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Abstract. We study the price of anarchy of a natural pricing mechanism
in which producers specify prices for their goods, and consumers directly
specify how much of each good they desire. Specifically, each producer
submits a linear pricing function that specifies a per-resource price p(d)
as a function of the demand d that it faces.

Assuming producers have convex marginal costs, we show that the price
of anarchy is a function ρdem(ρsup) of the supply-side price of anarchy
ρsup that reduces to the demand-side price of anarchy when ρsup = 1.
We then derive an expression for ρsup as a function of the market’s struc-
ture; combined with ρdem, this expression leads to tight price of anarchy
bounds in the two-sided market.

Most notably, we find that the price of anarchy varies dramatically across
different types of markets. It approaches zero when the consumers util-
ities yield highly inelastic demand; however, for any fixed demand elas-
ticity, the price of anarchy improves to 2/3 as competitiveness within
the market increases. In a monopsony setting, the mechanism achieves
its highest price of anarchy of 3/4.

Our results hold in multi-resource settings such as bandwidth markets
over parallel-serial networks and, under an additional assumption on user
demand, bandwidth markets over arbitrary networks. In the context of
parallel-serial graphs, our analysis reveals how network structure affects
the economic efficiency of the mechanism.

1 Introduction

Determining how to share scarce resources has been a central question in eco-
nomics for centuries. Today, the need to efficiently distribute scarce resources of-
ten arises in practice within numerous fields of engineering. Power engineers, for
example, are concerned with distributing electricity demand among generators
in a way that minimizes total cost. Network engineering requires sharing limited
bandwidth among competing network users, such as large Internet providers.
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The most natural way of sharing resources is through a pricing mechanism.
One of our aims in this paper is to better understand how efficiently can pric-
ing mechanisms achieve that goal. Our interest in this theoretical question is
motivated by a practical problem within networking.

1.1 Practical motivation

The current Internet is presently composed of numerous autonomous systems
owned by competing companies. There is demand for connectivity among these
independent networks: for example, networks owned by Internet service providers
better serve their clients by peering with each other. In recent years, there has
also been a surge of demand for connectivity with a good quality of service,
mainly for the purpose of transmitting high-quality multimedia content such as
movies.

There is also a willingness among autonomous systems to supply connectiv-
ity, that is to carry each other’s traffic for a price. Presently, this connectivity
is determined by contractual agreements among the different subnetworks. The
Internet thus represents a natural market setting where a scarce resource, band-
width, is produced and consumed by competing economic agents. A natural
question is how should this market be designed.

Naturally, a market mechanism for Internet bandwidth should be efficient
economically. It should allocate bandwidth to users that value it more, and have
it provided by firms with lower costs. Such a mechanism must also be extremely
scalable if it is to be used on a network the size of the Internet. In addition,
it should also be intuitive for the users, so that they are willing to adopt the
system in practice.

Perhaps the most natural market mechanism consists in simply asking providers
to price their resources and then have consumers specify the resources quantities
they desire. In economics, mechanisms that ask users for direct prices are called
Bertrand; mechanisms that directly ask for resource amounts are called Cournot.

Although there has been effort to implement this natural Bertrand-Cournot
mechanism in practice (Valancius et al., 2008), its economic efficiency is not
well understood. In particular, most existing results hold only when one side of
the market competes for a fixed supply or for a fixed demand. Here, we offer a
theoretical analysis of Bertrand and Cournot competition in two-sided markets
having both consumers and producers. Our results can help explain and predict
the real-world performance of similar mechanisms.

1.2 Theoretical motivation

By analyzing Bertrand and Cournot competition, we address our main question,
which is theoretical.

At the most basic level, we wish to know how efficiently can a pricing mech-
anism determine production and allocation of resources among competing con-
sumers and firms. In particular, we want to understand what is the tradeoff
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between the computational complexity of a pricing mechanism and the social
welfare it produces among its users.

To answer this broader question, we first examine the efficiency that can be
achieved by the most scalable mechanisms one can imagine. Among such scalable
mechanisms, we study the most natural pricing approach: the Bertrand-Cournot
mechanism.

Bertrand and Cournot mechanisms have also been studied in the context of
bandwidth markets over networks in order to understand the impact of com-
binatorial market structure on economic efficiency (Chawla and Roughgarden,
2008, Correa et al., 2010). Networks have been used to model two types of market
competition: horizontal, in which firms provide goods that are perfect substitutes
to each other, and vertical, in which the firms’ goods can only be consumed in
conjunction with each other. Our analysis of the effects of network structure
on economic efficiency also illustrates how horizontal and vertical competition
influence social welfare.

2 Related Work

2.1 The bandwidth market problem

The main practical problem we address is the design of a pricing mechanism for
Internet autonomous systems.

Numerous mechanisms have been studied empirically. Esquivel et al. (year)
propose Routebazaar, a system that is very similar to the Bertrand-Cournot
mechanism outlined above. Using numerical simulations, the authors demon-
strate that Routebazaar’s bandwidth allocations produce high social welfare
among users. Valancius et al. propose a similar system called MINT which also
accepts per-unit prices for bandwidth from providers and desired consumption
bundles from consumers. The authors discuss numerous issues concerning the
implementation of MINT, and show empirically that MINT generates higher
profits for providers than the BGP routing protocol. They also provide numer-
ous references to other bandwidth markets, many of which have been deployed
in practice.

From a theoretical perspective, the problem of sharing bandwidth has been
receiving attention for more than fifteen years, with most results consisting in
adapting the theory of VCG mechanisms. Varian et al. (1995) originally proposed
a smart market for bandwidth that would charge a price per packet in a way that
elicits truthful behavior from the users. The problem has been considered with
the framework of algorithmic mechanism design by Nisan and Ronen (2000)
and by Feigenbaum et al. (2001) In particular, Feigenbaum et al. propose a
distributed mechanism that induces providers to reveal their true costs to the
users, thus allowing Internet traffic to take the cheapest route.

The main limitation of VCG-based approaches is to assume that demand is
fixed, that it remains constant no matter what the providers do. Real bandwidth
markets on the other hand are two-sided: they also contain both consumers that
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compete with each other in response to the providers’ prices. VCG techniques
may not be particularly appropriate within two-sided markets, as we cannot
incentivize both producers and consumers to be truthful without bringing in
money from outside the market. If we increase payments to providers so that
they act truthfully, there will be no money left to incentivize the consumers.

For this reason, our pricing mechanisms do not follow the classical VCG
approach. Instead, we define a scalable mechanism and measure its economic
efficiency in terms of price of anarchy. The interest of our particular mechanism
comes from its use of Cournot and Bertrand bids.

2.2 The economic efficiency of scalable pricing mechanisms

One of the most studied scalable pricing methods is the proportional allocation
mechanism (PAM) of Johari and Tsitsklis (2004). When consumers compete for
a fixed supply, this approach yields a price of anarchy of 3/4, and this is the best
guarantee that can be achieved within a large class of pricing mechanisms. When
providers compete for a fixed demand, the PAM achieves a price of anarchy of
1/2. Kuleshov and Vetta (2010) study a generalization of the PAM to markets
with both consumers and providers. They show that it yields a price of anarchy
of about 58%, and that this is the best guarantee that can be achieved among a
family of similar mechanisms.

Unfortunately, the two-sided PAM requires users to submit bids that do not
have a simple interpretation, which may limit its adoption. Additionally, the
analysis of the PAM by Kuleshov and Vetta assumes that providers submit
pricing information without anticipating its effect on user demand. This may
not accurately represent real-world behavior.

Other scalable mechanisms that have received significant attention include
demand-side Cournot mechanisms, which accept desired resource quantities from
consumers and price the good according to a fixed pricing function (Johari and
Tsitsklis, 2005, Harks and Miller, 2009). Their price of anarchy depends entirely
on how the link is priced. Linear functions result in a price of anarchy of 2/3;
this number degrades to zero as the functions’ curvature increases.

A third well-studied scalable pricing approach is the supply-side Bertrand
mechanism, in which providers simply announce per-unit prices. Acemoglu and
Ozdaglar (2007) examine its price of anarchy in markets over networks consist-
ing of parallel edges in which demand is fixed. They also establish several neg-
ative efficiency results in parallel-serial networks. Correa et al. (2010) consider
a variation of the Bertrand approach where instead of submitting fixed prices
for one unit of resource, providers submit linear pricing functions p(d) = αd.
These functions specify a per-unit price p(d) as a function of the total demand
d faced by a provider. When market demand is fixed, Correa et al. (2008, 2010)
derive necessary and sufficient conditions for the existence of equilibria among
providers.

Recently, Chawla and Roughgarden (2008) have looked at a two-sided Bertrand-
Cournot market where providers submit fixed prices as in the Acemoglu and
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Ozdaglar model. They derive a series of negative results, showing that the price
of anarchy equals zero in most types of markets.

Here, we consider a different version of the Bertrand-Cournot mechanism
that combines the Cournot demand side of Johari and Tsitsiklis (2005) and the
Bertrand supply side of Correa et al. (2010).

3 Results

We study a scalable and natural approach to market pricing that consists in
asking each provider for a linear pricing function that specifies a per-unit resource
price p(d) when the provider faces a total demand of d. Consumers directly
specify the amount of each good they want.

We find that the performance of this mechanism varies significantly across
different types of markets. We first examine markets over simple networks of
parallel edges. We show that the price of anarchy is a function ρdem(ρsup) of
the supply-side price of anarchy ρsup that reduces to the demand-side price of
anarchy when ρsup = 1. We derive an expression for ρsup as a function of the
number of edges; this expression leads to several tight price of anarchy bounds
in the two-sided market when combined with ρdem.

When users have linear valuations, we find that price of anarchy equals 2/3,
matching an existing result on demand-sided Cournot mechanisms. However,
when users’ utilities yield demand functions that are very inelastic with respect
to resource prices, the price of anarchy approaches zero. Fortunately, for any
fixed demand elasticity, the price of anarchy approaches 2/3 when the number
of providers in the market increases.

We subsequently extend these results to markets of parallel-serial networks,
and we show how the structure of the market affects the price of anarchy. We
find that the worst mechanism performance occurs in networks where edges are
connected in serial. Although like in the previous case, the price of anarchy can
reach zero when demand is highly inelastic, as the number of disjoint paths in
the network increases, the price of anarchy improves to 2/3.

Finally, we show that most of our results carry over to markets over arbitrary
networks under a technical assumption on user demand.

4 Definition of the Mechanism

We now present our mechanism in the context of our motivating practical prob-
lem: bandwidth sharing.

Consider a computer network of V nodes. A set of P paths run through
the network. Two nodes might be joined by more than one direct connection;
therefore we model the network by a multigraph G = (V,E). We refer to a set
of parallel edges between two nodes of the multigraph as a link and we denote
the set of all links by L. In a general market setting, different links correspond
to different goods. A path in the graph (V,L) induced by the links is referred to
as a route. We denote the set of all routes by T .
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Two types of users operate on the graph: Q consumers and R providers. By
a slight abuse of notation, we use E, L, V , P , Q, R, and T to simultaneously
denote the sets of elements as well as the sizes of these sets.

Each consumer q owns a source and a sink sq, tq ∈ V . Each provider r ∈ R
operates on some edge e ∈ E. For simplicity, we assume every edge e is uniquely
identified with a provider r.

The consumers’ goal is to send flow across the network from their source to
their target along various available paths; if consumer q can transmit flow along
path p, we denote this by p ∈ q. Consumer q will be able to send flow by buying
bandwidth from providers located on edges along available paths. We write e ∈ p
to denote that edge e is on path p.

4.1 The two-sided mechanism

The two-sided mechanism specifies rules by which bandwidth is produced, sold,
and consumed. It first accepts from each provider r a linear pricing function
pr(f) = γrf with slope γr > 0. Equivalently, the strategy of a provider in the
game induced by the mechanism is a scalar γr > 0. Since edges are in a one-to-
one correspondence with providers, we equivalently refer to γr as γe.

This pricing function specifies the price provider r will charge per unit of
capacity if his total demand is f . Thus if consumer q buys dqr from r, he will
pay r a total of pr(fr)dqr = (γrfr)dqr, where fr is the total amount of bandwidth
r is asked to provide. Although γr specifies a pricing function, for the sake of
brevity we will often simply call γr a price.

