we conclude that the minimum is achieved

at that point. This finally proves the main claim of Theorem 3.
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7.4. Appendix D: Positive Marginal Costs at Zero.
Here we consider the case where C ′r(0) > 0 and show that the welfare ratio remains a constant
provided C ′r(0) is bounded below one. Specifically, assume Cr(sr) = 1

2βrs
2
r+γr where 0 ≤ γr ≤ 1.

Then we can follow the original proof and find that the welfare ratio is the solution to the
following problem:

minimize
(1− p)2 + ps− 1

2( p
1+s/(R−1) − γ)s− γs

min(1−γ
β , 1)− 1

2βmin(1−γ
β , 1)2 − γmin(1−γ

β , 1)
s.t. 0 ≤ s ≤ 1

0 ≤ p ≤ 1
0 ≤ γ ≤ 1

where

β =
(

p

1 + s/(R− 1)
− γ
)

1
s

As before, we have two cases to consider. First suppose 1− γ ≥ β.

minimize
(1− p)2 + ps− 1

2( p
1+s/(R−1) − γ)s− γs

1− 1
2

(
p

1+s/(R−1) − γ
)

1
s − γ

s.t. 1− γ ≥
(

p

1 + s/(R− 1)
− γ
)

1
s
≥ 0

0 ≤ s ≤ 1
0 ≤ p ≤ 1
0 ≤ γ ≤ 1

We claim that for any fixed γ < 1, the solution to this problem is strictly positive. First, we can
drop the 1

2

(
p

1+s/(R−1) − γ
)

1
s term from the denominator, as this can only decrease the value of

the objective function. We will also let R → ∞ in the numerator. The objective function then
becomes

minimize
(1− p)2 + ps

2 −
γs
2

1− γ

s.t. 1− γ ≥
(

p

1 + s/(R− 1)
− γ
)

1
s
≥ 0

0 ≤ s ≤ 1
0 ≤ p ≤ 1
0 ≤ γ ≤ 1

If there is a pair (p, s) that makes the objective function go to zero, it must satisfy

(1− p)2 +
ps

2
− γs

2
=⇒ s =

2(1− p)2

γ − p

Observe that since s ≥ 0, we must have γ > p. But by the first constraint, we have p ≥ γ,
a contradiction. So the point at which the objective function is outside our domain, and since
that set is closed, we also cannot get arbitrarily close to that point.
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Suppose now 1−γ
β < 1. Then the optimization problem is

minimize
(1− p)2 + ps− 1

2( p
1+s/(R−1) − γ)s− γs

1−γ
β −

1
2( (1−γ)2

β )− γ 1−γ
β

s.t. 1− γ < β

0 ≤ s ≤ 1
0 ≤ p ≤ 1
0 ≤ γ ≤ 1

and the denominator can be rewritten as(
1− γ − (1− γ)2

2
− γ(1− γ)

)
s

p
1+s/(R−1) − γ

If the objective function goes to zero, then either the denominator goes to infinity, which
can only happen when β ↓ 0, or when the numerator goes to zero. The first case cannot occur
because of the 1−γ < β constraint. The second case can be treated like above: if the numerator
is zero, we must have

s =
2(1− p)2

γ − p
which implies γ > p, but from the 0 < 1− γ < β constraint we get that p > γ.
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7.5. Appendix E: Constant Marginal Cost Functions and Total Welfare Loss.
Here we show that if the marginal costs are constant then the welfare ratio tends to zero.
Consider linear valuation and cost functions with slopes αq and βr, respectively,

Vq(dq) = αqdq

Cr(sr) = βrsr

The bids corresponding to this allocation at a Nash equilibrium can then be defined according
to the equilibrium conditions developed in Section 3. We will parametrize the allocations and
the functions by a variable 0 < x < 1 and then let x→ 0. So, let

sr = x ∀r
µ = 1− x

Q

βr =
1− x

Q

1 + x
R−1

∀r

dq = R
x

Q
∀q

αq = 1 ∀q

Observe that
Q∑
q=1

dq =
Q∑
q=1

R
x

Q

= Rx

=
R∑
r=1

sr

and that 0 < sr < 1 and dq > 0. This shows the above allocation is a feasible solution to
(NASH). Next we will show that the KKT conditions hold at (s,d) with λ = µ. This will imply
that the allocation (s,d) corresponds to a Nash equilibrium. We have

V ′q (dq)
(

1− dq
R

)
= 1 ·

(
1− dq

R

)
= 1− x

Q
= p

For the firms, we have

C ′r(sr)
(

1 +
sr

R− 1

)
= βr

(
1 +

sr
R− 1

)
=

(
1− x

Q

1 + x
R−1

)(
1 +

x

R− 1

)
= p

Thus the KKT conditions are satisfied, and so these allocations form a Nash equilibrium.
The expression for the welfare ratio can be written as∑Q

q=1 Vq(d
NE
q )−

∑R
r=1Cr(s

NE
r )∑Q

q=1 Vq(dOPTq )−
∑R

r=1Cr(sOPTr )
=

∑Q
q=1 αq(d

NE
q )−

∑R
r=1 βr(s

NE
r )

R−
∑R

r=1 βr
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This equality holds because every supplier r that has sNEr > 0 has a slope βr < 1. To see this,
observe that by the KKT conditions, whenever dq > 0,

V ′q (dNEq ) =
µ

1− dq
R

> µ >
µ

1 + sr
R−1

= C ′r(s
NE
r )

and recall that µ < 1. Also, if βr ≥ 1, that supplier will not produce anything (neither at the
Nash equilibrium nor at the optimal solution). So, without loss of generality, we can remove
that supplier away and, thus, consider only the cases where βr < 1. Since for any supplier the
marginal cost of producing one unit is always less than one, in an optimal solution everyone
produces sr = 1 and gives it to the consumer with slope α1 = 1.

