
Logical Inference Algorithms and Matrix Representations for
Probabilistic Conditional Independence

Mathias Niepert

Department of Computer Science
Indiana University

Bloomington, IN, USA
mniepert@indiana.edu

Abstract

Logical inference algorithms for conditional
independence (CI) statements have impor-
tant applications from testing consistency
during knowledge elicitation to constraint-
based structure learning of graphical models.
We prove that the implication problem for CI
statements is decidable, given that the size of
the domains of the random variables is known
and fixed. We will present an approximate
logical inference algorithm which combines a
falsification and a novel validation algorithm.
The validation algorithm represents each set
of CI statements as a sparse 0-1 matrix A and
validates instances of the implication prob-
lem by solving specific linear programs with
constraint matrix A. We will show exper-
imentally that the algorithm is both effec-
tive and efficient in validating and falsifying
instances of the probabilistic CI implication
problem.

1 Introduction

Knowledge elicitation is an important task in the field
of reasoning under uncertainty [1]. For example, con-
sider the problem of eliciting knowledge from sev-
eral domain experts in an attempt to model a proba-
bilistic system (e.g., a Bayesian or Markov network).
The resulting incomplete expert feedback might be
a combination of some specific subjective probabili-
ties, (conditional) independence and dependence in-
formation for the random variables under considera-
tion, and conditional probabilities. Furthermore, in
some cases, statistical tests on different heterogeneous
data sets could provide additional sources of evidence.
Each of these bits of information can be interpreted
as a constraint on the joint probability distribution
one wants to model. Finding a suitable model can

then be interpreted as a constraint satisfaction prob-
lem (CSP), and the approach to harness CSP solvers
for instances of this and related problems has been
known for more than 10 years (Druzdzel and van der
Gaag [2], Dechter [3]). However, (conditional) in-
dependence and dependence statements pose a spe-
cial problem, because they often introduce non-linear
constraints which mostly result in infeasible CSP in-
stances. Therefore, a remaining important challenge
in the context of knowledge elicitation is to test for
consistency of the (conditional) independence and de-
pendence information that has been collected from dif-
ferent sources. For this to be possible, one would need
an algorithm that decides the implication problem for
CI statements (Geiger and Pearl [4]), that is, an algo-
rithm that can infer CI statements which are logically
implied by a set of given ones, relative to the class of
discrete probability measures. There are several other
important applications of an inference algorithm for
CI statements. For example, the representation of CI
information is mostly based on the well-known semi-
graphoid axioms of independence. There are ways to
improve on this representation by using the notion of
o-dominant triplets (Studený [5]) and stable indepen-
dence (de Waal and van der Gaag [6]), both of which
need fast logical inference algorithms. Furthermore,
inference algorithms for CI statements have been used
to learn the structure of graphical models using only
few independence tests (Gandhi et al. [7]).

In this paper, we will first prove that the implica-
tion problem for CI statements relative to the class of
discrete (positive) probability measures is decidable,
given that the cardinalities of the domains of all ran-
dom variables are known and fixed. We achieve this
by encoding instances of the implication problem as
sentences in the first-order theory over the reals with
addition and multiplication. An instance of the impli-
cation problem holds if and only if the corresponding
sentence in the first-order theory has no model. The
decidability then follows since the first-order theory
over the reals with addition and multiplication is de-



cidable (Tarski [8]). Since encoding instances of the
implication problem as decision problems in the first-
order theory over the reals is not feasible for practical
applications, we will introduce an approximate logical
inference algorithm which combines a falsification and
a novel validation algorithm. The validation algorithm
represents each set of CI statements as a sparse 0-1 ma-
trix A, and validates instances of the implication prob-
lem by solving linear programs with constraint matrix
A. Thus, by only requiring the algorithm to decide
most but not all instances of the implication problem,
we can leverage linear constraint solvers for our pur-
poses. In an extensive experimental section, we will
demonstrate this inference algorithm to be both effec-
tive and efficient in validating and falsifying instances
of the implication problem.

