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Abstract

Prediction markets are designed to elicit informa-
tion from multiple agents in order to predict (ob-
tain probabilities for) future events. A good pre-
diction market incentivizes agents to reveal their
information truthfully; such incentive compat-
ibility considerations are commonly studied in
mechanism design. While this relation between
prediction markets and mechanism design is well
understood at a high level, the models used in
prediction markets tend to be somewhat differ-
ent from those used in mechanism design. This
paper considers a model for prediction markets
that fits more straightforwardly into the mecha-
nism design framework. We consider a number
of mechanisms within this model, all based on
proper scoring rules. We discuss basic properties
of these mechanisms, such as incentive compat-
ibility. We also draw connections between some
of these mechanisms and cooperative game the-
ory. Finally, we speculate how one might build
a practical prediction market based on some of
these ideas.

1 Introduction

A prediction market [16] is a market created for the purpose
of obtaining a subjective probability distribution, based on
the information of multiple agents. To predict whether a
particular event (say, the Democratic candidate winning the
election) will happen, a common approach is to create a se-
curity that will pay out some predetermined amount (say,
$1) if the event happens, and let agents trade this security
until a stable price emerges; the price can then (arguably)
be interpreted as the consensus probability that the event
will happen. However, there are also other designs for
prediction markets. Examples include dynamic parimutuel
markets [14], as well as market scoring rules [10] (we will
discuss the latter in more detail). A good prediction mar-

ket ensures that agents are rewarded for contributing useful
and accurate information.

To analyze prediction markets, it is often assumed that
agents will act myopically. In a market based on securi-
ties, this corresponds to the assumption that an agent will
buy if the price is below her current subjective probability
(which takes what happened in the market so far into ac-
count), and will sell if the price is above her current subjec-
tive probability. Even under this assumption, it is theoreti-
cally possible that the market converges to a price that does
not reflect the full combined information of all the agents.
For example, suppose that agent 1 observes x ∈ {0, 1},
and agent 2 observes y ∈ {0, 1}. Let z = 1 if x = y, and
z = 0 otherwise; and consider a prediction market that at-
tempts to predict whether z = 1. In principle, the agents
collectively have enough information to predict z perfectly.
However, if we assume x and y are drawn independently
according to a uniform distribution, then each agent’s sub-
jective probability that z = 1 is 0.5 regardless of the in-
formation she receives, so the price will remain stuck at
0.5. (A similar example is given in [6].) Of course, this
is a knife-edge example. If we modify the distribution so
that P (y = 1) = 0.51, then, given an initial price of 0.5,
if agent 1 observes x = 1, she will start buying and drive
the price up; whereas if she observes x = 0, she will start
selling and drive the price down. From this behavior, agent
2 can infer what agent 1 observed, and as a result knows z,
so that the market price will correctly converge to 0 or 1.

A difficulty is presented by the fact that strategic agents
will not always behave myopically: they may try to manip-
ulate the beliefs of the other agents, and thereby, the market
price. Considering the modified example again, suppose
that agent 1 changes her strategy to do the opposite of what
she did before. That is, she will start selling if x = 1, and
buying if x = 0. If agent 2 is not aware of agent 1’s strate-
gic behavior, he will be misled into drawing the wrong con-
clusion about z, and drive the price to the exact opposite of
what it should be. This leaves agent 1 in an advantageous
position: if the price has been driven to 0, she can cheaply
buy securities that in reality are worth 1; whereas if the



price has been driven to 1, she can sell securities that are
worth 0 at a price of 1. A similar example is given in [13].

We may ask ourselves whether we can avoid these difficul-
ties by designing the prediction market appropriately. The
creation of markets that lead to good results in the face of
strategic behavior is a topic that falls under mechanism de-
sign. A standard approach in mechanism design is to cre-
ate direct-revelation mechanisms, in which agents directly
report all their private information, that are incentive com-
patible, meaning that agents have no incentive to misreport
their private information.

The high-level idea that concepts from mechanism design
should be applicable to prediction markets is certainly not
novel. The relation is clear: in both cases, there are multi-
ple agents with private information, and the goal is to in-
centivize them to reveal the (relevant) information. For
example, [11, 12] also study some versions of incentive
compatibility and other mechanism design concepts in the
context of prediction markets. Market scoring rules incen-
tivize agents to report probabilities truthfully, if they are
myopic [13, 2].