Given this pricing information, consumer q then directly specifies the amount
of bandwidth dqp it wishes to send over every path p and pays

∑
p∈P

∑
e∈p dqppe(fe),

where fe =
∑
p∈P ;e∈P

∑
q∈Q dqp is the total demand faced by the provider at

edge e. In economics terms, the mechanism induces a two-stage Stackelberg game
(ref., year) in which the providers lead.

4.2 Utility functions

Let dq =
∑
p∈P dqp denote the flow sent by consumer q. The utility q obtains

from sending dq equals

Uq(dq) = Vq(dq)−
∑
p∈P

dqp
∑
e∈p

pe(fe)

where Vq(dq) is q’s valuation function. We make the following assumption on the
valuation functions.

Assumption 1 For all q ∈ Q, the valuation functions Vq(dq) : R+ → R+

are continuous, increasing and concave. Over (0,∞), they are differentiable. At
dq = 0 the right derivative exists and is denoted by V ′q (0).
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Consider now a provider r facing a demand of fr. The utility r obtains from
serving fr units of bandwidth is defined as

Ur(fr) = pr(fr)fr − Cr(fr)
= γrf

2
r − Cr(fr)

where Cr(fr) is r’s cost function. We make the following assumption about the
providers’ costs.

Assumption 2 For all r ∈ R, the cost function Cr(f) : R+ → R+ is of the
form

Cr(f) =

∫ f

0

cr(x)dx

where cr(x) : R+ → R+ is the marginal cost function of r. It is assumed that
cr(x) is continuous, strictly increasing, convex, and cr(0) = 0.

4.3 Social welfare and equilibrium concept

We use the standard utilitarian objective function to measure welfare. Let dq
denote the vector of strategies (dq1, ..., dqP ) of consumer q, and let D denote the
matrix of all consumer strategies (d1, ...,dQ). The vector of provider strategies
(γ1, ..., γR) will be denoted by γ.

Definition 1. The social welfare of the mechanism equals

W (D,γ) =
∑
q∈Q

Vq(dq)−
∑
r∈R

Cr(fr)

We use the subgame perfect Nash equilibrium as the solution concept for the
two-stage game induced by the mechanism. Let D−q represent the matrix of
consumer strategies with q’s entries deleted. Similarly, let γ−r denote the vector
of provider strategies with r’s strategy deleted.

We will also use fr(γ) to denote the demand faced by provider r when all
the pricing functions are linear with slopes as in γ and when consumers pick
their equilibrium flows. Nash equilibria in demand-side Cournot mechanisms
with linear pricing functions always exist and are unique (Johari and Tsitsklis,
2005), which implies that fr(γ) is well-defined for all r and γ.

Definition 2. A subgame perfect Nash equilibrium of the mechanism is a vector
of strategies (D,γ) such that

1. For every consumer q ∈ Q,

dq = arg max
d

Uq(d,D−q,γ).

That is, dq maximizes Uq with all other strategies being fixed.
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2. For every provider r ∈ R,

γr = arg max
γ

(γfr(γ,γ−r)− Cr(fr(γ,γ−r))

That is, γr is r’s best response when all other pricing functions are fixed and
when r anticipates the consumers’ equilibrium response to his change.

We measure economic efficiency using the standard notion of price of anarchy.

Definition 3. The price of anarchy is defined as the ratio

W (DE ,γE)

maxD,γW (D,γ)

where (DE ,γE) is a subgame perfect Nash equilibrium of the mechanism with
the lowest social welfare.

4.4 Discussion

Even though in the real AS graph, providers are located at vertices, we choose
to associate them with edges to be consistent with the vast majority of ex-
isting models of network resource allocation, such as the models of Nisan et
al. (2000), Feigenbaum et al. (2002), Johari and Tsitsiklis (2004), Kuleshov and
Vetta (2010). The combinatorial structure of many types of markets, such as mar-
kets for transportation, is more accurately modeled with edge-based providers.

The choice to model the mechanism by a two-stage game represents the
providers’ expected price-anticipating behavior. We expect any provider to take
a few initial pricing guesses to estimate its demand curve. Once he has estimated
the curve well enough, he will choose how to price his resource. This behavior
should be closely approximated by assuming the provider has perfect knowledge
of the consumers’ responses. The standard model in non-cooperative game theory
for settings in which some players anticipate other’s actions is a two-stage game;
the subgame perfect Nash equilibrium is its appropriate solution concept.

There can be many ways to collect pricing information from providers, the
simplest of which would be to ask for a single uniform price. However, in opti-
mal allocations, providers price resources at marginal cost. Fixed prices are not
flexible enough for the providers to express information about their marginal
cost structure.Our subsequent price of anarchy analysis demonstrates that lin-
ear pricing functions express that structure well. In addition, Harks and Miller
(2009) recently established that linear pricing functions result in the highest so-
cial welfare among consumers in one-sided Cournot markets. Our analysis shows
that these good efficiency properties carry over to two-sided markets.

Our last comment concerns Assumptions 1 and 2. Both have been previously
made in the literature on resource allocation mechanisms, for example in the
work of Johari, Tsitsiklis and Mannor (2006), Harks and Miller (2009), Kuleshov
and Vetta (2010) or Correa et al. (2010). Although Assumption 1 is relatively
modest, the requirement of convex marginal costs in Assumption 2 is much
stronger. However, a form of Assumption 2 is necessary to obtain good efficiency
guarantees.
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5 Technical Preliminaries

In this section, we establish some technical results that will be used in all sub-
sequent sections.

5.1 Elasticity of demand

Provider behavior in the two-stage game is determined by consumers’ responses
to price. For the purposes of our analysis, this response is entirely summarized
by the elasticity of demand with respect to price.

Definition 4. Let f(x) : R→ R be a differentiable function. The elasticity of f
with respect to x is a function εxf(y) : R→ R defined as

εx f(y) =
df(y)

dx

y

f(y)

Informally, elasticity at a point y is the ratio

∆%f(x)

∆%x

of the percentage change of f(x) given a certain percentage change ∆%x of x
at y. Point elasticity is the limit of that ratio as %∆x→ 0. Elasticity possesses
the following useful properties. They can be derived using simple algebra.

Lemma 1. Let f(x), g(x) : R→ R be differentiable functions. Let a ∈ R. Then
the following holds:

1. εx af = εx f for a > 0.

2. εx f
a = a εx f

3. εx f(g(·)) = εg f εx g

4. εx (f + g) = f
f+g εx f + g

f+g εx g

5. A function has constant point elasticity if and only if it is a monomial.

We mainly consider the elasticity εγrfr of the demand a provider faces with
respect to the slope of its pricing function. When referring to εγrfr, we drop the
γr subscript and simply write εfr.

5.2 Necessary and sufficient equilibrium conditions

We next identify necessary and sufficient conditions for a vector of bids (D,γ)
to form a Nash equilibrium.
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Lemma 2. A vector of strategies (D,γ) is a subgame perfect Nash equilibrium
of the two-sided mechanism if and only if the following holds for all q, r, p:

V ′q (dq) ≥
∑
p′

∑
l∈p∩p′

γldp′ +
∑
l∈p

γlfl (1)

V ′q (dq) ≤
∑
p′

∑
l∈p∩p′

γldp′ +
∑
l∈p

γlfl if dp > 0 (2)

cr(fr) ≤ γrfr
(

2− 1

εfr

)
(3)

cr(fr) ≥ γrfr
(

2− 1

εfr

)
if f > 0 (4)

Proof. Follows by differentiating the users’ utilities with respect to dp and fr.
ut

6 Single-Link Graphs

In this section, we apply the two-sided mechanism to the simplest possible set-
ting: that of a single resource. In the networking context, this corresponds to a
network with two nodes, s and t. All users have s, t as their source and their
target; every provider r offers to carry flow from s to t over the edge er.

The end result of this section is a series of theorems that identify the price of
anarchy for different types of consumer valuation functions and different numbers
of providers.

We establish these theorems in several steps. First, we show that our mecha-
nism is equivalent to one where, from the consumers’ perspective, there is only a
single edge between s and t. This game is simpler to analyze and is easier to play
for consumers. Secondly, we show that given any equilibrium E of this simplified
game, there exist linear valuation and linear marginal cost functions such that
the price of anarchy of the mechanism when the users have these valuations and
costs is at least as bad as that of the original equilibrium E . This implies that
without loss of generality we can analyze our mechanism in the context of linear
valuations and quadratic costs. Thirdly, we establish a lemma that expresses the
price of anarchy as a function ρdem(ρsup) of a parameter ρsup that summarizes
the extent by which providers selfishly overcharge the consumers. This parame-
ter can be interpreted as the price of anarchy on the supply side of the market.
The function ρdem combines demand-side market inefficiency with the supply-
side inefficiency provided by ρsup to return the price of anarchy in the two-sided
market. When ρsup = 1, it returns the price of anarchy of the one-sided Cournot
resource allocation mechanism for consumers. Finally, we compute ρsup within
several illustrative types of markets and obtain the two-sided price of anarchy
by applying the previous lemma.
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6.1 A simpler game

In this section we show that instead of asking from consumers for a flow on
every edge, we can simply ask them for how much they want to send in total,
and distribute that flow for them. This simplifies our subsequent price of anar-
chy analysis; it also makes the mechanism more scalable and easier to use by
consumers.

The price that consumers will be charged for sending flow from s to t equals
p(f) = Γf , where f is the total flow sent by all consumers and

Γ =
1∑
e 1/γe

.

Thus, we essentially replace e parallel edges by a single edge with a new linear
pricing function p(f)3.

Our first lemma describes how the consumers’ total flow should be dis-
tributed, and justifies our definition of Γ .

Lemma 3. Suppose that at every link e there is a linear pricing function with
slope γe. The cheapest cost for sending a flow of f is Γf2 and the cheapest
per-unit price that can be obtained is Γf , where

Γ =
1∑
e 1/γe

.

There is also only one way to send the flow at that cost: the flow fe at edge e
equals

fe =
1/γe∑

e′∈E 1/γe′
f

Proof. Suppose that f units of flow have to be sent from s to t. Let fe, denote
the flow on edge e when f is sent in the cheapest way. The price of sending an
extra bit of flow on each edge must be equal, otherwise we could transfer a small
amount of flow from one edge to the other. Thus we must have γefe = γe′fe′ for
all e, e′. Combining this with the identity

∑n
e=1 fe = f , we obtain

fe =
1/γe∑

e′∈E 1/γe′
f

The total cost of sending f is then

n∑
e∈E

γif
2
i =

∑
e∈E

1/γe
(
∑
e′∈E 1/γe′)2

f2 =
1∑

e′∈E 1/γe′
f2

and this yields our expression for Γ . ut
3 Interestingly, edge aggregation mechanism follows the same principles as the aggre-

gation of several parallel resistors into one.
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When multiple users want to send flow from s to t, they should ideally dis-
tribute their flows in an optimal way across the edges. Our next lemma estab-
lishes that if we take the entire flow a user wishes to send and distribute that
flow for them, the resulting mechanism has the same structure as the original
mechanism. Specifically, it has exactly the same equilibria.

Definition 5. The aggregate mechanism at a single link accepts from every
consumer q a total flow of dq and allocates that flow according to Lemma 3.
User q receives a utility of

Uq(dq) = Vq(dq)− Γfdq.

On the supply side, the aggregate mechanism is identical to the standard one.

Lemma 4. The Nash equilibria of the standard and aggregate mechanisms are
equal. At equilibrium, the utilities of each player are the same.