2 Preliminaries

Definition 2.1. A probability model over S =
{s1, . . . , sn} is a pair (dom, P ), where dom is a do-
main mapping that maps each si to a finite do-
main dom(si), and P is a probability measure hav-
ing dom(s1) × · · · × dom(sn) as its sample space. For
A = {a1, . . . , ak} ⊆ S, we will say that a is a domain
vector of A if a ∈ dom(a1) × · · · × dom(ak).

In what follows, we will only refer to probability
measures, keeping their probability models implicit.

Definition 2.2. Let I(A, B|C) be a CI statement, and
let P be a probability measure. We say that P satis-
fies I(A, B|C), and write |=P I(A, B|C), if for every
domain vector a, b, and c of A, B, and C, respectively,
PC(c)PABC(a,b, c) = PAC(a, c)PBC(b, c).

3 On the Decidability of Implication

Problems for CI Statements

In this section we will investigate the decidability of
the implication problem for CI statements relative to
the class of discrete probability measures. One of the
key ideas is to leverage the fact that every discrete
probability measure is fully characterized by specify-
ing a finite number of probability densities. For an
in-depth discussion of related observations and ideas
in the context of the probability calculus we refer the
reader to (Fitelson [19]). Using this idea, we will be
able to show that the implication problem for prob-
abilistic conditional independence statements can be
encoded as a sentence in the first-order theory over
the reals with addition and multiplication, given that
the cardinalities of the domains of the random vari-
ables are fixed a priori, which is an assumption often
made for probabilistic models. This will, for instance,
imply the decidability of the implication problem for
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Figure 1: First-order sentence encoding instances of
the implication problem for conditional independence
statements. Here we write (a 6= b) for ¬(a = b).

CI statements relative to the class of binary discrete
probability measures. Let us first define the implica-
tion problem relative to the notion of satisfaction from
Definition 2.2.

Definition 3.1. Let S be a finite set of random vari-
ables, let C and D be two non-empty sets of CI state-
ments over S, let P be the class of discrete probability
measures over S. We say that C implies D relative to
P , and write C |= D, if every P ∈ P that satisfies each
CI statement in C also satisfies at least one CI state-
ment in D. We will denote the corresponding decision
problem with (S, C,D).

This is the most general definition of the decision
problem which is necessary for cases where perfect
models are not guaranteed. For a discussion of perfect
models and related logical and algorithmic concepts
of probabilistic conditional independence, we refer
the reader to (Geiger and Pearl [4]). We can now
prove the decidability of the implication problem
for conditional independence statements under the
additional assumption that the cardinalities of the
domains of all random variables are known and fixed.

Theorem 3.2. Let k1, ..., kn ∈ N, let S = {s1, ..., sn}
be a set of n discrete random variables with |si| = ki

for 1 ≤ i ≤ n, and let C and D be sets of CI statements
over S. Then (S, C,D) is decidable.

Proof. Let N =
∏

si∈S |si| =
∏n

i=1 ki. Let C and D
be two sets of CI statements over S. Every discrete
probability measure P over S can be fully charac-
terized by N probability densities P (s), for all s ∈
dom(s1) × · · · × dom(sn). Every (marginal) probabil-



ity can then be expressed as a sum of densities: For
every A = {ai1 , . . . , aik