However, it appears that at this point, there is still some-
what of a gap between the theories of prediction markets
and mechanism design. This becomes especially appar-
ent when one considers, for contrast, how smoothly auc-
tion theory integrates with mechanism design. The goal of
this paper is to reduce (or perhaps eliminate) the gap, by
laying out a framework for prediction markets that fits bet-
ter with the theory of mechanism design. In particular, we
will consider a type of direct-revelation prediction market,
in which agents report their full information directly (rather
than trading securities, reporting probabilities, etc.). Like
market scoring rules, the framework is based on proper
scoring rules. Interestingly, ideas from cooperative game
theory also come into play (even though mechanism design
is usually based on noncooperative game theory). We pro-
pose several specific mechanisms based on concepts such
as the Shapley value and VCG mechanisms.

It should immediately be noted that direct-revelation pre-
diction markets, strictly interpreted, are probably not prac-
tical. This is because agents in such a market need to be
able to directly reveal all their information that is pertinent
to the prediction, including for example facts such as “I
have interacted with some of the Democratic candidate’s
staff and they seem very motivated and inspired.” It is
hard to imagine a mechanism that can directly take such
arbitrary natural language statements as input, determine a
corresponding prediction in the form of a probability, and
reward agents appropriately. Still, it seems worthwhile to
study direct-revelation prediction markets, for at least the
following reasons. A good theory of mechanism design
for prediction markets should provide fundamental insight
into the problem. It could serve as a natural starting point

for the design of more practical markets: we could extend,
simplify, or otherwise modify parts of the general theory
when this seems appropriate for the setting at hand.1 Also,
towards the end of this paper, we will consider more prac-
tical designs based on the ideas in this paper.

2 Background

In this section, we review the necessary background in
proper scoring rules and market scoring rules, mechanism
design, and cooperative game theory.

2.1 Proper scoring rules & market scoring rules

Suppose our goal is to incentivize a single agent to truth-
fully report her subjective probability pE that an event E
will take place. We can do this by paying the agent some
amount of money that depends both on the reported prob-
ability p̂E , and on whether the event actually occurs. If
we let xE = 1 if the event occurs, and xE = 0 oth-
erwise, then the agent receives a payment s(p̂E , xE). s
is said to be a proper scoring rule if the agent (uniquely)
maximizes her (subjective) expected payoff by giving her
true estimate of the probability—that is, for any p ∈ [0, 1],
{p} = arg maxp̂ ps(p̂, 1) + (1 − p)s(p̂, 0). For simplic-
ity, we will only consider settings with two outcomes—the
event occurs, or it does not—but all of this is easily gen-
eralized to settings with more outcomes (for example, by
running a separate proper scoring rule for each outcome).2

Example proper scoring rules include the quadratic scoring
rule, 1− (xE − p̂E)2 [1], and the logarithmic scoring rule,
xE log p̂E + (1− xE) log(1− p̂E) [8]. For the purpose of
this paper, any proper scoring rule will do.

Can a proper scoring rule be used in a setting with multiple
agents? One elegant way of doing this is to use a market
scoring rule [10].3 In a market scoring rule, there is a cur-
rent estimate of the probability, p̂E . At any point in time,
any agent can change the current probability to any p̂′E . In
the end, this agent will be paid s(p̂′E , xE)− s(p̂E , xE) for
this change (which may be negative). This in some sense
still gives the right incentive to the agent, because the agent
cannot affect s(p̂E , xE). However, a market scoring rule

1Even in auction theory, which interacts more fluidly with
mechanism design, the theoretical auction mechanisms from
mechanism design (such as the generalized Vickrey auction) are
generally not considered immediately practical, but they help es-
tablish a framework that is helpful in the design of more practical
mechanisms, such as ascending auctions.

2This is not at all intended to give the impression that, in gen-
eral, there is no reason to study prediction markets with more than
two outcomes. Especially settings with a combinatorial outcome
space lead to a variety of nontrivial and important research ques-
tions (e.g., [7, 4, 3]).

3Other schemes for using proper scoring rules in a multiagent
setting have been proposed [11, 12]; for the sake of brevity, we do
not discuss them here.



still suffers from both of the problems discussed in the in-
troduction: it can happen that not all the information is
aggregated, and an agent may misreport in order to mis-
lead other agents and take advantage later. In fact, both
examples from the introduction are easily modified to the
language of market scoring rules. One nice property of
market scoring rules is that almost all the payment terms
cancel out, so that the net payment made by the rule is
s(p̂f

E , xE) − s(p̂0
E , xE), where p̂f

E is the final probability
and p̂0

E is the initial probability.