Proof. Applied to the single-link game, the necessary and sufficient conditions
of Lemma 2 state that:

V ′q (dq) ≥ γe(dqe + fe) for all e (5)

V ′q (dq) ≤ γe(dqe + fe) for all e s.t. dqe > 0 (6)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(7)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if f > 0 (8)

It is not hard to show that the efficiency conditions for the aggregate game
are:

V ′q (dq) ≥ Γ (dq + f) for all q (9)

V ′q (dq) ≤ Γ (dq + f) for all q s.t. dq > 0 (10)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(11)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if fr > 0 (12)

Take any demand-side equilibrium d of the aggregate game. We have to show
that conditions (5-6) hold for

dqe =
1/γe∑
e′ 1/γe′

dq

Condition 6 for any edge e follows by simple algebra:

V ′q (dq) ≤ Γ (dq+f) =
γe/γe∑
e′ 1/γe′

(dq+f) = γe(
1/γe∑
e′ 1/γe′

dq+
1/γe∑
e′ 1/γe′

f) = γq(dqe+fe)
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Condition 5 follows similarly.
Recall that demand-side Cournot games have unique equilibria. Thus both

games have the same equilibria, and for any γ, the demand at each edge remains
the same in the aggregate game. Thus the function fr(γ) is unchanged, and the
equilibrium prices γ of the aggregate game also form a supply-side equilibrium
in the original game. ut

It is interesting that if the providers’ costs Cr are quadratic — that is, of
the form Cr(f) = βr

2 f
2 — Lemma 3 also describes the socially optimal way to

distribute a flow of f across the edges.

Lemma 5. Suppose that at every link e the cost function is Ce(f) = βe

2 f
2. The

cheapest cost of sending a flow of f is Bf2 where

B =
1∑
e 1/βe

.

There is also only one way to send the flow at that cost.

Proof. When f units of flow are sent in a socially optimal way across the link,
the marginal costs βefe at each edge e must be equal. Thus

fe =
1/βe∑
e′∈l 1/βe′

f

and the total cost to society is∑
e∈l

βe
2
f2
e =

1

2

∑
e∈l

1/βe
(
∑
ε′∈l 1/βe′)

2
f2 =

1

2
∑
e′∈l 1/βe′

f2.

ut

6.2 Worst-case utility functions

In this section, we show that selfish users experience the greatest welfare loss
when their valuation and marginal cost functions are linear.

In the next section, we compute the price of anarchy by finding the exact
valuations and costs for which users experience the greatest welfare loss. The
following lemmas in a sense tell us that it is enough to search in the subset of
linear valuations and quadratic costs.

Our first two lemmas deal with valuation functions.

Lemma 6. Let (d,γ) be any vector of strategies, and let d∗,γ∗ be welfare-
maximizing strategies. Then∑

q∈Q Vq(dq)−
∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )
≥

∑
q∈Q V

′
q (dq)dq −

∑
r∈R Cr(fr)

maxf̄≥0

((
maxq∈Q V ′q (dq)

)∑
r f̄r −

∑
r∈R Cr(f̄r)

)
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Proof. By concavity, for any q we have Vq(d
∗
q) ≤ Vq(dq) +V ′q (dq)(d

∗
q − dq). Since

Vq(0) ≥ 0 by assumption, Vq(dq) ≥ V ′q (dq)dq. Using these two inequalities we
obtain∑

q∈Q Vq(dq)−
∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )
≥
∑
q∈Q(Vq(dq)− V ′q (dq)dq) +

∑
q∈Q V

′
q (dq)dq −

∑
r∈R Cr(fr)∑

q∈Q(Vq(dq)− V ′q (dq)dq) +
∑
q∈Q V

′
q (dq)d∗q −

∑
r∈R Cr(f

∗
r )

≥
∑
q∈Q V

′
q (dq)dq −

∑
r∈R Cr(fr)∑

q∈Q V
′
q (dq)d∗q −

∑
r∈R Cr(f

∗
r )

≥
∑
q∈Q V

′
q (dq)dq −

∑
r∈R Cr(fr)

maxf̄≥0

((
maxq∈Q V ′q (dq)

)∑
r f̄r −

∑
r∈R Cr(f̄r)

) .
In the last line, observe that the consumer with the highest marginal utility
receives all the supply. ut

We use Lemma 6 to establish the following result.

Lemma 7. Let (d,γ) be a vector of strategies such that

1. The vector d forms a demand-side equilibrium given pricing functions γ.
2. The vector γ forms a supply-side equilibrium given elasticity functions εf .

Let (d∗q)q∈Q be a welfare-maximizing flow allocation. There exist αq > 0 for all
q ∈ Q such that∑

q∈Q Vq(dq)−
∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )
≥

∑
q∈Q αqdq −

∑
r∈R Cr(fr)

maxf̄r
(
(maxq∈Q αq)

∑
r f̄r −

∑
r∈R Cr(f̄r)

)
(13)

The vector d is still a demand-side equilibrium given the pricing functions γ and
the new valuation functions.

Proof. The inequality follows by applying Lemma 6 at (d,γ) and choosing αq =
V ′q (dq) for all q.

Observe that when valuations are linear the derivatives at the equilibrium d
are the same as with the original valuations. Thus by the first-order conditions
of Lemma 2, d remains an equilibrium. ut

Assuming that valuations are linear, we now derive a similar bound for linear
marginal cost functions. Our first lemma is again a technical result that is used
in the proof of the second lemma.

Lemma 8. Suppose consumers have linear valuations, and let (d,γ) be a vector
of strategies such that

1. The vector d forms a demand-side equilibrium given pricing functions γ.
2. The vector γ forms a supply-side equilibrium given elasticity functions εfe

that satisfy |εfe| ≤ 1.

Let (d∗q)q∈Q be a welfare-maximizing flow allocation and let fe =
∑
q∈Q dqe,

f∗e =
∑
q∈Q d

∗
qe. Then fe ≤ f∗e for all e.
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Proof. First observe that for any q ∈ Q, e ∈ E,

V ′q (dq) ≥︸︷︷︸
by (1)

γefe(1 +
dqe
fe

) ≥︸︷︷︸
f,dq≥0

γefe ≥︸︷︷︸
by |εfr| ≤ 1

ce(fe) (14)

Recall that ce denotes the marginal cost of the provider at edge e.
Now suppose for a contradiction that fe > f∗e for some e. Then there exists

a q such that dqe > d∗qe, and dq > 0. Since we assumed the Vq were linear,
V ′q (d∗q) ≥ V ′q (dq), and by the strict monotonicity of ce, ce(f) > ce(f

∗). Combining
this with (14), we obtain V ′q (d∗q) > ce(f

∗). But at optimum, we must have
V ′q (d∗q) = ce(f

∗) for all e and all q such that d′q > 0, and thus we arrive at a
contradiction. ut

Using Lemma 8, we obtain the following result, very similar to a result of
Johari (2004).

Lemma 9. Let (d,γ) be such that

1. The demands d form a demand-side equilibrium given γ.
2. The prices γ form a supply-side equilibrium given some vector of elasticity

functions εf .

Suppose that consumers have linear valuations with slopes (αq)q∈Q. Then there
exist βr > 0 for all r ∈ R such that∑

q∈Q αqdq −
∑
r∈R Cr(fr)∑

q∈Q αqd
∗
q −

∑
r∈R Cr(f

∗
r )
≥

∑
q∈Q αqdq −

∑
r∈R βr(fr)

2∑
q∈Q αqd

∗∗
q −

∑
r∈R βr(f

∗∗
r )2

(15)

where d∗∗q and f∗∗r are welfare-maximizing allocations when the cost function of

every provider r is Cr(fr) = βr

2 f
2
r .

Moreover, γ is still a supply-side equilibrium given εfe and the new cost
functions.

Proof. Given a provider r, let fr be the equilibrium flow at their edge, and
define βr = cr(fr)/fr. Recall that cr denotes the marginal cost of provider r.
We will establish the lemma for these βr in two steps. First, we will define an
intermediary cost function Ĉr(f) and show that replacing the Cr by the Ĉr can
only reduce the left-hand side in (15). Then, we will show that going from Ĉr
to βr

2 f
2 yields the lower bound in the right-hand side of (15), thus establishing

the claim.
Let Ĉr(f) be the cost function uniquely determined by the marginal cost

function

ĉr(f) =

{
cr(f) if f ≤ fr
βf if fr ≤ f

Observe that d and γ are still respectively demand-side and supply-side
equilibria once we replace the Cr by the Ĉr. That is because cr(fr) = ĉr(fr) at
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the equilibrium flow fr, and the necessary and sufficient conditions (2)-(3) still
hold at that point.

Moreover, C(fr) = Ĉ(fr), and the social welfare at (d,γ) is unchanged. The
optimal social welfare, on the other hand, can only improve, as

1. For fr ≤ f ĉr(f) = βf ≤ cr(f) by convexity of the marginal cost function
2. For f ≤ fr, ĉr(f) = cr(f)

These two observations imply that Ĉr(f) ≤ Cr(f) for all f, r. Thus replacing
the Cr by the Ĉr can only reduce the left-hand side in (15). Formally, we have
shown that∑

q∈Q αqdq −
∑
r∈R Cr(fr)∑

q∈Q αqd
∗
q −

∑
r∈R Cr(f

∗
r )
≥
∑
q∈Q αqdq −

∑
r∈R βr(fr)

2∑
q∈Q αqd̂

∗
q −

∑
r∈R Ĉr(f̂

∗
r )2

where d̂∗q and f̂∗r denote optimal allocation when the cost functions are Ĉr.

Now consider what happens when we pass from Ĉr to βr

2 f
2. Observe that

the marginal cost at equilibrium is βfr for both functions, and therefore d and
γ remain equilibrium points. Let f̂∗ be the flow at optimum when the cost
functions are Ĉr. Since valuations are linear, by Lemma 8, fr ≤ f̂∗. Observe also
that

1. When fr ≤ f , βf = ĉ(f).
2. When f ≤ fr, βf ≥ ĉ(f) by convexity of the marginal cost function.

Thus β
2 f

2 ≥ Ĉ(f) for all f .

Let f∗∗r be the flow at optimum at edge r when the cost functions are βr

2 f
2.

Then βr

2 (f∗∗r )2− Ĉ(f̂∗r ) = β
2 (fr)

2− Ĉ(fr) > 0. This value represents the area on
the graph between the function ĉr(f) and βrf . Now, the price of anarchy can be
bounded as follows:∑

q∈Q αqdq −
∑
r∈R Ĉr(fr)∑

q∈Q αqd̂
∗
q −

∑
r∈R Ĉr(f̂

∗
r )
≥
∑
q∈Q αqdq −

∑
r∈R Ĉr(fr)−

∑
r∈R(βr

2 (fr)
2 − Ĉr(fr))∑

q∈Q αqd̂
∗
q −

∑
r∈R Ĉ(f̂∗r )−

∑
r∈R(βr

2 (f∗∗r )2 − Ĉr(f̂∗))

=

∑
q∈Q αqdq −

∑
r∈R

βr

2 (fr)
2∑

q∈Q αqd̂
∗
q −

∑
r∈R

βr

2 (f∗∗)2

≥
∑
q∈Q αqdq −

∑
r∈R

βr

2 (fr)
2∑

q∈Q αqd
∗∗
q −

∑
r∈R

βr

2 (f∗∗)2

The latter ratio is the right-hand side of (15). This completes the proof. ut

Later in this section, we bound the price of anarchy by finding the type of
users (specifically, their valuations and costs) that experience the greatest welfare
loss. The above lemma in a sense tells us that it is enough to search in the space
of users that have quadratic costs.
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6.3 Demand-side analysis

It turns out that the price of anarchy of the two-sided mechanism can be very
cleanly separated into two components: one arising from demand-side inefficiency
and the other from supply-side inefficiency.

Demand-side inefficiency can be bounded using techniques developed by Jo-
hari and Tsitsklis (2006). In fact, the following lemmas have proofs that are
identical to those given by Johari and Tsitsklis. The second lemma establishes
the price of anarchy in the two-sided market as function of only a single param-
eter 0 ≤ ρ ≤ 1 that entirely captures the inefficiency on the supply-side of the
market.

Throughout the paper, in order to prove inefficiency bounds for the two-sided
mechanism, we will always first measure supply-side inefficiency by bounding ρ,
and then apply the main lemma of this section to combine demand and supply-
side inefficiencies into a single bound for the two-sided market.

Lemma 10. The price of anarchy of the mechanism is lower-bounded by the
solution to the following minimization problem:

min
d1 +

∑Q
q=2 αqdq −B/2

1/2B

s.t. αq ≤ Γ + Γdq if dq > 0, ∀q ∈ Q
αq ≥ Γ + Γdq, ∀q ∈ Q

βr ≥ γr
(

2− 1

εfr

)
if fr > 0, ∀r ∈ R βr ≤ γr

(
2− 1

εfr

)
, ∀r ∈ R∑

q∈Q
dq = 1

0 < αq ≤ 1, ∀q ∈ Q
0 ≤ dq, Γ,B

When valuation functions are linear, this bound is tight.