} ⊆ S and a ∈ dom(ai1)×· · ·×
dom(aik

) we have that PA(a) =
∑

{s with s|A=a} P (s)

where s|A is the projection of s onto A. Let λ :
dom(s1) × · · · × dom(sn) → {1, ..., N} be a bijection
that maps each element in dom(s1) × · · · × dom(sn)
to a number in {1, ..., N}. Let ϕ be the function that
maps each marginal probability to the formula in the
first-order theory over the reals that encodes the corre-
sponding sum of density symbols indexed according to
λ. We can now encode the instance of the implication
problem as a sentence in the first-order theory with
addition and multiplication as depicted in Figure 1.
Tarski showed that the first-order theory over the re-
als with addition and multiplication is decidable, by
providing an algorithm (using quantifier elimination)
that can return, on any input sentence Ψ and in a
finite number of steps, whether or not there exists a
model M of Ψ [8]. Hence, what remains to be shown
is that there exists a model M of Φ if and only if
C 6|= D. Let P be the measure that corresponds to
M. Since M satisfies (3) and (4), P satisfies the first
and the second of Kolmogorov’s axioms. Furthermore,
by definition of M and P , P satisfies the third of Kol-
mogorov’s axioms. Hence, M corresponds to a discrete
probability measure over S. Since M satisfies (1) and
(2) we have that P satisfies every I(A, B|C) ∈ C but
no I(A, B|C) ∈ D. This implies C 6|= D. Finally, as-
sume that C 6|= D. Hence, there exists a discrete prob-
ability measure P over S such that P satisfies every
I(A, B|C) ∈ C but no I(A, B|C) ∈ D. Let M ∈ RN

and let the i-th element of M be the density P (λ−1(i)).
It follows that M is a model of Φ.

Of course, the theorem implies the decidability of the
implication problem relative to the class of binary dis-
crete probability measures. Note that the size of Φ
(that is, the number of polynomials) grows exponen-
tially with the number of variables. Indeed, each of the
first-order sentences Φ over binary variables will con-
tain an exponential number of polynomials since each
CI statement in C leads to 2|S| conjunctions of differ-
ent polynomials in Φ. By replacing the inequalities
≥ in part (3) of the first-order sentence Φ with strict
inequalities >, we can derive the following corollary.

Corollary 3.3. Let k1, ..., kn ∈ N, let S = {s1, ..., sn}
be a set of n discrete random variables with |si| = ki

for 1 ≤ i ≤ n, and let C and D be sets of CI statements
over S. Then C |= D is decidable relative to the class
of positive discrete probability measures over S.

Even though considerable progress has been made
in improving Tarski’s quantifier elimination algo-
rithm (for a survey of methods we refer the reader
to Collins [10]), the method remains infeasible even

for small instances. The time complexity of deciding
whether a model for a first-order sentence with
addition and multiplication exists over the reals is
doubly-exponential in the worst case, and in the case
of instances of the CI implication problem, the input
is already exponential in the size of S. However, there
are ways to approximate the decision of the implication
problem by combining powerful falsification and vali-
dation algorithms (Bouckaert and Studený [9]). These
algorithms falsify and validate instances of the impli-
cation problem relative to the class of discrete prob-
ability measures with arbitrary finite domains, which
makes them also applicable to instances of the implica-
tion problem where the domain cardinalities are fixed.

4 Approximate Logical Inference

We will harness one of the recently discovered falsi-
fication algorithms and introduce a novel validation
algorithm that encodes instances of the implication
problem as linear programs with sparse 0-1 constraint
matrices. Our goal is to compute, for any given
set of CI statements C over a finite set S, those CI
statements over S that are implied by C and those
that are not implied. In order to achieve this, we will
first apply the falsification algorithm to falsify a large
fraction of invalid instances of the implication problem
and also use it to compute the input to the validation
algorithm. Furthermore, we will be able to show that
the validation algorithm is closely related to the theory
of structural and combinatorial imsets (Studený [17]).
Before we discuss the technical details of the vali-
dation algorithm, let us first recall the falsification
algorithm introduced in (Niepert et al. [12]).

4.1 Falsification Algorithm

Since our objective is the implication problem rela-
tive to the class of discrete probability measures with
arbitrary finite domains, for which perfect models ex-
ist (Geiger and Pearl [4]), deciding C |= D is equiva-
lent to deciding whether C |= d for at least one d ∈ D.
Therefore, in the remainder of this section, we will fo-
cus on algorithms that decide the implication problem
C |= c for a set of CI statements C and a single CI
statement c. This will simplify both the notation and
the technical parts of the following sections.