2.2 Mechanism design

In a typical mechanism design setting, there are n agents.
Each of these agents has some private information, also
known as a signal. Agent i’s signal is θi ∈ Θi, where
Θi is the set of signals that i might receive. The signal
often represents the agent’s personal preferences—for ex-
ample, in an auction, her valuation for the item for sale—
but the signal can also represent other types of private
information—for example, the agent may know whether
the item is authentic. In a direct-revelation mechanism,
each agent i reports some θ̂i ∈ Θi, not necessarily equal
to her true signal. The mechanism is defined by a function
f : Θ1 × . . . × Θn → O, where O is the set of all pos-
sible outcomes in the domain. The outcome f(θ̂1, . . . , θ̂n)
can describe such things as the resulting allocation of re-
sources, payments to be made by/to the agents, etc. Letting
Θ = Θ1 × . . . × Θn, each agent i has a utility function
ui : Θ × O, where ui(θ, o) gives the agent’s utility when
the agents’ true signals are θ and the outcome chosen is o.
(Often, the agent’s utility depends only on her own signal
θi, but this is not necessarily the case. For example, even in
an auction, one agent may know something about the item
for sale that affects another agent’s utility for the item.)

Of particular interest are mechanisms that incentivize
agents to report their signals truthfully; such mechanisms
are called incentive compatible. Let θ−i denote the vec-
tor of all signals, with the exception of i’s signal. A
mechanism is ex-post incentive compatible if for every i,
θi, θ̂i ∈ Θi, θ−i ∈ Θ−i, we have

ui((θi, θ−i), f(θi, θ−i)) ≥ ui((θi, θ−i), f(θ̂i, θ−i))

That is, each agent is best off reporting truthfully, regard-
less of the signals that the other agents receive, as long as
the other agents report truthfully as well. A weaker notion,
which requires us to have a prior distribution over the joint
signal space Θ, is ex-interim incentive compatibility. This
requires that for every i, θi, θ̂i ∈ Θi, we have

Eθ−i|θi
[ui((θi, θ−i), f(θi, θ−i))] ≥ Eθ−i|θi

[ui((θi, θ−i), f(θ̂i, θ−i))]

That is, each agent is, in expectation over the others’
signals, best off reporting truthfully, as long as the other
agents report truthfully as well.

2.3 Cooperative game theory

A common object of study in cooperative game the-
ory is a characteristic function game. Here, there is a
set of agents 1, . . . , n, and a characteristic function v :
2{1,...,n} → R. For any subset (coalition) C of the
agents, v(C) represents the value that that coalition can
generate by working together. A key question is how
the total value generated by the grand coalition of all
agents—v({1, . . . , n})—should be distributed among the
agents. One way to do so is to impose an ordering on
the agents, represented by a permutation π where π(j) is
the agent ranked jth in the ordering. Then, we give agent
i, who is ranked in the π−1(i)th position, her marginal
contribution, which is v({π(1), π(2), . . . , π(π−1(i))}) −
v({π(1), π(2), . . . , π(π−1(i) − 1)}) (where, of course,
π(π−1(i)) = i). Under the marginal contribution scheme,
the value distribution in general depends heavily on the
order π chosen. For settings where there is no natu-
ral order on the agents, a reasonable approach is sim-
ply to average over all possible orders. Hence, agent
i receives (1/n!)

∑
π v({π(1), π(2), . . . , π(π−1(i))}) −

v({π(1), π(2), . . . , π(π−1(i) − 1)}). This value distribu-
tion scheme is known as the Shapley value [15].

3 State-based model for prediction markets

We are now ready to introduce the framework that we will
consider. We suppose that there is a set of states S that the
world can be in, as well as a common prior P over these
states. Our goal is to assess the probability of some event
E ⊆ S, given the agents’ information. Each agent i has
private information Si ⊆ S, which consists of the states
that are consistent with i’s information. That is, agent i can
rule out the states S \ Si. In our framework, an agent is to
report her full information Si directly, rather than just re-
porting a probability. (We assume that no new information
enters the system over time and do not consider dynamic or
iterative mechanisms.) Given this, we might conclude that
the combined information of all the agents is

⋂
i Si, and

given this we have a conditional probability for the event
of P (E|

⋂
i Si).4 In fact, the notion that the conditional

probability for the event is P (E|
⋂

i Si) is not as straight-
forward as it may appear. Consider the following example:

Example 1 Consider a two-state example with S =
{a, b}, where E is true for a and false for b (so that we are
predicting the probability that a happens), and the prior is
uniform. Suppose that there is only a single agent. If the
true state is a, then with probability .5, the agent receives

4It is once again desirable to immediately emphasize the diffi-
culties with turning such a framework into a practical design for a
prediction market: we need a description of all possible states of
the world (corresponding to all information that can possibly be
revealed), and moreover we need a prior over these states.



the signal θ = {a} (she can rule out state b), and with prob-
ability .5, she receives the signal θ = {a, b} (she cannot
rule out any state). If the true state is b, then with proba-
bility 1 she receives the signal θ = {a, b}. We note that the
signal is always consistent with the true state, and, indeed,
none of the states in a signal can be ruled out. However,
we have P (E|θ = {a, b}) = P (E ∧ [θ = {a, b}])/P (θ =
{a, b}) = (1/4)/(1/4 + 1/2) = 1/3. In contrast, we have
P (E|{a, b}) = P (E) = 1/2 (because P (E|{a, b}) is the
probability that E happens given that the true state is a or
b, which is always true).