Proof. Let Vq, q ∈ Q denote valuation functions satisfying Assumption 1 and
let Cr, r ∈ R denote cost functions satisfying Assumption 2. Let (d,γ) be an
equilibrium of the mechanism. Let εf be the vector of elasticity functions at
every edge when valuation functions are Vq. The price of anarchy is the ratio∑

q∈Q Vq(dq)−
∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )

where the dq form a demand-side equilibrium given pricing functions γ, and the
fr are defined by the dq and by the rule for distributing bandwidth that we
defined in Lemma 3.
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By Lemma 7, there exist a set of αq > 0 for q ∈ Q such that the following
bound holds

∑
q∈Q Vq(dq)−

∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )
≥

∑
q∈Q αqdq −

∑
r∈R Cr(fr)

maxf̄r
(
(maxq∈Q αq)

∑
r f̄r −

∑
r∈R Cr(f̄r)

)
(16)

and d is still a demand-side equilibrium given γ. The vector γ is still a supply-
side equilibrium given the original elasticities εf . Observe that these are not the
elasticities that arise from linear valuations. Thus, with linearized valuations,
(d,γ) is no longer an equilibrium of the two-sided mechanism.

Now by Lemma 9, there exist βr > 0 for all r ∈ R such that

∑
q∈Q αqdq −

∑
r∈R Cr(fr)

maxf̄r
(
(maxq∈Q αq)

∑
r f̄r −

∑
r∈R Cr(f̄r)

) ≥ ∑
q∈Q αqdq −

∑
r∈R βr(fr)

2

maxf̄r

(
(maxq∈Q αq)

∑
r f̄r −

∑
r∈R

βr

2 (f̄r)2
)

and γ is still a supply-side equilibrium given εf when providers’ cost functions
are replaced by Cr(f) = βr

2 f
2.

Using Lemma 5, we can compute the optimal flow when users have linear
valuations and linear marginal costs. By Lemma 5, it costs the providers B

2 f
2

to send a flow of f . On the other hand, the highest-value consumer derives a
utility of maxq αqf . Thus, the optimal welfare is the maximum of

max
q
αqf −

B

2
f2,

which is

maxq α
2
q

2B
.

Therefore, by Lemma 7 and Lemma 9, to compute the price of anarchy,
it is enough to find a set of linear valuations Vq(d) = αqd, quadratic costs

Cr(f) = βr

2 f
2, and elasticities εf that result in the worst welfare loss at a point

(d,γ) that satisfies:

1. The vector d is a demand-side equilibrium given γ.

2. The vector γ is a supply-side equilibrium given εf .
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Formally, the price of anarchy is lower-bounded by the optimum of the fol-
lowing optimization problem:

min
d1 +

∑Q
q=2 αqdq −B/2

1/2B

s.t. αq ≤ Γ + Γdq if dq > 0, ∀q ∈ Q
αq ≥ Γ + Γdq, ∀q ∈ Q

βr ≥ γr
(

2− 1

εfr

)
if fr > 0, ∀r ∈ R βr ≤ γr

(
2− 1

εfr

)
, ∀r ∈ R∑

q∈Q
dq = 1

0 < αq ≤ 1, ∀q ∈ Q
0 ≤ dq, Γ,B

The objective function is precisely the bound of Lemma 9; it is minimized over
all possible linear valuations with slopes αq, all possible quadratic costs with pa-
rameters βr, and all possible strategies d, γ under the constraints we informally
defined above.

Observe also that in the above program, we are assuming that the total flow
f in the graph equals 1 and that

1 = α1 ≥ α2 ≥ . . . ≥ αQ > 0

This poses no loss of generality because we can always normalize the numerator
and the denominator of the objective function so that these assumptions hold.

ut

Lemma 11. The price of anarchy of the two-sided mechanism for a single link
is

2ρ(2− ρ)

4− ρ

where 0 ≤ ρ ≤ 1 is an overcharging parameter that equals

B

Γ
.

When valuations are linear, this bound is tight.
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Proof. By Lemma 10, the price of anarchy is lower-bounded by the solution to
the following minimization problem.

min
d1 +

∑Q
q=2 αqdq −B/2

1/2B
(17)

s.t. αq ≤ Γ + Γdq if dq > 0, ∀q ∈ Q (18)

αq ≥ Γ + Γdq, ∀q ∈ Q (19)

βr ≥ γr
(

2− 1

εfr

)
if fr > 0, ∀r ∈ R (20)

βr ≤ γr
(

2− 1

εfr

)
, ∀r ∈ R (21)∑

q∈Q
dq = 1 (22)

0 < αq ≤ 1, ∀q ∈ Q (23)

0 ≤ dq, Γ,B (24)

Without loss of generality, we can assume that (19)-(22) hold with equality.
Indeed, if dq = 0 for some q, we can reduce αq until equality holds without
affecting the price of anarchy. If Γ = 0, then αq = 0 for all q, and the theorem
holds trivially. Thus, we can consider the following program:

min
d1 +

∑Q
q=2 αqdq −B/2

1/2B
(25)

s.t. 1 = Γ + Γd1, (26)

αq = Γ + Γdq, forq = 2, ..., Q (27)

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R (28)∑

q∈Q
dq = 1 (29)

0 < αq ≤ 1, ∀q ∈ Q (30)

0 ≤ dq, Γ,B (31)

Plugging in (27), (28) and (29) into (26) we obtain
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min
1−Γ
Γ +

∑Q
q=2(Γ + Γdq)dq −B/2

1/2B
(32)

s.t.

Q∑
q=2

dq = 1− 1− Γ
Γ

(33)

Γ + Γdq ≤ 1, ∀q ∈ Q (34)

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R (35)

0 < Γ ≤ 1 (36)

0 ≤ dq (37)

Observe that (33) is symmetric and convex in the variables dq. Since a convex
function admits a unique minimum, all dq must be equal at that point. Thus,

we must have dq = 1−(1−Γ )/Γ
Q−1 . Observe that that solution is feasible if and only

if

1

Q
≤ 1− Γ

Γ
≤ 1

The optimization problem becomes:

min

1−Γ
Γ + (Γ + Γ 1−(1−Γ )/Γ

Q−1 )(1− (1− Γ )/Γ )−B/2
1/2B

s.t.
1

Q
≤ 1− Γ

Γ
≤ 1

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R

0 < Γ ≤ 1

Observe that the function is decreasing in Q. Thus the minimum occurs when
we let Q→∞. This yields the program

min
1−Γ
Γ + Γ (1− (1− Γ )/Γ )−B/2

1/2B
(38)

s.t. 0 ≤ 1− Γ
Γ

≤ 1 (39)

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R (40)
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To get rid of B, we introduce the ratio ρ = B/Γ .

min
1−Γ
Γ + Γ (1− (1− Γ )/Γ )− ρΓ/2

1/2ρΓ
(41)

s.t. 0 ≤ 1− Γ
Γ

≤ 1 (42)

ρ = B/Γ (43)

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R (44)

This program finally evaluates to

min
2ρ(2− ρ)

4− ρ
(45)

s.t. ρ = B/Γ (46)

βr = γr

(
2− 1

εfr

)
, ∀r ∈ R (47)

ut

6.4 Reducing the number of users

To obtain a bound on ρ we need to analyze the elasticity of demand faced by
each provider. Our first step will be to show that we can assume there is only
one user. We will establish our result for monomial valuation functions.

Formally, suppose that the Q consumers have valuation functions Vq(dq) =
αqd

x
q , where 0 < x ≤ 1 and α1 ≥ α2 ≥ ... ≥ αQ > 0. Let f =

∑
q∈Q dq. Let Γ be

the aggregate price for the link. If there was only one consumer, the flow would
be the maximizer of that conumer’s utility function:

U(f) = αfx − Γf2.

We can check that

f =
(xα

2Γ

)1/(2−x)

maximizes U(). Consequently, the elasticity of demand with respect to Γ equals

εΓ f = − 1

2− x
.

The goal of this section is to show that εΓ f = −1/(2− x) no matter how many
consumers there are. To establish that, we will use the following technical lemma:

Lemma 12 (Matrix determinant). Suppose A is an invertible n×n matrix,
and U, V are n×m matrices. Then

det(A+ UV T ) = det(I + V TA−1U) det(A)
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Lemma 13. Suppose there are Q consumers with valuation functions Vq(dq) =
αqd

x
q , where 0 < x ≤ 1 and α1 ≥ α2 ≥ ... ≥ αQ > 0. Let f =

∑
q∈Q dq. Let Γ be

the aggregate price for the graph. Then

εΓ f = − 1

2− x
Proof. At equilibrium, for any q,

αqxd
x−1
q = Γ (f + dq)

Taking the elasticity on both sides (and using the identities in Lemma 1), we
obtain

(x− 1)εΓ dq = 1 +
∑
r 6=q

dr∑
r 6=q dr + 2dq

εΓ dr +
2dq∑

r 6=q dr + 2dq
εΓ dq

The function εΓ dq must satisfy the above equation. It is easy to check that
εΓ dq = −1/(2 − x) for all q (the elasticity in the single-consumer case) is a
solution to this linear system of equations. It remains to verify that there are no
other solutions to the system.

Observe that we can rewrite this system using matrices as

−1 = ((1− x)I +ABC)ε

where ε is a vector of variables, A = diag(1/(
∑
r 6=1 dr + 2d1), ..., 1/(

∑
r 6=Q dr +

2dQ)), C = diag(d1, ..., dQ), and B is a Q × Q matrix having the following
structure 2 1 1

1 2 1
1 1 2

 .

Observe that we can rewrite the determinant of (1 − x)I + ABC as (1 −
x)Q det(I + 1

1−xABC). To evaluate this determinant, we will use the matrix
determinant lemma.

Applying the lemma to our determinant, we obtain

(1− x)Q det(I +
1

1− x
ABC) = (1− x)Q det(B−1 +

1

1− x
AC) det(B−1)

It can be verified that the eigenvalues of B are n+1, 1, where n is the dimension
of B. Thus B and B−1 are positive definite. Clearly, AC is also positive definite.
Thus B−1 + 1

1−xAC is positive definite, and hence invertible. It follows that the
determinant of (1− x)I +ABC is non-zero and that the solution is unique.

From Lemma 1, we obtain

εΓ f = εΓ
∑
q

dq =
∑
q

dq∑
q dq

εΓ dq

and since we have just established that εΓ dq = −1/(2 − x), it follows that
εΓ f = −1/(2− x). ut

Thus the elasticity of the flow in the multi-consumer case is identical to the
single-consumer case.
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6.5 Computing ρ

By Lemma 13, we can assume there is only one consumer.

Suppose first there is one edge e. In that case, Γ = γe and

εγef = εΓ fεγeΓ = − 1

2− x
.

By substituting into Lemma 11, we immediately obtain the following results.

Theorem 1. Suppose there is a single link e. Suppose users have linear valua-
tion functions. The price of anarchy is 2/3. This bound is tight.

Theorem 2. Suppose there is a single link e. Suppose users have monomial
valuation functions. The price of anarchy is bounded by.

2/(2− x)(2− 1/(2− x))

4− 1/(2− x)
=

6− 4x

4(2− x)2 − 2 + x
.

Theorem 3. As x → 0, the price of anarchy goes to zero. That is, the lower
bound of the previous theorem is also tight in the limit.

Proof (Sketch). Suppose there is only one user with a valuation function V (f) =
fx and one provider with a cost of f2. As x → 0, the price γ goes to infinity,
and the equilibrium welfare goes to zero. ut

Therefore, the two-sided mechanism can have arbitrarily bad efficiency if the
users’ valuation functions have sufficient curvature. This efficiency loss is similar
to the one observed in the demand-side Cournot market. The notable difference
is that in the demand market, efficiency degraded with the curvature of the cost
function, while in a two-sided market, in degrades with the valuation function.
However, for any well-behaved valuation function of bounded elasticity, the price
of anarchy is constant.