Now putting our definitions in the formula, we obtain:∑Q
q=1 αq(d

NE
q )−

∑R
r=1 βr(s

NE
r )

R−
∑R

r=1 βr
=

∑Q
q=1 1 ·R x

Q −
∑R

r=1

(
1− x

Q

1+ x
R−1

)
x

R−
∑R

r=1

(
1− x

Q

1+ x
R−1

)
=

Rx−R
(

1− x
Q

1+ x
R−1

)
x

R−R
(

1− x
Q

1+ x
R−1

)
= x

The result follows by simply letting x→ 0.
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7.6. Appendix F: Concave Marginal Cost Functions.
Suppose C(sr) = 1

1+1/ds
1+1/d
r for some fixed d. The reduced optimization problem is:

minimize
(1− p)2 + ps− ( p

1+1/d)( s
1+s/R−1)

min(1/β, 1)− ( β
1+1/d) min(1/β, 1)1+1/d

s.t 0 ≤ s ≤ 1
0 ≤ p ≤ 1

where
β =

p

s1/d(1 + s/(R− 1))
First suppose that 1/β > 1. The optimization problem is:

minimize
(1− p)2 + ps− ( p

1+1/d)( s
1+s/R−1)

1− ( p
1+1/d)( 1

s1/d(1+s/R−1)
)

s.t s1/d

(
1 +

s

R− 1

)
≥ p

0 ≤ s ≤ 1
0 ≤ p ≤ 1

We can lower bound the objective function by setting the denominator to one. We can also let
R→∞ in the objective function. Then the objective function becomes

(1− p)2 +
(

1− 1
1 + 1/d

)
ps

and the only way this can go to zero is if s→ 0, p→ 1. But it’s not hard to see that for any d,
this is impossible by the first constraint.

Suppose now that 1/β < 1. The optimization problem is:

minimize
(1− p)2 + ps− ( p

1+1/d)( s
1+s/R−1)

1/β − ( 1
1+1/d)(1/β)1/d

s.t 1 < β

0 ≤ s ≤ 1
0 ≤ p ≤ 1

This goes to zero either when the denominator goes to infinity, which can only happen when
β ↓ 0, or when the numerator goes to zero. The first case cannot occur because of the 1 < β
constraint. The second case can be treated as above.

A welfare ratio of Ω( 1
d2

) can then easily be shown.
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7.7. Appendix G: Extension to Networks and Arbitrary Markets.
The case of consumers and suppliers simultaneously competing over a single link can be naturally
extended to the case of a network of links. This network model is based upon the work of [3]. We
will model the network as a graph G = (V,E) with L edges, called links. There are Q users, each
characterized by a source-target pair of nodes sq, tq ∈ V , q = 1, ..., Q, as well as R providers,
each capable of providing service over a subset Lr of links l1, ..., lLr , where r = 1, ..., R.

Each consumer wishes to send flow from its source to its target. For this reason, we define P
to be the set of paths in the graph G, and we say that a path p ∈ P belongs to q ∈ Q (denoted
p ∈ q) when p connects sq, tq. We assume without loss of generality that each path belongs to
only one q. If some path pk is shared by q1 and q2, then we simply define two paths pq1 , pq2 in
P that contain the same links.

Furthermore, we let fqp denote the flow that consumer q sends over the path p, and let
fq =

∑
p∈q fqp =

∑
p∈q fp denote the total flow sent by q. In the last equality, fp is the total

flow on path p, and we have fp = fpq since path p only belongs to consumer q. Each consumer
has a valuation function Vq and receives a value of Vq(fq) for sending a flow of fq.

We will make the following assumption on the valuation functions:

Assumption 3. For all q, the valuation functions Vq(fq) : R+ → R+ are strictly increasing and
concave. Over fq > 0, the functions are differentiable. At fq = 0, the right derivative exists, and
is denoted V ′q (0).

In turn, each producer r can supply bandwidth at a subset Lr of the network links, and we
denote this l ∈ r for l ∈ Lr. We also assume that the costs of providing bandwidth at one link
are independent of the costs at any other link. Formally, each producer r has |Lr| cost functions
Crl, l = 1, ..., |Lr| satisfying the following assumption:

Assumption 4. For all r, l, there exists a continuous, convex, and strictly increasing function
prl(t) : R+ → R+ such that prl(0) = 0, and for all srl ≥ 0 we have:

Crl(srl) =
ˆ srl

0
prl(t)dt

and for srl ∈ (−∞, 0) we have Crl(srl) = 0. The cost functions Crl : R → R+ are thus
continuous, strictly convex, strictly increasing, and differentiable over their entire domain.

Let srl be the bandwidth supplied by producer r at link l ∈ Lr, and let sr = (sr1, ..., sr|Lr|)
be the corresponding vector. The total cost to r is then defined to be Cr(sr) =

∑
l∈Lr Crl(srl).

The social objective in this model is again to allocate flow and supply allocation so as to
maximize the aggregate surplus. Formally, we want to come as close as possible to the result of
the following optimization problem:

maximize
Q∑
q=1

Vq(fq)−
R∑
r=1

Cr(sr)

such that fq =
∑
p∈q

fp ∀q∑
r:l∈r

srl =
∑
p:l∈p

fp ∀l

0 ≤ fq ∀q
0 ≤ srl ≤ 1

Definition of the Mechanism. Consumers and suppliers now submit vectors of bids wq and wr

(respectively). We define wq := (wq1, ..., wq|L|) where wql is the bid to link l. The vector wr is de-
fined in the same way. The collection of all the bids is denoted w = (w1, ...,wQ,wQ+1, ...,wQ+R).
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At each link l, a consumer q’s bid selects a demand function of the form

(69) cql(µl) =

{
wql
µl

if wql > 0
0 if wql = 0

and producer r’s bid selects a supply function of the form

(70) srl(µl) =

{
1− wrl

µl
if wrl > 0

1 if wql = 0

Then at each link, the mechanism then sets a price µl(wl) that clears the market by setting the
price to

µl(wl) =

∑
q:l∈q wql +

∑
r:l∈r wrl

Rl
where Rl is the number of producers competing at link l.

Consumer q then gets allocated a capacity of cql, and pays for it µlcql, while producer r
provides srl units of bandwidth and receives a payment of µlsrl.

Once all capacities have been allocated, consumer q solves a max-flow problem on G with
edge capacities set to cql, and with the source and target being sq and tq. Hence we have

fq(w) = max-flow(G, cq(w), sq, tq)

This mechanism induces a game where the payoff to consumer q is

πq(wq; w−q) = Vq (fq (wq; w−q))−
∑
l∈q

wql

and the payoff to producer r is

πr(wr; w−r) =
∑
l∈r

µl(w)−
∑
l∈r

wrl −
∑
l∈r

Crl

(
1− wrl∑

q:l∈q wql +
∑

r:l∈r wrl

)
Existence of a Nash equilibrium.