Effectively, in Example 1, the signal contains information
in addition to which states it rules out. The following defi-
nition considers models where this does not happen:

Definition 1 The model is consistent if, for every subset C
of the agents, for every combination θC of |C| signals that
the agents in C can receive (where θi = Si ⊆ S), we have
P (E|θC) = P (E|

⋂
i∈C Si).

We now show that the inconsistency in Example 1 is due to
the randomness of the signals.

Definition 2 We say that signals are deterministic if for ev-
ery agent i, there is a partition S1

i , S
2
i , . . . , S

ki
i of S, so

that if the true state is s ∈ Sj
i , then agent i is guaranteed

to get signal Sj
i .

Proposition 1 If signals are deterministic, then the model
is consistent.

Proof: For every subset C of the agents, for every combi-
nation θC of |C| signals that the agents in C can receive
(where θi = Si ⊆ S), we have P (E|θC) = P (E|θC ∧⋂

i∈C Si) = P (E|
⋂

i∈C Si), because θC happens if and
only if

⋂
i∈C Si happens.

Now, a simple trick to make sure that signals are determin-
istic is to simply make them part of the state space. The
next example illustrates this.

Example 2 Consider Example 1. We extend the state
space to have three states: a1 = (a ∧ [θ = {a}]), a2 =
(a ∧ [θ = {a, b}]), b1 = (b ∧ [θ = {a, b}]). These states
happen with probabilities 1/4, 1/4, 1/2, respectively. We
have E = {a1, a2}. In this modified state space, the sig-
nal θ′ that the agent receives is either {a1} or {a2, b1}, so
signals are deterministic. Indeed, P (E|θ′ = {a2, b1}) =
P (E|{a2, b1}) = (1/4)/(1/4 + 1/2) = 1/3.

4 Some specific mechanisms

We now consider some specific mechanisms for rewarding
the agents for the information that they contribute. To do
so, we can use any fixed proper scoring rule s.

4.1 Rewarding agents individually

Presumably, the simplest approach is the following. Given
the common prior P , each agent’s reported individual in-
formation Ŝi leads to a probability estimate P (E|Ŝi), for
which we can reward the agent with the proper scoring rule.

Definition 3 Under the individual-rewarding information
mechanism, agent i receives s(P (E|Ŝi), xE).

Proposition 2 If the model is consistent, then the
individual-rewarding information mechanism is ex-interim
incentive compatible.

Proof: By consistency, we have P (E|θi) = P (E|Si). Be-
cause s is a proper scoring rule, the agent maximizes her
expected utility by ensuring this probability is entered into
the scoring rule, which can be done by reporting truthfully
(Ŝi = Si).

It should be observed that reporting truthfully is not nec-
essarily the uniquely optimal action, because multiple re-
ports Ŝi may each lead to the same probability P (E|Ŝi). It
is also not ex-post incentive compatible, because given the
other agents’ signals, the agent would in general prefer to
report that information as well (i.e., report

⋂
j Sj), to get a

better probability estimate.

There are additional downsides of this mechanism. For
one, in principle, this may result in payments to agents
who do not contribute any information (that is, agents who
report S): s(P (E|S), xE) may not be zero. This is easy
to fix, by paying an agent who reports Ŝi an amount of
s(P (E|Ŝi), xE)−s(P (E|S), xE) instead, so that an agent
who reports no information receives nothing. Equivalently,
we can modify (shift) the scoring rule to s′(p̂E , xE) =
s(p̂E , xE)− s(P (E|S), xE). Hence, we can assume with-
out loss of generality that s(P (E|S), xE) = 0 (no pay-
ments for no information).

However, there are other oddities. For example, suppose
that agents 1 and 2 each have the same information, S′ ⊆
S, and agent 3 has different information, S′′ ⊆ S. Fur-
thermore, suppose that P (E|S′) = P (E|S′′) = 0.7, and
P (E|S′ ∩ S′′) = 0.9; and suppose that the event indeed
happens (xE = 1). Then, each of the three agents receives
the same payment s(0.7, 1). However, it inuitively seems
to make more sense to reward the third agent more, because
her information S′′ was more unique (and no less relevant).
In effect, we are paying twice for the same information, S′.
This can also lead to excessive payments: if many agents
all report S′, we still have to pay each of them s(0.7, 1),
even though none of them (except for the first one) con-
tribute any new information.



4.2 Rewarding based on marginal information

A different approach is to pay an agent only for the
marginal information that that agent reports.