This behavior resembles what we observe in real-world markets. The markup
a provider can afford to set on their product depends on the elasticity of demand.
If demand is highly inelastic, such as demand for medicine, consumers absolutely
desire the good, and are willing to pay any amount for it. On the other hand,
if the goods in questions are luxuries — like diamonds, for example — demand
will be elastic and providers will be forced to price close to their marginal costs.

At first, these results may appear rather disappointing. However, they are
somewhat mitigated by the following theorems regarding competition among
providers.

Theorem 4. Suppose users have valuation functions αqd
x
q . Let E be the number

of edges. Assume that βe/βe′ ≤ ∆ for some ∆ > 0 and for all e, e′. Then as
E →∞, the price of anarchy goes to 2/3. This bound is tight.
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Proof. Suppose that there are E parallel edges on the graph. Let fe denote the
flow across edge e. There is again only one user with utility

U(f) = (
∑
e

fe)
x −

∑
e

γef
2
e

At equilibrium, the first order conditions on U() must hold, as well as Γfe =
Γfe′ for all e, e′. From that, we can derive an expression for the flow on edge e:

fe =

(
x(1 +

∑
e′ 6=e γe/γe′)

x−1

2γe

)1/(2−x)

Using Lemma 1 and some algebra, we can show that

εγifi =
1

2− x
εγe

(1 +
∑
e 6=e′ γe/γe′)

(x−1)

2γe

=
1

2− x

(
−(x− 1)εγe

1/γe∑
e′ 1/γe′

− 1

)
=

1

2− x

(
(x− 1)

γe∑
e′ γe′

− 1

)
= − 1

2− x

(
γe∑
e′ γe′

+ (2− x)

∑
e′ 6=e γe∑
e′ Γe′

)
(48)

Thus the elasticity is always higher (in absolute value) when there are more
parallel routes. Thus we can expect the single route result to lower-bound the
price of anarchy.

Observe now that from the first order condition and from formula (72), it
follows that

2γe ≥ βe ≥ xγe
So for all e, we have

γe∑
e′ γe′

≤ βe/2∑
e′ βe′/x

→ 0

as E →∞ because of our assumption that βe/βe′ ≤ ∆ for all e, e′.
So for all e, γe → βe as E →∞, and ρ→ 1. By Lemma 11, it follows that in

the limit as E →∞, the price of anarchy tends to 2/3. ut

We also obtain the following corollary.

Corollary 5 In a monopsony, that is when there is only one user and an infinite
number of providers, the price of anarchy equals 3/4.

Proof. By Lemma 7, the worst price of anarchy occurs when the user’s valua-
tion is linear. As E → ∞, Γ → B. In a monopsony, there is no demand-side
competition, and the socially optimal allocation is the maximizer of

f − B

2
f2,
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which yields an optimum welfare of f = 1/2B = 1/2Γ. The equilibrium welfare,
on the other hand, will equal the maximizer of

f − Γf2,

which yields a welfare of f = 3/8Γ.

The ratio of these two welfares is 3/4. ut

This guarantee is slightly better than that of the two-sided proportional
allocation mechanism studied by Kuleshov and Vetta (2010). The best possible
guarantee that could be achieved in that setting was 0.71 (in a monopsony as
well). On the other hand, the worst price of anarchy guarantee of that mechanism
was about 0.58. Their analysis is not entirely comparable with ours however.
They do not model the mechanism as a two-stage game; providers, therefore,
do not anticipate how their pricing changes will affect this price and do not
overcharge when demand is highly inelastic. We believe our approach better
models reality.

It is also interesting to note that to obtain these guarantees, we need to
assume a minimum level of competitiveness for every provider. This assumption
is formalized through the requirement that βe/βe′ ≤ ∆ for some ∆ > 0 and for
all e, e′. This requirement is very natural: if a provider’s cost is much higher than
those of other provders, he cannot effectively compete. The high-cost providers’
impact on the market is very small, as they cannot afford to price their product
competitively.

7 Demand-Side Analysis of General Graphs

We now extend our results for networks of parallel edges to arbitrary networks.
We have formally defined how the mechanism operates in this setting in Sec-
tion 4.

We analyze the mechanism’s performance in the same way as we did for a
single link. We first analyze the demand-side of the market and prove a lemma
that establishes a bound on the two-sided price of anarchy as a function of an
over-charging parameter ρ that summarizes supply-side inefficiency. Specifically,
we show that the price of anarchy in a graph is lower-bounded by the price of
anarchy at the worst link in that graph.

We then analyze the supply-side of the market; specifically, we compute ρ as
a function of the structure of the graph.

We pay particular attention to parallel-serial graphs, in which all users share
the same source and sink, which are joined by edges connected either in series or
in parallel. One reason for considering such graphs is that they are used to model
combinatorial market structure, particularly horizontal and vertical competition
among firms (see Correa et al., 2010). Another reason is that our supply-side
analysis of general graphs is based on the analysis of parallel-serial graphs.
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7.1 A simpler game

Like in the single-link setting, we first show that the game in which users choose
a flow on every path is equivalent to a game in which they choose a flow on every
edge. Although this does not simplify the game computationally, the game with
bids on every edge is easier to analyze mathematically.

Formally, recall that in the game where users submit rates on paths, we
defined the strategy of user q as a vector dq = (dqp, p ∈ Pq). The utility of user
q was

Uq(dq,D−q) = Vq(
∑
p∈Pq

dqp)−
∑
p∈Pq

dqp
∑
e∈p

γefe

In the game where users submit rates on edges, we define the strategy of user q
as a vector xq = (xqe, e ∈ E). After having bought a vector of edge capacities
xq, user q sends a max (sq, tq)-flow of size dq(xq) in the xq-capacitated graph
G. The resulting flow on path p is denoted dqp(xq). The utility of user q in the
new game is therefore

Ūq(xq,x−q) = Vq(dq(xq))−
∑
e∈E

xqeγe
∑
q′∈Q

xq′e

Lemma 14 (Johari, 2004). At equilibrium, the pricing functions and edge
flows in the two above games are identical and the utilities of every player are
the same.

Proof. Let the pricing functions at every edge be fixed.
By Theorem 3.23 in Johari (2004), if D is a demand-side equilibrium in

the game where users submit rates on paths, then the vector of edge rates
xqe =

∑
p∈Pq

∑
e∈p dqp forms a demand-side equilibrium in the game where

users submit rates on edges.
Conversely, if x is a demand-side equilibrium of the bid-per-edge game, then

the dqp(xr) form a demand-side equilibrium of the bid-per-path game.
Since we fixed pricing functions at every edge at arbitrary values, the above

holds for any provider strategy, and in particular the demand function at every
edge remains the same. Thus the demand elasticity faced by any provider remains
the same, and the supply-side equilibria of both games are identical.

Therefore, the two-sided equilibria are equivalent, and the utilities of every
player are the same because of how we defined them. ut

Given that result, we can focus on bounding demand-side efficiency loss in
the game with bids at every edge.

7.2 Bounding the graph price of anarchy by the price of anarchy at
an edge

The next lemma, originally established in Johari (2004), states that we can
bound the demand-side price of anarchy by that of a single-edge game.
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Lemma 15. Let (d,γ) be a vector of strategies such that

1. The vector d forms a demand-side equilibrium given pricing functions γ in
the game with bids at every edge.

2. The vector γ forms a supply-side equilibrium given elasticity functions εf .

Let d∗ and f∗ denote welfare-maximizing allocations. Then there exist αqe > 0
for all q ∈ Q, e ∈ E such that∑

q∈Q Vq(dq)−
∑
r∈R Cr(fr)∑

q∈Q Vq(d
∗
q)−

∑
r∈R Cr(f

∗
r )
≥ min

e∈E

∑
q∈Q αqedqe − Ce(fe)

maxf̄ (maxq∈Q αqe)f̄ − Ce(f̄)
. (49)

At every edge e, the (dqe)q∈Q form a demand-side Nash equilibrium of the single-
edge Cournot game in which the pricing function is γefe and in which consumers
have linear valuations with slopes (αqe)q∈Q.

Proof (Sketch). Let the suppliers strategies γe be fixed. For simplicity, we will
denote the pricing functions by pe(xq,x−q).

Let x be a Nash equilibrium of the per-link bid game. By definition, for all
q, xq maximizes Ūq:

xq ∈ arg max
x̄

(
Vq(dq(x̄))−

∑
e∈E

x̄epe(x̄e,x−q)

)

As usual, dq(x̄) is the size of the maximum (sq, tq)-flow in G when edge capacities
equal x̄.

The function −Ūq is proper and convex; therefore the subdifferential ∂(−Ūq)
is non-empty at xq. In particular, since xq maximizes Ūq, 0 is a subgradient of
−Ūq.

It can be established using a theorem in convex analysis (specifically, Theo-
rem 23.8 in Rockafellar, 1970) that

∂(−Ūq(x̄)) = ∂(−(Vq(dq(x̄)) + ∂(
∑
e∈E

x̄epe(x̄e,x−q))

where + denotes summation of sets: A+B = {a+ b|a ∈ A, b ∈ B}.
Thus there exist αq ∈ −∂(−(Vq(dq(x̄))) and βq ∈ −∂(

∑
e∈E x̄epe(x̄e,x−q))

such that αq = −βq. Since Vq is non-decreasing in x̄, αq ≥ 0.
But then by the same theorem, 0 is also going to be a subgradient of α>q x̄−∑
e∈E x̄epe(x̄e,x−q) at the Nash equilibrium xq. In particular, we will have:

xq ∈ arg max
x̄

(
α>q x̄−

∑
e∈E

x̄epe(x̄e,x−q)

)

which implies that for all e:

xqe ∈ arg max
x̄

(αex̄− x̄epe(x̄e,x−q))
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Thus the bids received at edge e form a demand-side Nash equilibrium of a
single-edge game at e in which consumers have linear valuations with slopes αqe.

To prove the theorem, we need to lower-bound the price of anarchy of the
network game by that of the worst edge. Let x∗ be the set of per-link bids that
maximizes social welfare in the network game. Observe that by the definition of
a subderivative, we have

Vq(x
∗
q) ≤ Vq(xq) +α>q (x∗q − xq).

Also, it is clear that

∑
q∈Q

α>q x
∗
q−
∑
e∈E

Ce(f
∗
e ) =

∑
e∈E

∑
q∈Q

αqex
∗
qe − Ce(f∗e )

 ≤∑
e∈E

max
f̄

(
max
q
αqef̄ − Ce(f̄)

)
.

Finally, by the definition of the subderivative and the fact that Vq(dq(0) ≥ 0, it
follows that

Vq(xq)−α>q xq ≥ 0.

Applying the first, the second, and then the third inequality, we obtain∑
q∈Q Vq(xq)−

∑
e∈E Ce(fe)∑

q∈Q Vq(x
∗
q)−

∑
e∈E Ce(f

∗
e )
≥
∑
q∈Q

(
Vq(xq) +α>q xq −α>q xq

)
−
∑
e∈E Ce(fe)∑

q∈Q
(
Vq(xq) +α>q (x∗q − xq)

)
−
∑
e∈E Ce(f

∗
e )

=

∑
q∈Q

(
Vq(xq)−α>q xq

)
+
∑
q∈Qα

>
q xq −

∑
e∈E Ce(fe)∑

q∈Q
(
Vq(xq)−α>q xq

)
+
∑
q∈Qα

>
q x
∗
q −

∑
e∈E Ce(f

∗
e )

≥

∑
q∈Q

(
Vq(xq)−α>q xq

)
+
∑
e∈E

(∑
q∈Q αqexqe − Ce(fe)

)
∑
q∈Q

(
Vq(xq)−α>q xq

)
+
∑
e∈E maxf̄

(
maxq αqef̄ − Ce(f̄)

)
≥

∑
e∈E

(∑
q∈Q αqexqe − Ce(fe)

)
∑
e∈E maxf̄

(
maxq αqef̄ − Ce(f̄)

)
≥ min

e∈E

∑
q∈Q αqexqe − Ce(fe)

maxf̄ maxq αqef̄ − Ce(f̄)

which is exactly equation (49).
Finally, recall that at the beginning we fixed the providers’ strategies. Thus

for any set of pricing functions, the demand at a Nash equilibrium will be the
same as in the original mechanism. ut

7.3 Worst-case utilties

By Lemma 15, we can assume that like in the single-link setting, valuations are
linear in the worst case. We now show that the worst efficiency also arises when
marginal costs are linear.