Definition. A game is said to be concave if the following holds:

(1) Every joint strategy, viewed as a point in the product space of the individual strategy
spaces, lies in a convex, closed, and bounded region R in the product space.

(2) Each player’s payoff function is continuous and concave in its own strategy.

Theorem 11. (Rosen [13]) Every concave n-person game has an equilibrium point.

We now apply this to show that a Nash equilibrium exists in our game.

Theorem 12. The extended resource allocation game has a Nash Equilibrium

Proof. We have to show that our game is concave.
First let’s look at condition 1. Fix a consumer q, and a response vector w−q. By definition,

wq ≥ 0. Also observe that πq(wq; w−q) ≤ πq(wq; 0) for all wq. Also, since the allocation to q at
link l is Rl for any wql > 0 as long as w−ql = 0, there is a Wq s.t. for wq > W , πq(wq; 0) < 0.
Thus we can restrict without loss of generality the consumer bids on [0,W ] whereW = maxqWq.

The same thing can be shown for producers. Fix a producer r. Observe that

πr(wr; w−r) =
∑
l∈r

µl −
∑
l∈r

wrl −
∑
l∈r

Crl (srl)

=
∑
l∈r

∑
q 6=r wql +

∑
q wql

Rl
+
∑
l∈r

(
1
Rl
− 1
)
wrl −

∑
l∈r

Crl (srl)
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Suppose wrl > RlCrl(srl) for all l. Then

πr(wr; w−r) =
∑
l∈r

∑
q 6=r wql +

∑
q wql

Rl
−
∑
r∈l

RlCrl(srl)

<
∑
l∈r

∑
q 6=r wql +

∑
q wql

Rl
−
∑
r∈l

Crl(srl)

= πr(0; w−r)

and the producer could profitably deviate to 0. It’s not hard to apply this reasoning sep-
arately to each link, and deduce that we must have wrl ≤ RlCrl(srl) ∀l. This shows that
we can assume without loss of generality that the payoffs are chosen within [0,M ] where
M = max (maxr,lRCrl(1),W ).

Next, we have to show that the payoffs are continuous and concave on our compact set.
Observe that πq and πr are discontinuous when the response vectors w−q,w−r equal 0. For this
reason, pick two producers r1 and r2 arbitrarily and restrict their strategy space to [ε,M ] while
keeping the other strategy spaces at [0,M ]. We will first show that the game resulting from this
restriction is concave, and then we will explain why that restriction can be made without loss of
generality.

Given the restriction, the payoffs πq and πr are continuous in wq, wr since the response vector
is always non-zero. It is also straightforward to see that πr is continuous and concave in wr.
To see that πq is continuous, observe that every function in the composition Vq(fq(cq(wq))),
particularly the max-flow function, is continuous in wq. Also, since cq is continuous and fq is
non-decreasing, we have that fq is concave. Then it follows straightforwardly that Vq is concave
in wq.

By Rosen’s theorem, we can then conclude that a Nash Equilibrium exists. �

The Welfare Bound.

Theorem 13. In the extended resource allocation game, we have
Q∑
q=1

Vq(fNEq )−
R∑
r=1

Cr(sNEr ) ≥ inf
S

s2(S2 + 4Ss+ 2s2)
S(S + 2s)

 Q∑
q=1

Vq(fNEq )−
R∑
r=1

Cr(sNEr )


where s is the unique positive root of the polynomial

γ(s) = 16s4 + 10S2s(3s− 2) + S3(5s− 4) + Ss2(49s− 24)

This value can be numerically evaluated to approximately 0.588727.
Furthermore, this bound is tight.

The idea is to first characterize the Nash equilibrium in terms of capacity allocations to
consumers and supply allocations to producers. Then we can linearize the utilities like in a
single-link case, and essentially set for each consumer a separate valuation function for each link.
Doing so will reduce the extended game to |L| single-link games, to which we will apply our
existing bound.

First, we need to show that given a response strategy w−q, for every capacity cql there exists
a bid wql that ensures q gets that capacity.

Lemma 14. The joint strategy w is a Nash equilibrium if and only if the following holds:
1. At every link l, there are at least two suppliers r1, r2 that have positive bids wr1 , wr2.
2. For each q,

cq(w) ∈ arg max
c̄

Vq(fq(c̄q))−∑
l∈q

w−1
ql (cql,w−q)


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where cq is defined according to (69) and w−1(cql,w−1) is a function that satisfies

cql(y,w−q) = x if and only if w−1
ql (x,w−q) = y

3. For each r,

wr ∈ arg max
w̄

(∑
l∈r

µl(w)−
∑
l∈r

w̄rl −
∑
l∈r

Crl

(
1− w̄rl∑

q:l∈q wql +
∑

r:l∈r wrl

))
Proof. Suppose w is a Nash equilibrium. The first claim follows as before. To establish the
existence of w−1, we observe that since w−q 6= 0, cql (consumer q’s capacity at link l) is a
continuous function of wql (consumer q’s bid at link l). Furthermore, cql(x,w−ql) is strictly
increasing in x, cql(0,w−ql) = 0, and limx→∞ cql(x,w−ql) =∞. It then follows that w−1 exists.

If wq is part of a Nash equilibrium, then by definition we must have

wq ∈ arg max
w̄

πq(w̄,w−q) = arg max
w̄

Vq (fq (cq (w̄; w−q)))−
∑
l∈q

w̄ql


The second claim follows from this fact. Suppose that it does not hold. Then, given w−q, there
is a c̄ that results in a higher payoff. But then using the functions w−1

ql we can find a vector of
bids that will result in a higher value for πq, which is a contradiction.

Finally the third claim holds by definition of a Nash equilibrium.
The other side of the implication can be established by reversing the argument above. �

Since Vq is composed with the max-flow function, which may not be differentiable, we need
to use the following tools from convex analysis.

Definition. We say that γ is a subgradient of a convex function f : Rn → R at x0 if for all
x ∈ Rn we have

f(x) ≥ f(x0) + γ>(x− x0)

The set of all subgradients of f at x0 is called the subdifferential and is denoted ∂(f(x0)). The
supergradient and the superdifferential are the equivalents of a subgradient and a subdifferential
for a concave function.