Definition 4 If the agents are ordered 1, . . . , n, then un-
der the marginal information mechanism, agent i receives
s(P (E|

⋂
j=1,...,i Ŝj), xE)−s(P (E|

⋂
j=1,...,i−1 Ŝj), xE).

This is almost the same idea as using a market scoring rule,
in which there is a market estimate p̂E of the probability
of the event, and if an agent shifts the market probability
from p̂E to p̂′E , she receives s(p̂′E , xE) − s(p̂E , xE). If
each agent can only move the market probability once, and
they do so in the order 1, . . . , n, then, if p̂i

E is the mar-
ket probability after i’s move, agent i receives s(p̂i

E , xE)−
s(p̂i−1

E , xE). We note that agent i can observe the sequence
p̂0

E , . . . , p̂
i−1
E before making her move. If we apply this

market scoring rule to our model, if the observed sequence
is sufficient for each agent i to infer the earlier agents’ in-
formation

⋂
j=1,...,i−1 Sj , then she will move the proba-

bility to P (E|
⋂

j=1,...,i Sj). So, in this case, the market
scoring rule and the marginal information mechanism de-
scribed above will produce the same result (given truthful
behavior). However, the sequence of market probabilities
in general is not sufficient to infer the previous agents’ in-
formation (e.g., consider the first example in the introduc-
tion), and as a result, the final probability p̂n

E sometimes
does not reflect all the information available to the agents.

In contrast, under the marginal information mechanism,
the information is revealed directly (rather than indirectly
in the form of a probability), so that the final probability
P (E|

⋂
j=1,...,n Ŝj) does reflect all the information avail-

able to the agents (given truthful behavior, that is, Ŝj =
Sj). We also note that in the marginal information mecha-
nism, the agents themselves do not need to reason about
how the probability should be updated; rather, they just
report their information (simultaneously), and the mech-
anism automatically figures out the probabilities based on
the common prior. Of course, the market scoring rule is
easier to apply in practice because it does not require a
common prior or a model of the information that agents
might report, but we will discuss practical issues later. The
marginal information approach shares some of the nice
properties of a market scoring rule: just as the market
scoring rule in total pays exactly s(p̂n

E , xE) − s(p̂0
E , xE),

the marginal information mechanism in total pays exactly
s(P (E|

⋂
j=1,...,n Ŝj), xE) − s(P (E|S), xE). So, both

mechanisms pay exactly for the total information that they
receive.

Proposition 3 If the model is consistent, then the marginal
information mechanism is ex-interim incentive compatible.

Proof: We will prove that it is optimal for agent i to re-
port truthfully even if she knows S1, . . . , Si−1 (but none
of Si+1, . . . , Sn), regardless of what S1, . . . , Si−1 are.
From this, it follows that it is also optimal to report truth-
fully if she does not know these. Since the other agents
are assumed to tell the truth, we have Sj = Ŝj for
j 6= i. Agent i will receive s(P (E|

⋂
j=1,...,i Ŝj), xE) −

s(P (E|
⋂

j=1,...,i−1 Ŝj), xE). Because she cannot af-
fect s(P (E|

⋂
j=1,...,i−1 Ŝj), xE), her goal is to maxi-

mize s(P (E|
⋂

j=1,...,i Ŝj), xE). By consistency, we have
P (E|θ1 = S1, . . . , θi = Si) = P (E|

⋂
j=1,...,i Sj). Be-

cause s is a proper scoring rule, agent i maximizes her ex-
pected utility by ensuring this probability is entered into
the scoring rule. This can be done by reporting truthfully
(Ŝi = Si), because Ŝj = Sj for j < i.

4.3 Shapley value information mechanism

As in the case of characteristic function games, there may
not be a natural order on the agents to use in the marginal
information mechanism; indeed, this seems unnatural for
a direct-revelation mechanism. We can employ the same
solution as in characteristic function games: simply take
the average over all possible orders of the agents.

Definition 5 Under the Shapley value information mech-
anism, agent i receives the average, taken over all orders
of the agents, of what she would have received under the
marginal information mechanism.

Because the Shapley value information mechanism is
simply the average of all marginal information mecha-
nisms, it also pays exactly s(P (E|

⋂
j=1,...,n Ŝj), xE) −

s(P (E|S), xE) in the end.

Proposition 4 If the model is consistent, the Shapley value
information mechanism is ex-interim incentive compatible.

Proof: This follows immediately from the fact that the
Shapley value information mechanism is an average of
marginal information mechanisms, which are ex-interim
incentive compatible by Proposition 3.