Given two subsets A and B of S, we will write [A, B]
for the lattice {U | A ⊆ U & U ⊆ B}. Using the
notion of a lattice, we can associate semi-lattices with
conditional independence statements.

Definition 4.1. Let I(A, B|C) be a CI state-
ment. The semi-lattice of I(A, B|C) is defined by
L(A, B|C) = [C, S] − ([A, S] ∪ [B, S]).



We will write L(c) to denote the semi-lattice of a con-
ditional independence statement c, and L(C) to denote
the union of semi-lattices,

⋃

c′∈C L(c′), of a set of CI
statements C. These semi-lattices can be used to fal-
sify instances of the implication problem.

Proposition 4.2 (Niepert et al. [12]). Let C be a set
of CI statements and c be a single CI statement. If
L(C) + L(c), then C 6|= c.

Example 4.3. Let S = {a, b, c, d}, let C =
{I(a, b|cd), I(a, d|bc)} and let I(a, bd|c) be a single CI
statement. Then, L(C) = L(a, b|cd) ∪ L(a, d|bc) =
{cd} ∪ {bc} = {cd, bc} and L(a, bd|c) = {c, bc, cd}.
Since L(C) + L(a, bd|c) we have that C 6|= I(a, bd|c).

It has been shown that testing for semi-lattice inclu-
sion is a coNP-complete decision problem (Niepert and
Van Gucht [13]). However, we also know that there
exists a linear time reduction to SAT and that we
can leverage SAT solvers to decide semi-lattice inclu-
sion very efficiently (without storing the exponentially
sized semi-lattices), even for instances of up to several
hundreds of variables (Niepert and Van Gucht [13]).
Indeed, we discovered in our experiments that the crit-
ical and most time-consuming part of the approximate
logical inference algorithm is not the falsification but
the validation algorithm.

4.2 Validation Algorithm

In general, a validation algorithm takes as input an in-
stance of the implication problem, consisting of a set
of CI statements C and a single CI statement c over a
finite set S, and accepts only if C |= c. Of course, the
algorithm not accepting an instance of the implication
problem does not imply that the instance is invalid.
Please note that one of the most prominent validation
algorithms is the algorithm that computes the closure
of the semi-graphoid axioms (Dawid [11], Pearl [16]).
However, the closure of the semi-graphoid axioms can
only validate a small fraction of the set of verifiable
instances. Before we can derive our validation algo-
rithm, we need some definitions of important technical
concepts.

Definition 4.4. Let P and Q be two probability mea-
sures over a discrete sample space, and let P be abso-
lutely continuous with respect to Q. Then, the relative
entropy (Kullback-Leibler divergence) H is defined as

H(P |Q) :=
∑

x

{P (x) log
P (x)

Q(x)
, P (x) > 0},

with x ranging over all elements of the discrete sample
space.

Definition 4.5 (Studený [17]). Let P be a probability
measure, and let H be the relative entropy. The multi-
information function MP : 2S → [0,∞] induced by P

is defined as

MP (A) := H(PA|
∏

a∈A

P {a}),

for each non-empty subset A of S and MP (∅) = 0.

Definition 4.6. Let S be a finite set, and let F be a
real-valued function over S. The Möbius inversion of
F is the real-valued function ∆F defined by ∆F (X) =
∑

X⊆U⊆S(−1)|U|−|X|F (U), for each X ⊆ S.

Now we have the following crucial relationship between
a multiinformation function, its Möbius inversion, and
the semi-lattice of a CI statement.