Lemma 15. Let w be a Nash equilibrium. Then for every consumer q there exists a vector αq
such that the linearized valuation function

V̄q(c̄) := α>q (c̄− cq(w)) + Vq(cq(w))

satisfies the following relationship:

(71) cq(w) ∈ arg max
c̄

V̄q(c̄)−
∑
l∈q

w−1
ql (c̄ql,w−ql)


In other words, wq is also a Nash equilibrium for the game where Vq has been replaced by V̄q.
Moreover, the payoffs at w in the new game remain the same.

Proof. We can assume without loss of generality that Vq(cq) is a convex function of cq ∈ R|L| by
extending it appropriately to the entire domain. Also observe that cql = wql/µ(wl) is concave
in wql, which implies that w−1

ql (cql,w−ql) is convex.
Recall that the payoff to q as a function of its allocated capacities is

πq(c̄q,w−q) = Vq(fq(c̄q))−
∑
l∈q

w−1
ql (c̄ql,w−q)
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and it is concave. Then by the properties of subdifferentials we have

∂(−πq(c̄q,w−q)) = ∂(−Vq(cq)) +
∑
l

∂(w−1
ql (cql,w−ql))

The addition here is defined over sets:

A+B = {a+ b|a ∈ A, b ∈ B}
From condition 2 in Lemma 14, it follows that 0 ∈ ∂(−πq(c̄q,w−q)), and from the property

above we can deduce that there exist vectors αq ∈ ∂(−Vq(cq)) and βql ∈ ∂(w−1
ql (cql,w−ql)) such

that αq =
∑

l βql.
To show that (72) holds, it is enough to show that 0 is a supergradient of

π̄q(c̄q,w−q) = V̄q(c̄q)−
∑
l∈q

w−1
ql (c̄ql,w−ql)

As before we have

∂(−π̄q(c̄q,w−q)) = ∂(−V̄q(c̄q)) +
∑
l

∂(w−1
ql (c̄ql,w−ql))

Since we still have αq ∈ ∂(−V̄q(cq)) and βql ∈ ∂(w−1
ql (cql,w−ql)), it must be that 0 ∈ ∂(−π̄q(c̄q,w−q)).

�

Now we can prove the main result

Proof. (of Theorem 13) We will first show that when each consumer has a linearized valuation
function V̄q(c̄), the extended game reduces to |L| single link games, to which the bound can be
independently applied. Then we will prove that the price of anarchy of the game with linearized
valuation functions is a lower bound for the price of anarchy with regular valuation functions,
and thus establish our claim.

By Lemma 15, we know that if w is a Nash equilibrium, then

cq(w) ∈ arg max
c̄

V̄q(c̄)−
∑
l∈q

w−1
ql (c̄ql,w−ql)


But this is equivalent to

cq(w) ∈ arg max
c̄

∑
l∈q

αql (c̄ql − cql(w)) + Vq(cql(w)−
∑
l∈q

w−1
ql (c̄ql,w−ql)


and therefore

cql ∈ arg max
c̄ql

(
αql (c̄ql − cql(w)) + Vq(cql(w)/|Lq| − w−1

ql (c̄ql,w−ql)
)

For all the suppliers serving link l, we have from part 3 of Lemma 14

wrl ∈ arg max
w̄

(
µl(w)− wrl − Crl

(
1− wrl∑

q:l∈q wql +
∑

r:l∈r wrl

))
Thus the vector of bids wl is a Nash equilibrium of a simple single-link game and

Q∑
q:l∈q

(
αql
(
cNEql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−

R∑
r:l∈r

Crl(srl(wNErl ; wNE
−rl ))

≥ ϕ

 Q∑
q:l∈q

(
αql
(
cNEql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−

R∑
r:l∈r

Crl(srl(wOPTrl ; wOPT
−rl ))


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where ϕ is the bound defined in the theorem.
Now we can use this to bound the price of anarchy of the extended game. We have∑Q

q=1 Vq(fq(c
NE
q ))−

∑R
r=1Cr(s

NE
r )∑Q

q=1 Vq(fq(cOPTq )−
∑R

r=1Cr(sOPTr )
≥

∑Q
q=1 V̄q(c

NE
q )−

∑R
r=1Cr(s

NE
r )∑Q

q=1 V̄q(cOPTq )−
∑R

r=1Cr(sOPTr )

=

∑Q
q=1

∑
l∈q

(
αql

(
cNEql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−
∑R

r=1

∑
l∈r Crl(srl(w

NE
rl ; wNE

−rl ))∑Q
q=1

∑
l∈q

(
αql

(
cNEql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−
∑R

r=1

∑
l∈r Crl(srl(w

OPT
rl ; wOPT

−rl ))

=

∑L
l=1

[∑
q:l∈q

(
αql

(
cNEql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−
∑

r:l∈r Crl(srl(w
NE
rl ; wNE

−rl ))
]

∑L
l=1

[∑
q:l∈q

(
αql

(
cOPTql − cql(w)

)
+ Vq(cql(w)/|Lq|

)
−
∑

r:l∈r Crl(srl(w
OPT
rl ; wOPT

−rl ))
]

≥ ϕ

In the first inequality we used the fact that V̄q(wNE) = Vq(wNE) and V̄q(wOPT ) ≥ Vq(wOPT ).
In the following equality the utilities and cost were expanded according to their definitions, and
on the third line we inversed the order of summation. Finally, in the last inequality we used our
existing bound |L| times. �
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7.8. Appendix H: An Optimal Smooth Market-Clearing Mechanisms.
Here we modify the arguments of [3] and [6] to show the proportional allocation mechanism is
optimal within a class of mechanisms. First, we will present a formal definition of the general
type of mechanisms that we consider. We will again call the vector of bids w.

Definition. A smooth two-sided market-clearing mechanism is a tuple of functions (D,S),
D : (0,∞) × [0,∞) → R, S : (0,∞) × [0,∞) → R such that for all Q,R, and for all w ∈
RQ+R, w 6= 0, w ≥ 0, there exists a unique p > 0 that satisfies the following equation

Q∑
q=1

Dq(p, wq) =
R∑
r=1

Sr(p, wr)

We denote it as p(w). Each consumer receives an allocation of D(p, wq) and pays pD(p, wq) to
the mechanism. Each supplier produces S(p, wq) and receives in return a payment pS(p, wq).
The payoff to consumer q with valuation function Vq is

πq(wq) = Vq(D(p, wq))− pD(p, wq)

while the payoff to supplier r with cost function Cr is

πr(wr) = pS(p, wr)− Cr(S(p, wr))

Finally, if w = 0, the payoff to any consumer and any supplier is −∞.