4.4 Conversion to characteristic function games

The marginal information mechanism, and (as a result)
the Shapley value information mechanism, are ways of
distributing the total value s(P (E|

⋂
i=1,...,n Ŝi), xE) −

s(P (E|S), xE) across the agents. We can describe
this directly as a characteristic function game, as fol-
lows. The value that would be generated by a coalition
C ⊆ {1, . . . , n} in the absence of the other agents is
s(P (E|

⋂
j∈C Ŝj), xE) − s(P (E|S), xE). With this in-

sight, we can use any solution concept from cooperative
game theory, not just the marginal contribution mechanism
or the Shapley value.



We may wonder if the characteristic function games re-
sulting from this conversion have some special structure.
For one, the values that coalitions can have are limited by
the range of the proper scoring rule used. Apart from the
proper scoring rule used, what matters is the probability of
the event given the information of a subset of agents. Let
us consider the pre-characteristic function π : 2{1,...,n} →
[0, 1], where π(C) = P (E|

⋂
j∈C Ŝj). The following the-

orem shows that this function can take any form, as long as
probabilities are not equal to 0 or 1.

Theorem 1 For any function ψ : 2{1,...,n} → (0, 1),
there exists an instance such that for all C, π(C) =
P (E|

⋂
j∈C Ŝj) = ψ(C).

Proof: Suppose that each agent i receives a signal xi ∈
{0, 1}. We will construct a prior such that, if all agents
receive a signal of 1, then the pre-characteristic func-
tion π(C) coincides with ψ(C). To do so, we construct
a potential function χ : {0, 1}n → R≥0, so that for
any vector of signals θ ∈ {0, 1}n, we have P (θ) =
χ(θ)/

∑
θ′∈{0,1}n χ(θ′). We also construct a function

χE : {0, 1}n → R≥0, so that for any vector of signals
θ ∈ {0, 1}n, we have P (E|θ) = χE(θ)/χ(θ).

We now show how χ and χE can be chosen so that we
obtain the desired property that for all C ⊆ {0, 1}n, we
have P (E|(∀i ∈ C) θi = 1) = ψ(C) for all C. For any
θ ∈ {0, 1}n, let c(θ) be the number of 1s in θ. We will start
by setting χ and χE for the θ with large c(θ), and work our
way down to θ with smaller c(θ). Say that θ < θ′ if θ′ has
a 1 in every place where θ has a 1. Let θC ∈ {0, 1}n be
the vector of signals where every member of C has a 1, and
every other agent has a 0. We have that P (E|(∀i ∈ C) θi =

1) =
P

θ≥θC χE(θ)P
θ≥θC χ(θ) . Now, suppose that we have set χ and

χE for all θ with c(θ) ≥ k, in such a way that for every
C with |C| ≥ k, P (E|(∀i ∈ C) θi = 1) = ψ(C). We
will show that we can set χ and χE for the θ with c(θ) =
k − 1 in such a way that for every C with |C| = k − 1,
P (E|(∀i ∈ C) θi = 1) = ψ(C). This is because for any

such C, we have P (E|(∀i ∈ C) θi = 1) =
P

θ≥θC χE(θ)P
θ≥θC χ(θ) ,

where all the terms in the denominator and the numerator
have already been determined, with the exception of χ(θc)
in the denominator and χE(θc) in the numerator. Because
0 < ψ(C) < 1, these two can be set so that P (E|(∀i ∈
C) θi = 1) = ψ(C).

This tells us that the characteristic functions in our model
have very little structure.

4.5 Rewarding based on the group’s information

None of the mechanisms proposed so far are ex-post incen-
tive compatible, because if an agent knew the other agents’
private information, she would generally prefer to report

that information as well. We now consider a simple mech-
anism that is ex-post incentive compatible.

Definition 6 Under the group-rewarding information
mechanism, every agent i receives the same amount,
s(P (E|

⋂
j=1,...,n Ŝj), xE).

Proposition 5 If the model is consistent, then the group-
rewarding information mechanism is ex-post incentive
compatible.

Proof: We consider the case where agent i knows all
the other agents’ signals (as well as her own). By con-
sistency, we have P (E|θ1 = S1, . . . , θn = Sn) =
P (E|

⋂
j=1,...,n Si). Because s is a proper scoring rule,

agent i maximizes her expected utility by ensuring this
probability is entered into the scoring rule. This can be
done by reporting truthfully (Ŝi = Si), because by assump-
tion, the other agents report truthfully, so that Ŝj = Sj for
j 6= i.

The group-rewarding mechanism has the awkward prop-
erty that an agent who reports no information is paid the
same as an agent who reports a lot of information. The
next subsection shows how to avoid this.

4.6 Pivotal information mechanism

We can modify the group-rewarding information mecha-
nism as follows, to obtain a mechanism like the pivotal (or
Clarke) mechanism [5, 9].