Lemma 16. Let (d,γ) be such that
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1. The bids d form a demand-side equilibrium given γ in the game where bids
are sent to every edge.

2. The prices γ form a supply-side equilibrium given some vector of elasticity
functions εf .

Suppose that consumers have linear valuations with slopes (αq)q∈Q. Then there
exist βe > 0 for all e ∈ E such that

min
e∈E

∑
q∈Q αqedqe − Ce(fe)

maxf̄ (maxq∈Q αqe)f̄ − Ce(f̄)
≥ min

e∈E

∑
q∈Q αqedqe −

βe

2 (fe)
2

maxf̄ (maxq∈Q αqe)f̄ − βe

2 (f̄)2
.

Moreover, γ is still a supply-side equilibrium given εfe and the new cost func-
tions.

Proof. Follows by applying Lemma 8 and Lemma 9 at every edge e ∈ E. ut

7.4 Demand-side analysis

Finally, we prove a lemma analogous to Lemma 11 in the single-link setting.
It expresses the price of anarchy of the two-sided mechanism as a function of
an overcharging-parameter ρ that captures the supply-side inefficiency of the
market.

Lemma 17. The price of anarchy of the two-sided mechanism for a single link
is

2ρ(2− ρ)

4− ρ
where

ρ = min
e∈E

βe
γe
.

Proof. Follows by applying Lemma 11 and Lemma 10 at every edge e ∈ E with
Γ = γe and B = βe. ut

Interestingly, this implies that the structure of the graph does not affect
demand-side efficiency. However, as we will see in later sections, it affects supply-
side efficiency.

8 Demand-Side Analysis of Parallel-Serial Graphs

We now consider a special class of graphs called parallel-serial graphs. Although
the demand-side analysis of the previous section applies to these graphs as well,
they exhibit an interesting structure that deserves its own separate analysis.

In particular, we show in this section that on the demand-side, parallel-serial
graphs may be presented to consumers as a single edge with an aggregate pricing
function, just like in the single-link case (Section 6). We then show that in the
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context of parallel-serial graphs, the overcharging coefficient ρ has an alternative
formulation that is more intuitive.

We assume in this section that valuations and marginal costs are linear.
Recall that in the previous section we established that these are the worst-case
utilities.

In the literature, parallel-serial graphs were considered by Correa et al. (2007,
2010) in their equilibria analysis of the supply-side market, as well as by Ace-
moglu and Ozdaglar. They model horizontal and vertical competition among
providers and cleanly represent combinatorial market structure.

8.1 Reducing a parallel-serial graph to a single link

Recall that in Section 6, a consumer that wanted to send a flow of f had a unique
optimal way of distributing that flow across the edges. Thus we could define a
single aggregate price Γ for sending flow across the graph.

In a parallel-serial graph, the same observation can be made. Essentially, we
can define aggregate prices for each link, then add them up to obtain prices for
routes, then aggregate any parallel routes as if they were edges, and so on until
we get a single aggregate price for the graph.

Consumers can be presented with that single price. They only have to choose
the size of the flow they wish to transmit, and the mechanism decides for them
how to distribute that flow. The equilibria of the aggregate and the original
mechanism turn out to be identical and achieve the same utility. Thus in our
analysis, we will consider the simpler aggregate mechanism.

We will formally establish this result in the case for a graph consisting of T
parallel routes. The full claim can be formally established using a straightforward
but somewhat lengthy induction proof.

Let G be the parallel-serial graph consisting of a source and a target s, t
connected by a set of parallel disjoint routes denoted T (by a slight abuse of
notation, we use the same letter as for the number of routes). On any route
t ∈ T , any two vertices may be connected by a number of parallel edges, with
one provider on each edge.

We have seen in the previous section, that there is a unique way of distribut-
ing flow across a link, and that at every link, we can define a single aggregate
price. Let Γlt denote the aggregate price of link l on route t. Since flow travers-
ing a route is charged by every provider, the aggregate price for that route is
Γt =

∑
l∈t Γlt.

Observe now that the parallel routes are structured like edges at a single-link.
Thus the aggregate price for G equals

Γ =
1∑

t∈T 1/Γt
.

The same procedure can be repeated to parallel-serial graphs with a more com-
plex structure to obtain aggregate prices for those graphs.

We formally establish this through the following lemma.
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Lemma 18. Let G be parallel-serial graph consisting of a source and a target
s, t connected by a set of parallel disjoint routes T . Let Γ be the aggregate price of
G. The Nash equilibria in the aggregate game with price Γ are the same as those
of the original game. The equilibrium utilities of both games are also identical.

Proof. The proof is very similar to that of Lemma 4. Let P denote the set of
all paths in G. The necessary and sufficient conditions of Lemma 2 applied to G
state that for all q and r:

V ′q (dq) ≥
∑
p′

∑
e∈p∩p′

γedp′ +
∑
e∈p

γefe for all p ∈ P (50)

V ′q (dq) ≤
∑
p′

∑
e∈p∩p′

γedp′ +
∑
e∈p

γefe for all p ∈ P such that dp > 0 (51)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(52)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if f > 0 (53)

The efficiency conditions for the aggregate game are can be expressed as:

V ′q (dq) ≥ Γ (dq + f) for all q (54)

V ′q (dq) ≤ Γ (dq + f) for all q s.t. dq > 0 (55)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(56)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if fr > 0 (57)

Take any demand-side equilibrium d of the aggregate game. We have to show
that conditions (51-50) hold for the path flows dqp that the aggregate mechanism
chooses for consumers. Observe that the dqp are chosen so that the flow at an
edge e on link l within path t equals

∑
p:e∈p

dqp =
1/Γt∑
t′ 1/Γt′

1/γtle∑
e′ 1/γtle′

dq.

Condition (51) for any path p ∈ P follows by simple algebra. Path p must
coincide with some route t ∈ T and at every link l ∈ t take some edge ep ∈ l.
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We then derive condition (51) as follows.

V ′q (dq) ≤ Γ (dq + f) = Γt(
1/Γt∑
t′ 1/Γt′

dq +
1/Γt∑
t′ 1/Γt′

f) = Γt(dqt + ft)

=
∑
l∈t

Γlt(dqt + ft)

=
∑
l∈t

γep
1/γep∑
e′∈l 1/γtle′

(dqt + ft)

=
∑
e∈p

γe
∑

p′∈P :e∈p′
dp′ +

∑
e∈p

γefe

=
∑
p′∈P

∑
e∈p′∩p

γedp′ +
∑
e∈p

γefe

Condition (50) follows similarly.
This shows that for any γ, the demand at each edge remains the same in

the aggregate game. Thus the function fr(γ) is unchanged, and the equilibrium
prices γ of the aggregate game also form a supply-side equilibrium in the original
game. ut

Applied inductively, the above proof can be used to establish the following
general lemma.

Lemma 19. Let G be a parallel-serial graph. There exists an aggregate price Γ
for G such that when users choose their flows based on G, the Nash equilibria of
the resulting game are identical to those of the original game. The equilibrium
utilities of both games are also identical.

8.2 An alternative formulation for the overcharging coefficient ρ

Because of Lemma 19, most of our technical lemmas for single-link graphs carry
over to parallel-serial graphs.

In particular, Lemma 11 holds. Thus the two-sided price of anarchy equals

2ρ(2− ρ)

4− ρ

where

ρ =
B

Γ
.

Thus we can view ρ as the ratio of the true price of the graph over the price that
the users are charged.

Lemma 13 also carries over directly, as the only thing it assumes is the
existence of a single aggregate price for the entire graph. By that lemma, we can
analyze the elasticity assuming that the providers face only a single user.



34 V. Kuleshov and G. Wilfong

9 Supply-Side Analysis of Parallel-Serial Graphs

Although the demand-side price of anarchy in parallel-serial graphs is the same
as for a single link, the overcharging coefficient ρ behaves quite differently. In
particular, ρ varies dramatically with the structure of the graph.

In this section, we examine how exactly it varies. We show that serial competi-
tion (when providers are located on consecutive edges) encourages overcharging,
while parallel competition reduces it. The theorems in this section describe ρ for
graphs exhibiting different levels of each type of competition.

9.1 Bounding ρ when the graph is a single route

First, we will assume that G consists of a route composed of L links connected
in series and we will refer to this G as a route graph. A consumer wishes to send
flow from one end of the route to the other. Between any two vertices there can
be any number of parallel edges, with one provider per edge.

Suppose first that consumers have linear valuation functions. The effects of
the valuations’ curvature will be investigated later in this section. The following
lemma provides a closed-form expression for the elasticity of fe with respect to
γe.

Lemma 20. Condition βrfr = γrfr(2− 1/|εrfr|) can be written as

βle = γle −
1

1/
∑
l′ 6=l Γl′ +

∑
e′ 6=e 1/γle′

(58)

Proof. First note that

fle =
1/γle∑
e′ 1/γle′

1∑
l′ Γl′

=

∏
e′ 6=e γle′∑

e′
∏
k 6=e′ γlk

1∑
l′ Γl′

. (59)

The denominator in (59) can be expanded as

(
∑
e′

∏
k 6=e′

γlk)(
∑
l′ 6=l

Γl′) +
∏
e′

γle′ . (60)
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Using that information, we compute the elasticity.

εlefle =
γle
fle

∂fle
∂γle

=

 γle∏
e′ 6=e γle′

(
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

×
(
−

∏
e′ 6=e γle′

((
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′)

2

)
× ∂

∂γle
((
∑
e′

∏
k 6=e′

γlk)(
∑
l′ 6=l

Γl′) +
∏
e′

γle′)


= −γle

∂
∂γle

((
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′)

(
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

= −γle
(
∑
e′ 6=e

∏
k 6=e′,e γlk)(

∑
l′ 6=l Γl′) +

∏
e′ 6=e γle′

(
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

= −
(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

(
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

(61)

It then follows that

1

|εlefle|
=

(
∑
e′
∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

=
(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′ + (

∏
k 6=e γlk)(

∑
l′ 6=l Γl′)

(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

= 1 +
(
∏
k 6=e γlk)(

∑
l′ 6=l Γl′)

(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

= 1 +
1

γle

(
∏
k γlk)(

∑
l′ 6=l Γl′)

(
∑
e′ 6=e

∏
k 6=e′ γlk)(

∑
l′ 6=l Γl′) +

∏
e′ γle′

= 1 +
1

γle

1

1/
∑
l′ 6=l Γl′ +

∑
e′ 6=e 1/γle′

(62)

Inserting (62) into βrfr = γrfr(2−1/|εrfr|), we obtain the desired result. ut

Lemma 20 gives us a simpler form for the supply-side equilibrium constraints.
We can now determine the smallest value ρ can attain under these constraints.
We will do that using the approach we have already used to evaluate demand-
side inefficiency. We will formulate a minimization problem in which ρ is the
objective function, and minimize ρ over all possible values of γr and βr that
satisfy the necessary and sufficient equilibrium conditions (58).
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Before doing that, first observe that there cannot exist a Nash equilibrium
when at least two links have only one provider. Indeed, for any two such links
l, l′ we must have both

βl = γl − γl′ −
∑
k 6=l,l′

Γk

βl′ = γl′ − γl −
∑
k 6=l,l′

Γk

and clearly the two equations cannot simultaneously hold for positive values of
β.

We expect that economic efficiency will improve as the number of providers
in the graph increases. Therefore we begin by considering the worst equilibrium
situation that can arise: a route with two providers per link.

Theorem 6. Let G consist of a single route of L links with two edges at each
link. Suppose that 1/∆ ≤ βl1/βl2 ≤ ∆ for some ∆ > 0 and for all l ∈ L. For
any fixed L the price of anarchy is constant and ρ can be easily computed.

Proof. When there are two providers per link, ρ has the following form.