We will restrict valuation functions to the following class.

Definition. The set U constains all valuation functions U(d) : R+ → R+ that are strictly
increasing and concave over d ≥ 0. Over d > 0, the functions are differentiable, and at d = 0,
the right derivative exists, and is denoted U(0).

Similarly, we restrict our attention to the following class of cost functions

Definition. The set C contains all cost functions C(s) : R→ R+ of the form

C(s) =

{´ s
0 p(t)dt if s ≥ 0

0 if s ≤ 0

where p(t) : R+ → R+ is a continuous and strictly increasing function, and p(0) ≥ 0. The class
Cconv ⊆ C contains all cost functions such that p(t) is also convex and p(0) = 0.

Observe that the class C is more general than what we had before since we no longer require
that p() be convex and that p(0) = 0.

The next definition defines the class of mechanisms among which we will derive the optimality
of our mechanism.

Definition. The class M contains all smooth two-sided market-clearing mechanisms (D,S) ∈
M that satisfy the following criteria:

(i) For all U ∈ U , the payoff to a consumer with valuation function U is concave when the
consumer is price taking. That is, for all p > 0, U ∈ U , the function

π(w) = U(D(p, w))− pD(p, w)

is concave for w ≥ 0. Similarly, for all C ∈ C, the payoff to a producer with cost function
C is concave when the consumer is price taking. That is, for all p > 0, C ∈ C, the
function

π(w) = pS(p, w)− C(S(p, w))
is concave for w ≥ 0.
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(ii) For all Q,R ≥ 1, and for any Q consumers with valuation functions V1, ..., VQ ∈ U , and
for any R suppliers with cost functions C1, ..., Cr ∈ C, each consumer’s and each supplier’s
payoff when they are price anticipating is concave. That is, for each i = 1, ..., Q and each
response vector w−i, the function

πq(wq, w−i) = Vq(D(p(w), wq))− p(w)D(p(w), wq)

is concave. (By w we denote the joint strategy vector (wq, w−i).) Also, for each j =
1, ..., R and each response vector w−i, the function

πr(wr, w−j) = p(w)S(p(w), wr)− Cr(S(p(w), wr))

is concave.
(iii) The demand function D is non-negative: for all p > 0, and all w ≥ 0, D(p, w) ≥ 0. The

supply functions are bounded from above: there exists a K s.t. for all p > 0 and all
w ≥ 0, S(p, w) ≤ K.

(iv) The competitive equilibrium allocations are optimal.
(v) The demand and the supply functions are symmetric in w in the sense that for all p > 0,

w ≥ 0 we have
∂D

∂w
(p, w) = −∂S

∂w
(p, w)

The first four criteria are a straightforward generalization of the classes of mechanisms studied in
the fixed demand and fixed supply cases. The fifth criterion is a symmetry condition. Roughly, it
states that both sides of the market should use the same kind of demand and supply functions.
Optimal demand and supply functions for one-sided markets are indeed symmetric, and it is
reasonable to give both market sides the same power to express their preferences; hence this
condition is not unnatural. However, we leave open the question of whether better efficiency
guarantees exist for assymetric markets.

Finally, we define the optimal allocation to be the optimal solution to the following system:

(72)

maximize
Q∑
q=1

Vq(dq)−
R∑
r=1

Cr(sr)

such that
Q∑
q=1

dq =
R∑
r=1

sr

0 ≤ sr ≤ 1
0 ≤ dq

Identifying the form that mechanisms in M can have. In this part, we will not use
the symmetry assumption on M. First, we start by establishing that the demand and supply
functions must be affine.

Lemma 16. Let (D,S) ∈M. Then there exist functions a(p), b(p) : (0,∞)→ R+ such that for
all p > 0 and all w ≥ 0, D(p, w) = a(p) + b(p)w.

Proof. We have to show that for a fixed p > 0, D(p, w) is both a concave and a convex function
of w. We will deduce this from criterion (i).

Let U(d) = αd for some α > 0. Note that U ∈ U . Then π = (α− p)D(p, w) must be concave
in w by criterion (i). Thus if α > p, D(p, w) must be concave and if α < p, D(p, w) must
be convex, so the function is actually affine. To show that a(p), b(p) ≥ 0 for all p, recall that
D(p, w) ≥ 0 for all w, p by Def. 4.3, and consider the cases where w = 0 (to show a(p) ≥ 0) and
the limit as w →∞ (to show b(p) ≥ 0). �
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Observe that by the symmetry assumption (v), we have S(p, w) = c(p) − b(p)w for some
c(p) : (0,∞) → R. However, that assumption is not necessary to esablish that S(p, w) is affine
in w. The following lemma, whose detailed proof omit, formally states that.

Lemma 17. Let (D,S) ∈M. Then there exist functions c(p) : (0,∞)→ R and d(p) : (0,∞)→
R+ such that for all p > 0 and all w ≥ 0, S(p, w) = c(p)− d(p)w.

Proof. (Sketch) This is again deduced from Definition 4. We consider a cost function C(s) = βsd

where d > 1. We compute d2π/dw2 and show that unless ∂2S/∂w2 = 0 for all w, p, there is a
choice of w, p, β, d such that d2π/dw2 > 0 at w, p. In one case, we have to take d sufficiently
close to 1. �

The next lemma uses criterion (iv) to further narrow down the possibilities for D(p, w).

Lemma 18. Let (D,S) ∈M, with D(w, p) = a(p) + b(p)w. Then for all p we have a(p) = 0.

Proof. We will show that when a(p) 6= 0, we can construct a competitive equilibrium at which
some bids must necessarily be negative.

Suppose ∃p such that a(p) 6= 0. Let there be Q suppliers and R producers. Choose the
Q allocations such that for all i = 1, ..., Q we have 0 < dq < a(p), and choose the R supply
allocations so that supply equals demand.

Then choose the utilities and costs such that this allocation is optimal. The valuation functions
should be strictly concave with U ′q(dq) = p, and the cost functions should be chosen so that
C ′r(sr) = p (recall that they are strictly convex by assumption).

Observe that these allocations are an optimal solution to (72) (in particular, they satisfy the
optimality conditions given in a previous document with Lagrangian variable p). Because of the
strict concavity and convexity assumptions we made, this solution is unique.