Definition 7 Under the pivotal information mecha-
nism, agent i receives s(P (E|

⋂
j=1,...,n Ŝj), xE) −

s(P (E|
⋂

j 6=i Ŝj), xE).

Proposition 6 If the model is consistent, then the pivotal
information mechanism is ex-post incentive compatible.

Proof: Agent i cannot affect the term
s(P (E|

⋂
j 6=i Ŝj), xE), so her incentives are the same as

under the group-rewarding information mechanism.

From the proof, it is clear that we can add any term that
does not depend on i’s report to the payment in the group-
rewarding information mechanism, and the ex-post incen-
tive compatibility property will be maintained. This is anal-
ogous to the class of Groves mechanisms [9]. We now give
an axiomatization of the pivotal information mechanism.

Definition 8 A mechanism satisfies the individual agent
property if, for every i, we have the following: given that
the other agents report no information (Ŝj = S for all
j 6= i), agent i receives s(P (E|Si), xE)−s(P (E|S), xE).

Definition 9 A mechanism satisfies the strong decomposi-
tion property if, for every i, for every S′, S′′, S′′′ ⊆ S, we



have the following: if agent i reports Ŝi = S′ ∩ S′′, and
the other agents report

⋂
j 6=i Ŝj = S′′′, then the reward

that i gets is equal to the reward that she would get if she
reported S′′ and the other agents reported S′′′, plus the re-
ward that she would get if she reported S′ and the other
agents reported S′′ ∩ S′′′. It satisfies the weak decomposi-
tion property if the above holds when S′′′ = S.

Definition 10 A mechanism satisfies the relative dummy
property if, for every i, given that i reports no informa-
tion that is not also reported by the other agents (that is,⋂

j 6=i Ŝj ⊆ Ŝi), agent i receives 0.

Lemma 1 The weak decomposition property implies the
relative dummy property.

Proof: Let S′ = Ŝi and S′′ =
⋂

j 6=i Ŝj , where S′′ ⊆
S′. Then, given weak decomposition, the reward an agent
gets for reporting S′ ∩ S′′ = S′′ when nobody else reports
any information is equal to the reward the agent gets for
reporting S′′ when nobody else reports any information,
plus the reward the agent gets for reporting S′ when the
other agents report S′′. Because the first two terms are the
same, the third must be zero. Hence, the relative dummy
property must be satisfied.

Theorem 2 The pivotal information mechanism satisfies
the individual agent, strong decomposition, and relative
dummy properties. No other mechanism satisfies the in-
dividual agent and weak decomposition properties.

Proof: First we show that the pivotal information mecha-
nism satisfies these properties. If the other agents report no
information, then

⋂
j 6=i Ŝj = S, so that agent i’s payment

is s(P (E|
⋂

j=1,...,n Ŝj), xE) − s(P (E|
⋂

j 6=i Ŝj), xE) =
s(P (E|Si), xE) − s(P (E|S), xE). Therefore, the pivotal
information mechanism satisfies the individual agent prop-
erty. If agent i reports Ŝi = S′ ∩ S′′, and the other
agents report

⋂
j 6=i Ŝj = S′′′, then agent i’s reward is

s(P (E|S′∩S′′∩S′′′), xE)−s(P (E|S′′′), xE), which can
be rewritten as [s(P (E|S′∩S′′∩S′′′), xE)− s(P (E|S′′∩
S′′′), xE)] + [s(P (E|S′′ ∩ S′′′), xE)− s(P (E|S′′′), xE)].
The second part in brackets is the reward that she would get
if she reported S′′ and the other agents reported S′′′, and
the first part in brackets is the reward that she would get
if she reported S′ and the other agents reported S′′ ∩ S′′′.
Therefore, the pivotal information mechanism satisfies the
strong decomposition property. The strong decomposition
property implies the weak decomposition property, which
in turn, by Lemma 1, implies the relative dummy property.

Conversely, consider a mechanism that satisfies the in-
dividual agent and weak decomposition properties. Let
S′ = Ŝi and let S′′ =

⋂
j 6=i Ŝj . By weak decomposition,

we have that the reward for reporting S′∩S′′ when nobody
else reports any information is equal to the reward for
reporting S′′ when nobody else reports any information,

plus the reward for reporting S′ when the other agents
report S′′. Equivalently, the reward for reporting S′ when
the other agents report S′′ is equal to the reward for report-
ing S′ ∩ S′′ when nobody else reports any information,
minus the reward for reporting S′′ when nobody else
reports any information. By the individual agent property,
it follows that the reward for reporting S′ when the other
agents report S′′ is equal to [s(P (E|S′ ∩ S′′), xE) −
s(P (E|S), xE)]− [s(P (E|S′′), xE)− s(P (E|S), xE)] =
s(P (E|S′ ∩ S′′), xE) − s(P (E|S′′), xE) =
s(P (E|

⋂
j=1,...,n Ŝj), xE) − s(P (E|

⋂
j 6=i Ŝj), xE).