ρ =
B

Γ
=

L∑
l=1

1

1/βl1 + 1βl2

L∑
l=1

1

1/γl1 + 1/γl2

(63)

Inserting (58) we into (63), we obtain

ρ =

∑L
l=1

1
1

1

gl1
− 1

gl2 + 1/
∑
l′ 6=l Γl′

+
1

1

gl2
− 1

gl1 + 1/
∑
l′ 6=l Γl′∑L

l=1

1

gl1 + gl2

(64)

where gle = 1/γle.
The worst possible efficiency ratio ρ corresponds to the minimum of (64)

over all positive values of the gle. Without loss of generality, we can restrict our
domain to the set of all gle such that gl1 + gl2 ≥ 1. That is because we can take
any point and normalize it to obtain a point inside the restricted domain with
the original point’s objective function value.

Observe now that at any γ,∑
lBl(γ)∑
l Γl(γ)

≥ min
l

Bl(γ)

Γl(γ)
.
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Since the functions Bl and Γl are symmetric in the gle, we can, by relabeling the
variables if necessary, assume that B1/Γ1 = minlBl/Γl at the minimizer of ρ.

Thus it is enough to minimize the following.

ρ =

1
1

1

g11
− 1

g12 + 1/
∑
l′ 6=l Γl′

+
1

1

g12
− 1

g11 + 1/
∑
l′ 6=l Γl′

1

g11 + g12

(65)

Observe that (65) is increasing in 1/
∑
l′ 6=l Γl′ . Thus at the minimum, we

must have gl1 + gl2 = 1 for l 6= 1:

ρ =

1
1

1

g11
− 1

g12 + 1/(L− 1)

+
1

1

g12
− 1

g11 + 1/(L− 1)
1

g11 + g12

(66)

Observe that by the same argument involving symmetry and sums in the
numerator and the denominator, (66) is lower-bounded by

g11

(
1

g11
− 1

g12 + 1/(L− 1)

)
which is the ratio βe/γe at what can be assumed to be the most inelastic edge.
Thus we have rederived Lemma 17 (our demand-side efficiency lemma for arbi-
trary graphs) for the special case of a route graph.

Now observe that as β12 →∞, (66) goes to zero. Therefore in the worst case
our bound β11/β12 ≤ ∆ must hold with equality:

ρ =

1
1 +∆

1

g11
− 1

g12 + 1/(L− 1)
1

g11 + g12

(67)

Equation (67) is an explicit construction of the worst case ρ we can find. The
minimum can be evaluated numerically for specific values of ∆ and L under the
constraint that the γ and the β are positive. In every case it is strictly positive.

ut

Just like in the single-link case, we need to assume there is a minimum level of
competition at each link. Indeed, if a provider’s costs are too high, that provider
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cannot offer connectivity at a reasonable price and its competitor effectively has
a monopoly on the service.

Unfortunately, Theorem 6 also yields several types of markets in which the
mechanism achieves very low social welfare.

Corollary 7 As the competitiveness ∆ goes to infinity, the price of anarchy goes
to zero.

Proof. Observe that (67) is attained at any point for which Γl = 1 for all l. Then
for any value of gl1, gl2, the ratio goes to zero as ∆→∞. ut

This behavior, however, is to be expected. Providers must have comparable
costs in order to compete with each other. What is more disappointing is that
the price of anarchy approaches zero arbitrarily close as the length of the route
increases.

Corollary 8 As L→∞, the price of anarchy goes to zero.

Proof. Again consider any solution that attains (67). When L→∞, the bound
becomes

ρ =

1
1

1

g11
− 1

g12

+
1

1

g12
− 1

g11

1

g11 + g12

and since β1e > 0, the numerator must equal zero. ut

Therefore, in the worst case, the two-sided mechanism can have an arbitrarily
large inefficiency. Luckily, to avoid this large efficiency loss, we only need to
slightly increase provider competition at every link.

Theorem 9. Let Γ consist of L links of three edges each. The price of anarchy
of G is bounded, even in the limit as L→∞.

Proof. For three suppliers per link, the expression for ρ becomes

∑L
l=1

1
1

1

gl1
− 1

gl2 + gl3 + 1/
∑
k 6=l Γk

+
1

1

gl2
− 1

gl1 + gl3 + 1/
∑
k 6=l Γk

+
1

1

gl3
− 1

gl1 + gl3 + 1/
∑
k 6=l Γk∑L

l=1

1

gl1 + gl2 + gl3
(68)

We can normalize the gle as in the two provider case so that gl1 +gl2 +gl3 ≥ 1
for all l. The by the same argument as earlier we can lower bound (68) for any
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L by

1
1

1

gl1
− 1

gl2 + gl3 + 1/
∑
k 6=l Γk

+
1

1

gl2
− 1

gl1 + gl3 + 1/
∑
k 6=l Γk

+
1

1

gl3
− 1

gl1 + gl3 + 1/
∑
k 6=l Γk

1

gl1 + gl2 + gl3

Again the above ratio is minimized when gk1 + gk2 + gk3 goes to one for k 6= l.
Thus we can further lower bound that ratio by

1
1

1

gl1
− 1

gl2 + gl3 + 1/(L− 1)

+
1

1

gl2
− 1

gl1 + gl3 + 1/(L− 1)

+
1

1

gl3
− 1

gl1 + gl3 + 1/(L− 1)
1

gl1 + gl2 + gl3

We take the limit as n→∞ and obtain

1
1

1

gl1
− 1

gl2 + gl3

+
1

1

gl2
− 1

gl1 + gl3

+
1

1

gl3
− 1

gl1 + gl3
1

gl1 + gl2 + gl3

(69)

This ratio can be evaluated numerically for different values of ∆. For ∆ = 1/2,
the minimum is about 0.45.

Observe also that if there are precisely three providers per link, the lower
bound (69) is achieved asymptotically by setting all the gle’s to the worst case
values we computed. ut

Thus we only need three providers per link to obtain a positive price of
anarchy within a route on any size. In the two-sided proportional allocation
mechanism, there had to be two providers per link for an equilibrium to exist,
so the two guarantees are somewhat comparable.

However, one of the shortcomings that we observed in the previous setting
also holds in this case.

Corollary 10 As the competitiveness ∆ goes to infinity, the price of anarchy
goes to zero.

Another source of inefficiency that we have not yet treated stems from the
elasticity of demand.

Theorem 11. As the degree x of V (f) = fx goes to zero, the price of anarchy
goes to zero.
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Proof. (Sketch) Let e be an edge and let Se denote the normalized fraction of
the flow that passes through e. In other words, fe = Sef . Observe that

εefe = εeSe + εef = εeSe + εΓifεeΓi = εeSe +
1

2− x
εΓl
flinearεeΓl

where flinear is the total flow when valuations are linear. In the single link setting
on the other hand, we have

εefe = εeSe + εΓiflinearεeΓi

which is never worse than the first case.
Observe also that εeSe is negative for a route graph. As x decreases, the elas-

ticity, and hence the ratio βe/γe will tend to zero for every edge. Consequently,
ρ will also tend to zero. ut

Together, these results indicate that bad behavior is possible within a route,
if the route gets too large. Luckily, having enough providers in the market can
completely eliminate any supply-side inefficiencies.

Theorem 12. Suppose there are m providers on each connection. As m goes to
infinity, ρ goes to one.

Proof. Let m denote the number of providers. By an argument we used at the
beginning of this section, we can normalize the gij so that gij ≥ 1 for all i, j.

As in the proof of the previous claim, we can use the fractions trick to lower
bound the price of anarchy by the ratio corresponding to link 1, which is

1∑m
e=1

1
1

g1e
− 1∑

k 6=e g1k + 1/
∑
k 6=1 Γk

1∑m
e=1 g1e

(70)

For any m, we can relabel the variables so that β11 takes the smallest value.
Thus we can further lower-bound (70) by:

1
m∆

1

g11
− 1∑

k 6=e g1k + 1/
∑
k 6=1 Γk

1∑m
e=1 g1e

(71)

where ∆ ≥ 1
Using the fraction trick again, ratio (71) can be bounded by

g11

∆
1

g11
− 1∑

k 6=1 g1k + 1/
∑
k 6=1 Γk
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As m→∞, the term

1∑
k 6=1 g1k + 1/

∑
k 6=1 Γk

goes to zero (since g1k ≥ 1 by assumption), and the price of anarchy goes to one.
ut

9.2 Bounding ρ in general parallel-serial graphs

In the previous section we have seen that concave valuation functions can reduce
the price of anarchy to zero. However, just like in the single-link case, adding
more parallel routes in the network eliminates the effect of the valuations’ cur-
vature.

Theorem 13. Let G be a parallel-serial graph and suppose that βe/βe′ ≤ ∆ for
some ∆ > 0 and all e, e′ ∈ E. When the number of parallel routes of G goes to
infinity, the elasticity at each edge tends to that obtained from linear valuations.

Proof. The beginning of the proof follows closely that of Theorem 4. As before,
by Lemma 13 we can assume that there is only one user. Let ft denote flow sent
across parallel route t in T . The user’s utility function is

U() = (
∑
t

ft)
x −

∑
t

Γtf
2
t

At equilibrium, the first order conditions on U() must hold, as well as Γft =
Γft′ for all t, t′. From that, we can derive an expression for the flow on route t:

ft =

(
x(1 +

∑
t′ 6=t Γt/Γt′)

x−1

2Γt

)1/(2−x)

Using Lemma 1 and some algebra, we can show that

εΓt
ft =

1

2− x
εΓt

(1 +
∑
t′ 6=t Γt/Γt′)

(x−1)

2Γt

=
1

2− x

(
−(x− 1)εΓt

1/Γt∑
t′ 1/Γt′

− 1

)
=

1

2− x

(
(x− 1)

Γt∑
t′ Γ
′
t

− 1

)
= − 1

2− x

(
Γt∑
t′ Γt′

+ (2− x)

∑
t′ 6=t Γt′∑
t′ Γt′

)
(72)

Thus the elasticity is always higher (in absolute value) when there are more
parallel routes. Thus we can expect the single route result to lower-bound the
price of anarchy.
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Formally, we can apply the same argument as in Theorem 4 to show that as
the number of parallel routes goes to infinity, εΓt

ft → −1.
Now let e denote an edge on route t. We can write fe = Sft where S is some

product of fractions that represents the fraction of ft that passes through e.
Observe that

εefe = εeS + εeft = εeS + εΓtftεeΓt.

By the argument we used in the analysis of the single-link graph, εΓtft = 1/(2−
x). Observe that that is the only elasticity term that depends on the valuation
function. All the other ones depend only on graph structure. Now if the number
of routes increases, εΓt

ft → 1, which is the elasticity we would have derived from
linear valuation functions. ut

General parallel-serial graphs give the users more alternatives for how to send
their flow across the graph. Thus adding more routes can only improve the price
of anarchy, which is what the following theorem formalizes.

Theorem 14. Let G be a parallel-serial graph. The price of anarchy of G is
lower-bounded by that of a route graph.

Proof. We will call a top-level route a portion of a parallel-serial graph that is
connected in parallel to the remainder of a graph. We will denote such routes by
the letter i.

The efficiency ratio ρ can be bounded by that of a top-level route:

B

Γ
=

1∑
i 1/Bi
1∑

i 1/Gi

≥ min
i

1/Γi
1/Bi

.

Then this argument can be applied inductively to the serial elements of every
top-level route i that also contain sub-routes. Eventually, we will get that

B

Γ
=

1∑
i 1/Bi
1∑

i 1/Gi

≥ 1/Γt
1/Bt

for some route t.
By the proof of the previous theorem, demand at every link of a parallel-serial

graph is is more elastic when there are several parallel paths. Thus, passing to
route elasticities cannot improve the ratio

1/Γt
1/Bt

.

Thus the price of anarchy for a single route is a lower bound for any parallel-
serial graph. ut
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10 Supply-Side Analysis of General Graphs

Consider the model we defined at the beginning of the paper. Let G be an
arbitrary graph. We will show that given a natural assumption on the elasticity
of the providers, the bounds for a “route” obtained in the previous section lower-
bound the efficiency of an arbitrary graph.

10.1 Supply-side analysis

The ratio βe/γe is a function of the elasticity at edge e. The elasticity, in turn,
depends on the structure of the graph, and on the degree of vertical and hori-
zontal competition among providers. The main claim of this section is that the
elasticity at an edge in an arbitrary graph is not worse than if that graph was a
route. Thus the results from the previous section bound the price of anarchy in
an arbitrary graph.