Now let w be a competitive equilibrium with the utilities and cost functions we just defined.
Let µ be the price at that equilibrium. By (i), it exists for every p, and by #4 it must be optimal.
Since the solution to (72) is unique, we must have D(µ,w) = dq. By our assumptions on the
convexity, and the KKT theorems, the dual variables must also be unique and so µ = p.

But then observe that for consumer q,

D(µ,wq) = a(µ) + b(µ)wq = a(p) + b(p)wq = dq < a(p)

where the inequality follows from our initial definition of dq. This can only hold when wq < 0,
but this is prohibited by assumption, and so we have the contradiction we wanted to obtain. �

The next lemma shows we can similarly fix the value of c(p) in the definition of S(p, w) to a
scalar.

Lemma 19. Let (D,S) ∈M, with S(w, p) = c(p)+d(p)w. Then for all p we have c(p) = K∗ :=
supp,w S(p, w).

Proof. The proof in the same spirit as that of the previous lemma. We will show that if c(p) < K∗,
then we can define a competitive equilibrium where some of the bids must be negative.

Suppose there is a p such that c(p) < K∗. Let Q,R > 1, let sr be such that c(p) < sr < K∗

and sr > 0, and let dq be such that demand matches supply. Let the Vq be strictly concave with
V ′q (dq) = p and let Cr be such that C ′r(sr) = p. Like before, this is an optimal solution to (72).

Then let w be a competitive equilibrium with the same utilities and costs. Like in the last
proof, S(µ,wr) = sr and µ, the price at the competitive equilibrium, must equal p.

But then for consumer r we have

S(µ,wr) = c(µ)− d(µ)wr = c(p)− d(p)wr = sr > c(p)

and again this can only hold if wr < 0. �
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This concludes the results of this part. We have shown that all the mechanisms inM must
have the form

D(p, w) = b(p)w
S(p, w) = K∗ − d(p)w

and if we use our symmetry assumption, then b(p) = d(p). Finally, observe that if we divide
S(p, w) by K∗, the resulting mechanism is still in M, so from now on we will assume without
loss of generality that S(p, w) is of the form

S(p, w) = 1− d(p)w

An Optimality Result. In this part we will adapt the optimality argument for Kelly’s mech-
anism to our case. The main result is this theorem:

Theorem 20. Out of all smooth two-sided market-clearing mechanisms (D,S) ∈ M, the pro-
portional allocation mechanism achieves the best possible welfare ratio in the game with Q > 1
consumers with utilities V1, ..., VQ ∈ U and R > 1 suppliers with costs C1, ..., Cr ∈ Cconv.

The first step is to express b(p(w)), d(p(w)) as a function of w. When supply matches demand,
we have

Q∑
q=1

Dq(p, wq) =
R∑
r=1

Sr(p, wr)

b(p(w))
Q∑
q=1

wq = R− d(p(w))
R∑
r=1

wr

b(p(w))
Q∑
q=1

wq = R− b(p(w))
R∑
r=1

wr

b(p(w)) = d(p(w)) =
R∑Q

q=1wq +
∑R

r=1wr

On the third line we used our symmetry assumption. From that it follows that

D(p(w), wq) =
wq∑Q

q=1wq +
∑R

r=1wr
R

S(p(w), wr) = 1− wr∑Q
q=1wq +

∑R
r=1wr

R

We will also use the following function:

1/b(p) := B(p) =

∑Q
q=1wq +

∑R
r=1wr

R

Since p is assumed to be uniquely defined for all ~w, there must exist an inverse function φ :
(0,∞)→ (0,∞) such that B(x) = y if and only if φ(y) = x. Thus

(73) p(w) = φ

(∑Q
q=1wq +

∑R
r=1wr

R

)
The following lemma establishes that φ must be convex

Lemma 21. The function φ : (0,∞)→ (0,∞) is surjective, convex and differentiable.
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Proof. Surjectivity holds because p(w) can clearly take any value p > 0 (by the definition (73)
and the fact that the bids can take any value).

Differentiability of φ follows from the differentiability of b, which in turns follows from the
differentiability of D and S.

Convexity is proved using #2 in Definition 4. First observe that since

πq(wq, w−i) = Vq(D(p(w), wq))− p(w)D(p(w), wq)

must be concave, p(w)D(p(w), wq) must be convex, since otherwise we can pick Vq = αqdq for a
very small αq and obtain a contradiction.

But

p(w)D(p(w), wq) = φ

(∑Q
q=1wq +

∑R
r=1wr

R

)
wq∑Q

q=1wq +
∑R

r=1wr
R

and when w−i = 0, this becomes

p(w)D(p(w), wq) = φ
(wq
R

)
R

implying that φ is indeed convex. �

Our next step is to establish necessary and sufficient conditions for a Nash equilibrium, given
a mechanism (D,S) ∈M.

Lemma 22. Let (D,S) ∈M, R,Q > 1 and V1, ..., VQ ∈ U , C1, ..., Cr ∈ C. A vector w is a Nash
equilibrium if and only if at least two components of w are non-zero, and there exist a non-zero
vectors d, s ≥ 0 and a scalar µ > 0 such that wq = µdq, wr = µsr,

∑
q dq =

∑
r sr and the

following conditions hold for consumers:

U ′q(dq)
(

1− dq
R

)
= φ(µ)

(
1− dq

R

)
+ φ′(µ)µdqR if dq > 0

U ′q(0) ≤ φ(µ) if dq = 0

and the following conditions hold for suppliers:

C ′r(sr)
(

1 + sr
R−1

)
≤ φ(µ)

(
1 + sr

R−1

)
− φ′(µ)µ sr

R−1 if 0 < sr ≤ 1

C ′r(sr)
(

1 + sr
R−1

)
≥ φ(µ)

(
1 + sr

R−1

)
− φ′(µ)µ sr

R−1 if 0 ≤ sr < 1

Proof. Suppose w is a Nash equilibrium. Since the payoffs are all −∞ when w = 0, we must
have w 6= 0. If less than two components of w are non-zero, then, as before, we may show that
there is no Nash equilibrium.