So it must be the pivotal information mechanism.

5 Creating a practical design with
information and probability agents

As already mentioned, the model described in the previ-
ous sections, in spite of its theoretical advantages, does
not directly lead to a natural design for a prediction mar-
ket, because using it directly requires a model of all the in-
formation that can be reported—that is, a model of all the
possible states of the world—and a prior distribution over
these states. In regard to the latter, the purpose of a typi-
cal prediction market is precisely to get such probabilistic
information from the participating agents!

To address this, let us suppose that we can divide the agents
participating in a prediction market into two categories,
information agents and probability agents. Information
agents should be thought of as people that have relevant
information about the event we are trying to predict—for
example, someone who is friendly with some of the Demo-
cratic candidate’s staff—but are not necessarily able to con-
vert such information into a probability for the event. On
the other side, probability agents do not necessarily have
any information about the event, but they are able to con-
vert any information that is given to them into a probability.
For example, we can think of a person who has worked on
a large number of presidential campaigns but is now retired
and no longer has any direct access to what is happening
in the campaign; nevertheless, if this person is told that the
candidate’s staff is very motivated and inspired, she can as-
sess how this information changes the probability that the
candidate will win the election, based on her many years
of experience. This feels like a natural division: the people
who have information relevant to an event are generally not
the same as the people who are comfortable turning such
information into an exact number reflecting the probability
of the event. There may be agents that can do both; this
is not necessarily a problem, but in the remainder we will
think of these two groups of agents as separate.

This separation between information agents and probabil-
ity agents allows us to run a version of the mechanisms de-
scribed earlier in the paper, as follows. In order to run those
mechanisms, all that is needed is that, given a collection of



Initialize p̂E to some value
P̂0(E)← p̂E

for j = 1 to n2 {
Probability agent j moves p̂E to a new value
P̂j(E)← p̂E

}
P̂ (E)← P̂n2 (E)
for i = 1 to n1 {
Information agent i reports information Ii (in natural language)
P̂0(E|I1, . . . , Ii)← p̂E

for j = 1 to n2 {
Probability agent j moves p̂E to a new value
P̂j(E|I1, . . . , Ii)← p̂E

}
P̂ (E|I1, . . . , Ii)← P̂n2 (E|I1, . . . , Ii)
}
The event is realized to obtain xE

for i = 1 to n1
Reward information agent i with s1(P̂ (E|I1, . . . , Ii), xE)−
s1(P̂ (E|I1, . . . , Ii−1), xE)

for j = 1 to n2

Reward probability agent j with
n1P
i=0

[s2(P̂j(E|I1, . . . , Ii), xE)−

s2(P̂j−1(E|I1, . . . , Ii), xE)]

Figure 1: A prediction market based on the marginal infor-
mation mechanism and a market scoring rule.

information (that is, given a restricted set of states), we can
compute the conditional probability of the event happening.
Now, we can use the probability agents to give us estimates
of these conditional probabilities, using a standard predic-
tion market. That is, the information agents are playing
in the information-based mechanism, and the probability
agents are effectively used as a subroutine in this mecha-
nism, to compute the conditional probabilities that running
this information mechanism requires.

To illustrate the general principle, Figure 1 gives a com-
plete design that combines the marginal information mech-
anism from earlier in the paper for the information agents
(using scoring rule s1) with a market scoring rule for the
probability agents (using scoring rule s2). The information
agents report their information one at a time; after one of
them has revealed her information, each of the probability
agents gets a chance to move the market estimate of the
probability. Let n1 be the number of information agents
and n2 the number of probability agents. p̂E is always the
current market assessment of the probability of the event,
which the probability agents can move around after ob-
taining new information. Ii is the information that infor-
mation agent i reports (which we previously represented
as Ŝi, but it is perhaps less natural to think of informa-
tion as a subset of states at this point). P̂j(E|I1, . . . , Ii) is
the market probability after information agents 1 through i
have reported their information, and, after i’s report, prob-
ability agents 1 through j have updated the probability.
P̂ (E|I1, . . . , Ii) = P̂n2(E|I1, . . . , Ii) is the market prob-
ability after all probability agents have updated the proba-
bility, after seeing 1 through i’s information. We omit dis-
cussion of this design’s properties for the sake of space.

6 Future research

There are many directions for future research. On the theo-
retical side, new information mechanisms can be designed
in this framework, and the properties of the mechanisms
can be studied further. Many phenomena that occur in other
mechanism design domains (such as auctions) have ana-
logues in this domain. On the practical side, it would be
interesting to put a design such as Figure 1 into practice.
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