Luckily, we can assume by a previous lemma that marginal costs are linear.
That makes the analysis somewhat tractable. However, it will be more conve-
nient to analyze a slightly different and simpler “aggregate” game, like we did
in previous sections. Let G be an arbitrary multi-graph. We can construct an
aggregate price Γl at each link l as in Section 6. In the new game, users select
a rate on each route of the aggregated graph (V,L) with a price of Γl at every
link.

Lemma 21. The Nash equilibria of the game in which users choose flows on
routes are the same as when they choose flows on paths. The equilibrium utilities
are identical.

Proof. The proof is very similar to that of Lemma 18. Let P denote the set of
all paths in G. The necessary and sufficient conditions of Lemma 2 applied to G
state that for all q and r:

V ′q (dq) ≤
∑
p′

∑
e∈p∩p′

γedqp′ +
∑
e∈p

γefe for all p ∈ P such that dqp > 0 (73)

V ′q (dq) ≥
∑
p′

∑
e∈p∩p′

γedqp′ +
∑
e∈p

γefe for all p ∈ P (74)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if f > 0 (75)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(76)
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For any q, the efficiency conditions for the aggregate game are can be ex-
pressed as:

V ′q (dq) ≤
∑
t′

∑
l∈t∩t′

Γldqt′ +
∑
l∈t

Γlfl for all t ∈ T such that dqt > 0 (77)

V ′q (dq) ≥
∑
t′

∑
l∈t∩t′

Γldqt′ +
∑
l∈t

Γlfl for all t ∈ T (78)

C ′r(fr) ≥ γrfr
(

2− 1

εfr

)
if fr > 0 (79)

C ′r(fr) ≤ γrfr
(

2− 1

εfr

)
(80)

Consider a vector strategies (dqt)t∈T that satisfies conditions (77)-(80) and
a route t. The aggregate mechanism will allocate rates dqp on paths p ∈ t that
coincide with t according to the same rules as for parallel-serial graphs: propor-
tionally to the reciprocals of the slopes of the pricing functions. We have to show
that conditions (73)-(74) hold for these dqp.

It can be verified that if we take any link l ∈ t and any edge e ∈ l, the sum
of the flows on paths p ∈ t that pass by e equals

∑
p∈t,e∈p

dqp =
1/γe∑
e′∈l 1/γe′

dqt.

We use this observation to derive condition (73) for any path p ∈ P . Path p
must coincide with a unique route t ∈ T and at every link l ∈ t take some edge
el ∈ l. We derive condition (73) as follows.

V ′q (dq) ≤
∑
t′

∑
l∈t∩t′

Γldqt′ +
∑
l∈t

Γlfl

=
∑
t′

∑
l∈t∩t′

γel
1/γel∑
e′∈l 1/γe′

dqt′ +
∑
l∈t

γel
1/γel∑
e′∈l 1/γe′

fl

=
∑
t′

∑
l∈t∩t′

γel
∑

p′∈t′,el∈p′
dqp′ +

∑
l∈t

γelfel

=
∑
t′

∑
p′∈t′

∑
e∈p∩p′

γedqp′ +
∑
e∈p

γefe

=
∑
p′

∑
e∈p∩p′

γedqp′ +
∑
e∈p

γefe

Condition (74) follows similarly.

This shows that for any γ, the demand at each edge remains the same in
the aggregate game. Thus the function fr(γ) is unchanged, and the equilibrium
prices γ of the aggregate game also form a supply-side equilibrium in the original
game. ut
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We can now establish our main claim. However, we will need the following
assumption on the elasticity. How to derive this assumption from basic principles
in an open question for now.

Assumption 3 Let q be a user and let k be a link. Let Tq be a set of routes in
the “aggregate” graph (V,L) available to q, and let t ∈ Tq be such that l /∈ t. We
assume that restricting the users routes to Pq − t does not make the demand of
q and link l more elastic.

Lemma 22. Suppose that users have monomial valuation functions αqf
x with

the same degree x. Let k be a link, and let fk be the flow across the link. Then,
under Assumption 3, we have:

εΓk
fk ≤ −

1

2− x
min
q

min
t∈Tq,k∈t

εΓk

∑
l∈t

Γl.

Proof. Until the end of the proof, fix a user q and a route t that goes through k.
Differentiating the utility of user q with respect to dqt, we obtain the following
Nash equilibrium condition.

αqx(
∑
t′∈Tq

dqt′)
x−1 =

∑
l∈t

Γl(fl + dqt) +
∑

t′∈Tq ;t′ 6=t;

∑
l∈t′∩t

Γldqt′

=
∑
l∈t

Γl(fl + dqt) +
∑
l∈t

Γl
∑

t′ 6=t,l∈t′
dqt

=
∑
l∈t

Γl(fl−q + 2fql)

where fql =
∑
t′∈Tq ;l∈q′ dqt′ and fl−q =

∑
q′ 6=q fq′l. Also, given t′ ∈ Tq for some

q, let St′ =
∑
l∈t′∩t Γl. We now divide both sides of the above equation by

2
∑
l∈t Γl, combine the Γ into the St′ we just defined, and separate the routes

that avoid k into different sums:

V ′(
∑
t′∈Tq

dqt′)

2
∑
l∈t Γl

=
2
∑
t′∈Tq

St′dqt′ +
∑
q′ 6=q

∑
t′∈Tq′

St′dq′t′

2
∑
l∈t Γl

(81)

=

2
∑

t′∈Tq ;k∈t′
St′dqt′ + 2

∑
t′∈Tq ;k/∈t′

St′dqt′ +
∑
q′ 6=q

 ∑
t′∈Tq′ ;k∈t′

St′dq′t′ +
∑

t′∈Tq′ ;k/∈t′
St′dqt′


2
∑
l∈t

Γl

(82)
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Now this is where we will use Assumption 3. We assume that user q does not
have any routes avoiding k. Thus

εk
V ′(
∑
t′∈Tq

dqt′)

2
∑
l∈t Γl

= εk

2
∑

t′∈Tq ;k∈t′
St′dqt′ + 2

∑
t′∈Tq ;k/∈t′

St′dqt′ +
∑
q′ 6=q

 ∑
t′∈Tq′ ;k∈t′

St′dq′t′ +
∑

t′∈Tq′ ;k/∈t′
St′dqt′


2
∑
l∈t

Γl

= εk

2
∑

t′∈Tq ;k∈t′
St′dqt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

St′dq′t′

2
∑
l∈t

Γl
(83)

I now claim that the elasticity (83) is greater than the elasticity of fk. First
observe that the function in (83) is less that fk (simple calculation). Second,
taking the derivative of the function in (83), we obtain

∂

∂Γk

2
∑
t′∈Tq ;k∈t′ St′dqt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

St′dq′t′

2
∑
l∈t Γl

=
2
∑
t′∈Tq ;k∈t′(dqt′ + St′d

′
qt′) +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

(dq′t′ + St′d
′
q′t′)

2
∑
l∈t Γl

−
2
∑
t′∈Tq ;k∈t′ St′dqt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

St′dq′t′

2(
∑
l∈t Γl)

2

=
2
∑
t′∈Tq ;k∈t′ dqt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

dq′t′

2
∑
l∈t Γl

+
2
∑
t′∈Tq ;k∈t′ St′d

′
qt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

St′d
′
q′t′

2
∑
l∈t Γl

−
2
∑
t′∈Tq ;k∈t′ St′dqt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;k∈t′

St′dq′t′

2(
∑
l∈t Γl)

2

≥
2
∑
t′∈Tq

St′d
′
qt′ +

∑
q′ 6=q

∑
t′∈Tq′ ;

St′d
′
q′t′

2
∑
l∈t Γl

≥
∑
q′

∑
t′∈Tq′ ;k∈t

d′q′p′ =
∂fk
∂Γk

where d′qt′ = ∂dqt′/∂Γk is the negative derivative of dqt′ . Then from the definition
of elasticity it follows that (83) ≥ εkfk.
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Now consider the marginal utility of user i.

εk
αqx(

∑
t′∈Tq

dqt′)
x−1

2
∑
l∈p Γl

= (x− 1)εk(
∑
t′∈Tq

dqt′)− εk
∑
l∈p

Γl

= (x− 1)
fik∑

t′∈Pq
dqt′

εk(fqk) + (x− 1)

∑
t′∈Tq ;k/∈t′ dqt′∑
t′∈Pq

dqt′
εk(

∑
t′∈Tq ;k/∈t′

dqt′)− εk
∑
l∈p

Γl

≤ (x− 1)εk(fqk)− εk
∑
l∈p

Γl

Combining this with our previous results, we get that for any user q,

εkfk ≤ (x− 1)εk(fqk)− εk
∑
l∈t′

Γl

Using part 4 of Lemma 1, we deduce that

εkfk ≤ (x− 1)εkfk − min
t′∈Tq

εk
∑
l∈t′

Γl

Solving for εkfk we get that

εkfk ≤ −
1

2− x
min
t′∈Tq

εk
∑
l∈t′

Γl

The εkfk above assumes there are no routes that avoid k. But if there are
such routes, by our assumption, that makes fk even more elastic, and so the
bound still holds. ut

The main theorem now follows from the lemma.

Theorem 15. Under Assumption 3, the supply-side price of anarchy ρ in an
arbitrary graph is bounded by the supply-side price of anarchy of the worst route.

Proof. Let G be an arbitrary graph. Consider any edge e that is part of a link l.
Let t be the route that minimizes the left-hand term in Lemma 22: εΓk

∑
l∈t Γl.

Observe that fe = (1/γe)/(
∑
e′∈l 1/γe′)fl. If the entire graph consisted only

of route t, then the elasticity of the flow at edge e would equal.

(εefe)G=t = εe
1/γe∑
e′∈l 1/γe′

fl

= εe
1/γe∑
e′∈l 1/γe′

− 1

2− x
εΓl

(∑
l∈t

Γl

)
εeΓl.

In reality, the elasticity of the flow at edge e equals

εefe = εe
1/γe∑
e′∈l 1/γe′

+ εΓl
flεeΓl.
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However, by Lemma 22,

εefe = εe
1/γe∑
e′∈l 1/γe′

− εΓl
flεeΓl

≤ εe
1/γe∑
e′∈l 1/γe′

− 1

2− x
εΓl

(∑
l∈t

Γl

)
εeΓl

= (εefe)G=t.

Thus as a function, εefe is always pointwise further away from 0 than (εefe)G=t.
Now choose e to be the edge at which supply is the least elastic. Lemma 20 yields
a closed-form expression for the elasticity at edge e. Combining that expression
with the ratio βe/γe, we can after doing some algebra derive an expression that
is identical to the last ratio in Theorems 6 and 9. This yields a price of anarchy
bound for the entire graph G that is equal to that within route t. ut

11 Existence of Nash equilibria

We conclude by briefly discussing the existence of equilibria within the mecha-
nism. This is an area in which the paper still needs to be expanded.

Nash equilibria have been extensively studied by Correa et al. (2007, 2010) in
the supply-side market that faces a fixed demand. In the single-resource setting
(2007), they make the same assumptions on the costs as we do. In the parallel-
serial graph setting (2010), their model is the same except they assume that
providers have quadratic costs. We suspect their results and techniques can be
carried over to establish that equilibria exist in our game.

With the techniques that will be developed in this paper, we are already able
to prove the following result that is comparable to that of Correa et al.

Theorem 16. Let G be a parallel-serial graph with at least two providers per
link. Suppose providers’ costs are quadratic. Then a unique subgame perfect Nash
equilibrium exists in the game played on G and best-responses converge on both
the demand and the supply side. If we assume that the providers’ prices are
bounded, we can obtain precise rates of convergence to the equilibrium.

Proof. Follows by applying Brower’s fixed point theorem to the best-response
function defined in Lemma 20 within the compact set [0,maxr βr]

R.

We conjecture that we can adapt the above result, as well as the extensive
analysis of Correa et al. (2007, 2010) to show the existence of a Nash equilibrium
within the mechanism for any type of user utility and any graph.

Conjecture 1. There is a Nash equilibrium in the two-sided game.
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