So suppose w 6= 0 and at least two componnents are positive. Then all the payoffs are
differentiable in the user’s bid, and so the following conditions are necessary and sufficient
conditions for a Nash equilibrium. For a consumer:

∂πq
∂wq

= V
′
q

(
wq∑

q wq +
∑

r wr
R

)(
R∑

q wq +
∑

r wr
− wqR

(
∑

q wq +
∑

r wr)2

)

− φ
(∑

q wq +
∑

r wr

R

)(
R∑

q wq +
∑

r wr
− wqR

(
∑

q wq +
∑

r wr)2

)

− φ′
(∑

q wq +
∑

r wr

R

)(
wq∑

q wq +
∑

r wr

)
= 0 if wq > 0

≤ 0 if wq = 0
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For a supplier:

∂πr
∂wr

= φ′
(∑

q wq +
∑

r wr

R

)(
wr∑

q wq +
∑

r wr

)

+ φ

(∑
q wq +

∑
r wr

R

)(
− R∑

q wq +
∑

r wr
+

wrR

(
∑

q wq +
∑

r wr)2

)

− C ′r

(
wr∑

q wq +
∑

r wr
R

)(
− R∑

q wq +
∑

r wr
+

wrR

(
∑

q wq +
∑

r wr)2

)

≥ 0 if 0 < wr ≤
∑

k 6=j wk

R− 1

≤ 0 if 0 ≤ wr <
∑

k 6=j wk

R− 1

After substituting µ = (
∑

q wq +
∑

r wr)/R, dq = wq/µ, sr = wr/µ we get the conditions in the
theorem.

For the other side of the implication, we simply reverse the argument above. �

Now we can start proving the main theorem applying similar arguments to before. Let (D,S) ∈
M be fixed. This also fixes a function φ. As before, the worst case welfare ratio corresponds to

inf

∑Q
q=1 Vq(d

NE
q )−

∑R
r=1Cr(s

NE
r )∑Q

q=1 Vq(dOPTq )−
∑R

r=1Cr(sOPTr )

subject to the conditions for a Nash equilibrium. Since we assume Vq ∈ U and Cr ∈ Cconv we
can linearize the utilities and the marginal cost functions and instead consider the following
optimization problem:

min
∑Q

q=1 αqd
NE
q − 1

2

∑R
r=1 βr(s

NE
r )2

α1
∑R

r=1 s
OPT
r − 1

2

∑R
r=1 βr(sOPTr )2

(74)

s.t. αq

(
1−

dNEq
R

)
≥ φ(µ)

(
1−

dNEq
R

)
+ φ′(µ)µ

dNEq
R
∀q s.t. dNEq > 0(75)

αq

(
1−

dNEq
R

)
≤ φ(µ) ∀q(76)

βrs
NE
r

(
1 +

sNEr
R− 1

)
≤ φ(µ)

(
1 +

sNEr
R− 1

)
− φ′(µ)µ

sNEr
R− 1

∀r s.t. 0 < sNEr ≤ 1(77)

βrs
NE
r

(
1 +

sNEr
R− 1

)
≥ φ(µ)

(
1 +

sNEr
R− 1

)
− φ′(µ)µ

sNEr
R− 1

∀r s.t. 0 ≤ sNEr < 1(78)

Q∑
q=1

dNEq =
R∑
r=1

sNEr(79)

βrs
OPT
r ≤ α1 ∀r s.t. 0 < sOPTr ≤ 1(80)

βrs
OPT
r ≥ α1 ∀r s.t. 0 ≤ sOPTr < 1(81)

dNEq ≥ 0 ∀q
0 ≤ sNEr , sOPTr , αq ≤ 1 ∀q, j
0 ≤ µ, βr
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The Nash equilibrium conditions are those that we derived in Lemma 11.
We now use the same technique as before. It is possible to show that (75-76) hold with

equality, and so we rewrite these equalities as

αq =
φ(µ)R+ (µφ′(µ)− φ(µ))dq

R− dq
∀q

and

d1 =
(α1 − φ(µ))R

α1 − φ(µ) + µφ′(µ)

Inserting these two expressions in the objective function (74), we find that (74) is convex and
symmetric in dq, i > 2. Thus we must have

∀q dq = x :=
1

Q− 1

(
R∑
r=1

sr −
(α1 − φ(µ))R

α1 − φ(µ) + µφ′(µ)

)

As before, we can argue that the worst case occurs when Q → ∞. Therefore, after inserting
the expression for dq into (74) we can take the limit as Q→∞ and finally obtain the following
reduced optimization problem:

min
(α1−φ(µ))R

1−φ(µ)+µφ′(µ) (α1 − φ(µ)) + φ(µ)
∑R

r=1 s
NE
r − 1

2

∑R
r=1 βr(s

NE
r )2

α1
∑R

r=1 s
OPT
r − 1

2

∑R
r=1 βr(sOPTr )2

(82)

s.t. βrs
NE
r

(
1 +

sNEr
R− 1

)
≤ φ(µ)

(
1 +

sNEr
R− 1

)
− φ′(µ)µ

sNEr
R− 1

∀r s.t. 0 < sNEr ≤ 1(83)

βrs
NE
r

(
1 +

sNEr
R− 1

)
≥ φ(µ)

(
1 +

sNEr
R− 1

)
− φ′(µ)µ

sNEr
R− 1

∀r s.t. 0 ≤ sNEr < 1(84)

βrs
OPT
r ≤ α1 ∀r s.t. 0 < sOPTr ≤ 1

βrs
OPT
r ≥ α1 ∀r s.t. 0 ≤ sOPTr < 1

0 < φ(µ) ≤ α1(85)
0 ≤ sNEr , sOPTr ≤ 1 ∀r
0 ≤ µ, βr

Constraint (85) can be derived as before (if φ(µ) > α1, then dq = 0 ∀q). Also observe that when
we let φ(µ) = µ, this reduces to one of the optimization problems before. Now arguing as in
that proof, we can show that constraints (83-84) must hold with equality, and so we have

βr =
φ(µ)

(
1 + sNEr

R−1

)
− φ′(µ)µs

NE
r

R−1

sNEr

(
1 + sNEr

R−1

)
Then we can also show that

sOPTr = min(α1/βr, 1)
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Substituting these values into (82) we find that the system further reduces to

min

(α1−φ(µ))R
α1−φ(µ)+µφ′(µ) (α1 − φ(µ)) + φ(µ)

∑R
r=1 s

NE
r − 1

2

∑R
r=1

φ(µ)

„
1+

sNEr
R−1

«
−φ′(µ)

µsNEr
R−1

1+
sNEr
R−1

sNEr

α1
∑R

r=1 min(α1/βr, 1)−
∑R

r=1

φ(µ)

„
1+

sNEr
R−1

«
−φ′(µ)