Lemma 4.7. Let S be a finite set of random vari-
ables, let P be a discrete probability measure over S,
let MP be the multiinformation function induced by
P , let ∆MP be the Möbius inversion of MP , and let
I(A, B|C) be a CI statement over S. Then, the fol-
lowing statements are equivalent

(1) P satisfies I(A, B|C)

(2) MP (ABC) + MP (C)−MP (AC)−MP (BC) = 0

(3)
∑

U∈L(A,B|C)

∆MP (U) = 0

Proof. Studený showed that (1) if and only if (2) [17].
In addition, we have that (2) if and only if (3),
because F (ABC) + F (C) − F (AC) − F (BC) =
∑

U∈L(A,B|C) ∆F (U) for any real-valued function F .

We refer the reader to Sayrafi and Van Gucht [14] for
a proof of the later statement.

We will now be able to harness the equivalences stated
in the previous lemma to represent each set of CI state-
ments C as a minimal sparse 0-1 matrix A. Each in-
stance of the implication problem with C as the set
of antecedents will then correspond to a linear pro-
gram with equality constraints specified by A. Before
we explain the construction of the constraint matrix
A, however, we have to define some additional tech-
nical concepts. For some of the following results, we
need the concept of elementary CI statements, which
are simply CI statements I(a, b|K) with a, b ∈ S and
K ⊆ S \ {a, b}. We will write B(S) to denote the set
of elementary CI statements over a finite set S.

Definition 4.8. Let S be a finite set and let C be
a set of CI statements over S. The set of relevant
elementary CI statements R(C) is defined as follows:

R(C) = {I(a, b|K) ∈ B(S) | L(a, b|K) ⊆ L(C)}.

We will use the elementary CI statements in R(C)
to construct the constraint matrix A. Please note



that R(C) is the set of elementary CI statements over
S that remain after the application of the falsifica-
tion algorithm (Niepert et al. [12]). Hence, it follows
that polynomial-time heuristics and SAT solvers can
be employed to compute the set R(C) efficiently for
up to several hundreds of variables (Niepert and Van
Gucht [13]). By Proposition 4.2, only CI statements
I(A, B|C) with L(A, B|C) ⊆ L(C) can possibly be im-
plied by C. Now, using the concept of a semi-lattice,
each of these candidate CI statements c = I(A, B|C)
can be written as a vector vc relative to the space
{0, 1}L(C) as follows: For every U ∈ L(C) we have
vc(U) = 1 if U ∈ L(A, B|C) and vc(U) = 0 otherwise.
The vector representation of a set of CI statements C
can then be defined as the sum of the vectors corre-
sponding to individual elements in C: vC =

∑

c∈C vc.
This is equivalent to the definition of an imset (Stu-
dený [17]), except that we use the Möbius inversion to
avoid negative elements in the vector representation
and that the vector representation is constructed rela-
tive to the union of semi-lattices L(C) of the CI state-
ments in C. Given these definitions of vector represen-
tations for individual CI statements and for sets of CI
statements, we can state the following crucial result.

Proposition 4.9. Let S be a finite set, let C be a set
of CI statements, let c be a single CI statement over
S and let Q+ be the non-negative rational numbers.
Then, C |= c if

vC = vc +
∑

r∈R(C) kr · vr with kr ∈ Q+. (5)

Proof. Let P be a probability measure that sat-
isfies all CI statements in C and let ∆MP

be the Möbius inversion of the multiinforma-
tion function MP induced by P . Since MP

is a supermodular function (Studený [17]), we
have

∑

r∈R(C) ·(kr ·
∑

U∈L(r) ∆MP (U)) ≥ 0, and

also
∑

U∈L(c) ∆MP (U) ≥ 0. Now, since P

satisfies all CI statements in C we have that
∑

c′∈C

∑

U∈L(c′) ∆MP (U) = 0 by Lemma 4.7. Since

equality (5) holds by assumption, we have that
∑

c′∈C

∑

U∈L(c′) ∆MP (U) =
∑

U∈L(c) ∆MP (U) +
∑

r∈R(C) ·(kr ·
∑

U∈L(r) ∆MP (U)) = 0. Hence,
∑

U∈L(c) ∆MP (U) = 0 and by Lemma 4.7 it follows
that P satisfies c.

In light of these results, we can now rewrite equa-
tion (5) in the previous proposition as a linear pro-
gram (Schrijver [18]). A linear program has the form

minimize cT x (6)

subject to Ax eq b,x ≥ 0 (7)

where eq is one of {≤,≥, =}. For our purposes, eq is
the equality sign, the columns of matrix A are the vec-

tors vr for each of the relevant elementary CI state-
ments, that is, for the CI statements in R(C), and
b = vC−vc. Clearly, our objective function is the zero-
function 0T because we are only interested in the ex-
istence of a solution for the equality constraints. This
is often referred to as the feasibility problem of finding
a solution for the system of linear constraints.

Example 4.10. Let S = {a, b, c, d} and let C =
{I(a, b|∅), I(c, d|a), I(c, d|b), I(a, b|cd)}. Then, R(C) =
{I(a, b|∅), I(a, b|c), I(a, b|d), I(a, b|cd), I(c, d|∅),
I(c, d|a), I(c, d|b), I(c, d|ab)} and L(C) =
{∅, a, b, c, d, ab, cd}. The columns of the minimal
0-1 matrix A below correspond to the eight relevant
elementary CI statements and the number of rows is
determined by L(C).

A =

e1 e2 e3 e4 e5 e6 e7 e8

cd 1 1 1 1 0 0 0 0
ab 0 0 0 0 1 1 1 1
a 0 0 0 0 1 1 0 0
b 0 0 0 0 1 0 1 0
c 1 1 0 0 0 0 0 0
d 1 0 1 0 0 0 0 0
∅ 1 0 0 0 1 0 0 0

We have that vT
C = (2, 2, 1, 1, 1, 1, 1). Now, let

I(c, d|∅) be a CI statement. Then we have that bT =
vT
C − vT

I(c,d|∅) = (2, 2, 1, 1, 1, 1, 1)− (0, 1, 1, 1, 0, 0, 1) =

(2, 1, 0, 0, 1, 1, 0). Finally, it follows that C |= I(c, d|∅)
since b = e2 + e3 + e8.

It is well-known that linear programs (LPs) are
solvable in polynomial time in the number of vari-
ables. However, in the worst case the reduction leads
to an LP with an exponential number of variables
(
(

|S|
2

)

2|S|−2; the maximum number of elementary CI

statements over S) and constraints (2|S| − |S| − 1; the
maximum cardinality of the set L(C)). As a rule of
thumb, the more columns matrix A has the more dif-
ficult is the corresponding LP problem. An advantage
of our method over a näıve approach is that A only
consists of the vectors representing the relevant ele-
mentary CI statements R(C). This means that the
number of columns (that is, the number of variables of
the LP) can be very small compared to the worst case.
In rare cases, the solutions to the LPs might be inaccu-
rate due to round-off and truncation errors. Therefore,
when we obtain a solution, we expand the elements of
the solution vector into fractions of integers, which re-
sults in a vector xf , and only accept if Axf = b. We
also would like to underscore that matrix A is always
a 0-1 matrix, leading to better numerical stability and
the possibility to employ existing sparse matrix data
structures. We will come back to algorithmic issues
when we discuss the results of our experiments.