µsNEr
R−1

sNEr

„
1+

sNEr
R−1

« (min(α1/βr, 1))2

(86)

s.t. βr =
φ(µ)

(
1 + sNEr

R−1

)
− φ′(µ)µs

NE
r

R−1

sNEr

(
1 + sNEr

R−1

) ∀r

0 < φ(µ) ≤ α1

0 ≤ sNEr ≤ 1 ∀r
0 ≤ µ

and we can further reduce this to

min

(α1−φ(µ))
α1−φ(µ)+µφ′(µ) (α1 − φ(µ)) + φ(µ)s− 1

2

φ(µ)(1+ s
R−1)−φ′(µ) µs

R−1

1+ s
R−1

s

α1 min(α1/β, 1)− 1
2

φ(µ)(1+ s
R−1)−φ′(µ) µs

R−1

s(1+ s
R−1) (min(α1/β, 1))2

(87)

s.t. β =
φ(µ)

(
1 + s

R−1

)
− φ′(µ) µs

R−1

s
(

1 + s
R−1

)
0 < φ(µ) ≤ α1

0 ≤ s ≤ 1
0 ≤ µ

With a little algebra, the objective function (87) can be rewritten as

α1−φ(µ)
α1−φ(µ)(1−µφ′(µ)/φ(µ)) (α1 − φ(µ)) + φ(µ)s− 1

2φ(µ)
(1+ s

R−1)− φ′(µ)µs
φ(µ)(R−1)

1+ s
R−1

s

α1 min(α1/β, 1)− 1
2φ(µ)

(1+ s
R−1)− φ′(µ)µs

φ(µ)(R−1)

s(1+ s
R−1) (min(α1/β, 1))2

Now if we let ψ := φ′(µ)µ/φ(µ) and φ := φ(µ)/α1, we can rewrite the system (87) as

min
1−φ

1−φ(1−ψ(µ)) (1− φ) + φs− 1
2φ

(1+ s
R−1)−ψ(µ) s

R−1

1+ s
R−1

s

min(1/β, 1)− 1
2φ

(1+ s
R−1)−ψ(µ) s

R−1

s(1+ s
R−1) (min(1/β, 1))2

(88)

s.t. β = φ

(
1 + s

R−1

)
− ψ(µ) s

R−1

s
(

1 + s
R−1

)
0 < φ ≤ 1
0 ≤ s ≤ 1
0 ≤ µ

In (88), we consider ψ(µ) to be a fixed function of µ, and φ is a variable over which we are
minimizing the objective function.

Observe also that since φ(µ) is convex, ψ(µ) ≥ 1. When φ(µ) is linear, ψ(µ) = 1 for all µ,
and the (88) reduces to the function we had when deriving the bound. Recall that in that case
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sOPT = 1, because the objective function was strictly increasing in s when sOPT = 1/β. The
same argument can be applied here, so let’s assume without loss of generality that sOPT = 1.

Then the system becomes

min

(1−φ)2

1−φ(1−ψ(µ)) + φs− 1
2φ

(1+ s
R−1)−ψ(µ) s

R−1

1+ s
R−1

s

1− 1
2φ

(1+ s
R−1)−ψ(µ) s

R−1

s(1+ s
R−1)

s.t. s

(
1 +

s

R− 1

)
≥ φ

(
1 +

s

R− 1
− ψ(µ)

s

R− 1

)
0 < φ ≤ 1
0 ≤ s ≤ 1
0 ≤ µ

The result then follows numerically. �
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7.9. Appendix J: Unbounded Supply Mechanisms.
Here we see why the supply functions must be bounded above. Specifically, we have the following
result.

Theorem 23. Let S(wr, w−j) be a continuous scalar-based market mechanism for the supply
side of a two-sided market, and let r denote a supplier. Suppose that for all r we have: (1) for
all s > 0, w−j, there is a bid ws such that S(ws, w−j) = s; (2) the payoff to r is

πr = psr − Cr(sr)
(3) the efficiency is calculated for a class of functions C such that C ∈ C =⇒ αC ∈ C for all
α > 0, and that every C ∈ C is bijective, continuous, and lims→∞Cr(s) = ∞; (4) There exists
a competitive equilibrium s > 0 for some p > 0; (5) the efficiency at a competitive equilibrium
is not worse than the efficiency at a Nash equilibrium. Then the welfare ratio (price of anarchy)
has to be zero.

Proof. Let s > 0 be a vector of competitive equilibrium allocations with price p > 0, let be r
denote a supplier with cost function Cr. Since sr 6= 0 for all r, we must have

dπr
dsr

= p− C ′r(sCEr ) = 0

At the optimal solution we must have C ′r(sOPTr ) = 1 (assuming, as usual, that valuation functions
are linear with max slope 1). Observe that s is also a competitive equilibrium with cost functions
αCr and price αp for any α > 0 since

αC ′r(s
CE
r ) = αp

holds and by concavity of payoffs, this is a local max of πr as a function of sr. Then by continuity
of sr > 0 this must also be a competitive equilibrium. The optimal solution is now

sOPTr = C−1
r (1/α)

and the efficiency is

dCE1 +
∑Q

q=1 d
CE
q −

∑R
r=1 αCr(s

CE
r )∑

r s
OPT
r −

∑
r Cr(sOPTr )

=
dCE1 +

∑Q
q=1 d

CE
q −

∑R
r=1 αCr(s

CE
r )∑

r C
−1
r (1/α)−

∑
r 1/α

Now if we let α→ 0, C−1
r (1/α)→∞, 1/α→∞ and the efficiency at the competitive equilibrium

goes to zero. Since the efficiency at a Nash equilibrium was assumed to be at least as bad, it
also goes to zero. �

There are many very natural and elegant mechanisms that fall into this category. One is the
usual Cournot mechanism: suppliers’ bids are their outputs, and consumers’ bids are their
payment. Then each consumer receives a fraction of the total supply that is equal to the
fraction of money he contributed, and each supplier’s payment is handled similarly. This has
zero efficiency.

Another example is when consumers choose parametrized demand functions D(p, θ) = θ/p

and suppliers choose supply functions S(θ, p) = θp. Then p =
√∑

q θq/
√∑

r θr, the total

amount produced is
√∑

q θq
√∑

r θr, and each consumer receives θq/
∑

q θq of the total quantity
produced (and pays θq), while each supplier produces θr/

∑
r θr of the total amount.