4.3 Combinatorial and Structural Imsets

There is a close link to Studený’s theory of imsets [17],
on which we will briefly elaborate in this section. Let
C be a set of CI statements and let c be a CI statement
over a set S. Then, under the assumption that we can
ignore numerical inaccuracies, one can test whether
imset uC − uc is structural using the previously intro-
duced reduction to a linear program. Furthermore,
one can test whether the imset is combinatorial by
reducing it to the identical integer program. Again, we
want to stress that numerical rounding and truncation
errors might lead to inaccurate results, and, therefore,
the method should be used with caution when mathe-
matical properties about combinatorial and structural
imsets are to be proved. However, one of the results of
our experiments is that the solver of the LP instances
delivered integer and small rational solutions in all
but some cases which allowed us to verify their cor-
rectness. We refer the reader to Hemmecke et al. [20]
who used, among other tools, integer programming to
find a structural imset which is not combinatorial.

5 Experiments

We will try to mainly address the following empirical
questions with our experiments:

1. Effectiveness: What fraction of the instances of
the implication problem can we either falsify or
validate?

2. Efficiency: How fast does the algorithm run; to
how many variables does it scale? How much more
efficient is the algorithm compared to the näıve
approach both in terms of time and space com-
plexity?

3. Structural and Numerical properties: How
large is the constraint matrix A for different in-
stances? What are the numerical properties of the
solutions?

To judge the effectiveness and efficiency of the algo-
rithm we must apply it to instances of the implication
problem over different number of variables. Since the
distribution of implication problems in real-world ap-
plications is unknown, our experiments need to be run
on randomly generated instances. Using the method
of randomly generating test instances from (Bouckaert
and Studený [9]) allows us to compare the experi-
mental outcomes with existing results. Hence, for
each experiment we first generated instances of the
implication problem (S, C, c) by randomly selecting n

different sets of elementary CI statements over S as
antecedents C, and for each of these, k different ele-
mentary CI statements c over S as consequence, one
at a time. We first applied the falsification algorithm

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58
0

1

2

3

4

5

6

7

8

9

x 10
4

number of antecedents

nu
m

be
r 

of
 in

st
an

ce
s 

of
 th

e 
im

pl
ic

at
io

n 
pr

ob
le

m

number of antecedents vs. decided instances

 

 

falsified instances

validated instances

instances overall

decidable instances

Figure 2: Falsification and validation curves of the ap-
proximate decision algorithm for five variables. The
curve with circular markers depicts the number of in-
stances that could either be falsified or validated.

to these instances and used it to create the constraint
matrix A and vector b from C and c as described in
the previous section. For the resulting linear programs
we used lp solve1 an open-source linear programming
system that can solve both linear and integer pro-
grams. It is based on the revised simplex method and
the branch-and-bound method for integer programs.
We did not change the standard optimization settings
of the solver. Furthermore, we only accepted a
solution if its rational expansion solved the respective
constraints. For our purposes this is unproblematic
because the objective is to validate as many instances
of the implication problem as possible while entirely
ruling out false positives. All experiments were run
on a dual-core 3.2GHz Linux PC with 2GB RAM.

Figure 2 shows the number of instances that could ei-
ther be validated or falsified by the algorithms for five
variables. For each ℓ = 2, ..., 58 (the number of an-
tecedents) we randomly created 4,500 different sets of
ℓ elementary CI statements, and for each of those ran-
domly selected 20 different elementary CI statements
as consequences, one at a time, resulting in 90,000 in-
stances of the implication problems for each ℓ. The
results show that only a small fraction of the instances
could not be decided and that for larger values of ℓ

(for five variables: ℓ > 40) all of the instances could
either be falsified or validated. This behavior of the
algorithm was consistent over all tested number of vari-
ables (4,...,15).

1Michel Berkelaar, Kjell Eikland, and Peter Notebaert.
lp solve, an open source (Mixed-Integer) Linear Program-
ming system originally developed at Eindhoven University
of Technology; http://lpsolve.sourceforge.net/
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Figure 3: Dimensions of matrix A that encodes a
set of x antecedents over five variables; and time in
milliseconds needed to solve the corresponding linear
and integer programs.
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Figure 4: Average time needed [in ms; 30,000 trials]
to solve a linear program with and without optimizing
the constraint matrix A; average of 30,000 trails for
six and seven variables, respectively.

Figure 3 depicts the average size (that is, the num-
ber of columns and rows) of the constraint matrix A,
and the average time in milliseconds to solve one lin-
ear program and the corresponding integer program,
respectively. After solving the linear programs, that
is, determining whether or not there exists a solution,
we also solved the equivalent integer programs. Inter-
estingly, for each and every of the 2,700,000 instances
for five variables, if there existed a solution to the lin-
ear program, then there also existed one for the corre-
sponding integer program.

Figure 4 illustrates the computational advantage one
gains when using the minimal constraint matrix A

consisting only of the relevant elementary CI state-

vars time [s] rows(A) columns(A)
6 0.024 57 (57) 239 (240)
7 0.073 117 (120) 592 (672)
8 0.642 230 (247) 1193 (1792)
9 1.580 423 (502) 1852 (4608)

10 2.647 687 (1013) 2422 (11520)
11 7.316 1221 (2036) 3699 (28160)
12 9.038 2039 (4083) 4786 (67582)
13 20.267 3331 (8178) 6863 (159744)
14 35.969 4986 (16369) 8298 (372736)
15 91.237 6713 (32752) 11024 (860160)

Figure 5: The values are the average time [in seconds]
needed to solve the linear program, and the average
number of rows and columns of the constraint matrix
A; out of 1000 trials with 50 antecedents. The values
in parentheses are the maximal possible values.

ments, over using the matrix consisting of all elemen-
tary CI statements. The times in milliseconds pro-
vided are for 6 and 7 variables, averaged over 30,000
trials, for 1000 sets of ℓ = 10, 20, ..., 100 antecedents,
and 30 different consequences, one at a time. Figure 5
depicts the average time in seconds to solve instances
of the linear programs and the average dimensions of
constraint matrix A for different number of variables,
averaged over 1000 trails.

Finally, we want to compare our algorithm to the
racing algorithm introduced in (Bouckaert and Stu-
dený [9]). The falsification procedure of the racing
algorithm is rooted in the theory of imsets: an
instance of the implication problem is falsified if one
of the supermodular functions constructed by the
algorithm is a counter-model for the instance of the
implication problem [9]. It is heavily randomized, has
super-exponential running time, and could therefore
only be tested for up to 6 variables. Furthermore,
the racing algorithm might falsify implications that
actually do hold. This is a consequence of the fact
that the class of multiinformation functions induced
by discrete probability measures is a strict subset of
the class of all supermodular functions. (See Exam-
ples 4.1 and 6.2 in Studený’s monograph [17].) The
falsification algorithm based on Proposition 4.2, on
the other hand, ensures that falsified instance of the
implication problem are guaranteed not to be valid.
The validation procedure of the racing algorithm tests
whether an imset that encodes an instance of the
implication problem is combinatorial. It makes use of
some ad-hoc heuristics to speed-up the computations.
The validation algorithm presented here introduces
two novel ideas: (1) the representation of instances
of the implication problem as linear programs; and
(2) the notion and construction of minimal constraint
matrices that increase the efficiency of the algorithm.



6 Conclusion

Logical inference algorithms for probabilistic condi-
tional independence statements have several impor-
tant applications from checking consistency during
knowledge elicitation to constraint-based structure
learning of graphical models (Gandhi et al. [7]). We
proved that the implication problem for CI statements
is decidable, given that the size of the domains of
the random variables is known and fixed. We then
presented an approximate inference algorithm which
combines a falsification and a novel validation algo-
rithm. The validation algorithm represents each set
of CI statements as a minimal sparse 0-1 matrix A

and validates instances of the implication problem by
solving linear programs with A as the constraint ma-
trix. We demonstrated experimentally that the ap-
proximate inference algorithm is both effective and effi-
cient in validating and falsifying instances of the impli-
cation problem. We hope that the inference algorithm
will prove useful to both researchers and practitioners.
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