
Exact Structure Discovery in Bayesian Networks with Less Space

Pekka Parviainen and Mikko Koivisto
Helsinki Institute for Information Technology HIIT, Department of Computer Science

University of Helsinki, Finland
{pekka.parviainen, mikko.koivisto}@cs.helsinki.fi

Abstract

The fastest known exact algorithms for score-
based structure discovery in Bayesian net-
works on n nodes run in time and space
2nnO(1). The usage of these algorithms is
limited to networks on at most around 25
nodes mainly due to the space requirement.
Here, we study space–time tradeoffs for find-
ing an optimal network structure. When lit-
tle space is available, we apply the Gurevich–
Shelah recurrence—originally proposed for
the Hamiltonian path problem—and obtain
time 22n−snO(1) in space 2snO(1) for any
s = n/2, n/4, n/8, . . .; we assume the inde-
gree of each node is bounded by a constant.
For the more practical setting with moderate
amounts of space, we present a novel scheme.
It yields running time 2n(3/2)pnO(1) in space
2n(3/4)pnO(1) for any p = 0, 1, . . . , n/2; these
bounds hold as long as the indegrees are at
most 0.238n. Furthermore, the latter scheme
allows easy and efficient parallelization be-
yond previous algorithms. We also explore
empirically the potential of the presented
techniques.

1 INTRODUCTION

There has been relatively recent interest in devising
exact algorithms for score-based structure learning in
Bayesian networks (Eaton and Murphy, 2007; Koivisto
and Sood, 2004; Koivisto, 2006; Perrier et al., 2008; Si-
lander and Myllymäki, 2006; Singh and Moore, 2005).
The research is motivated not only by theoretical cu-
riosity but also by applications: an exact algorithm—
that is guaranteed to produce an optimal solution or
the exact quantity of interest—allows the user to con-
centrate on modelling issues and direct interpretation
of the learning results, with no (extra) uncertainty on

the quality of the algorithm’s output per se.

The fastest known exact algorithms for Bayesian net-
works on n nodes (i.e, attributes or variables) com-
pute and store intermediate results for all the possible
2n node subsets, running in time and space 2nnO(1),
assuming the score obeys certain usual modularity
properties (Koivisto and Sood, 2004; Ott and Miyano,
2003; Silander and Myllymäki, 2006; Singh and Moore,
2005). While both the time and the space require-
ment become soon prohibitive as n gets larger, it is
particularly the space requirement that determines
the feasibility limit in practice. Indeed, on typical
modern desktop computers with a few gigabytes of
memory the algorithms can handle networks on up to
around 25 nodes before they run out of space, the run-
ning time being still in only some minutes or hours.
The current record of 29 nodes was achieved by the
streamlined Silander–Myllymäki implementation (Si-
lander and Myllymäki, 2006) using nearly 100 giga-
bytes of hard disk. For making exact algorithms prac-
tically feasible in larger networks, reducing the space
complexity is the main concern.

To understand the nature of the algorithmic challenges
at hand, it is useful to think the structure discovery
problem as a “permutation problem”: one seeks a lin-
ear order of the n nodes that maximizes a sum of local
scores, one per node; the local score for a node only
depends on the set of nodes that precede it in the
order (the potential endpoints of the incoming arcs).
Note that here we restrict ourselves to the problem of
finding an optimal network structure. For a number
of similar permutation problems—like the Travelling
Salesman problem, the Feedback Arcset problem, and
Treewidth, to name a few—dynamic programming al-
gorithms running in time and space 2nnO(1) have been
known for decades (Bellman, 1962; Held and Karp,
1962; Lawler, 1964; Arnborg et al., 1987), with only
negligible progress since; more recent work (Bodlaen-
der et al., 2006) has shown that if only polynomial
space is allowed, then many permutation problems can

be solved in time 4nnO(1) using a divide and conquer
technique we outline in the next two paragraphs. We
are not aware of any previous work on interpolating
between the two extremes of space complexity.

Perhaps the most straightforward approach to solve
a permutation problem in space less than 2nnO(1) is
to divide the node set into two buckets: N0 containing
the first s nodes in the order, and N1 containing the re-
maining n−s nodes. Both N0 and N1 specify subprob-
lems that can be solved by an exact algorithm in time
and space 2snO(1) and 2n−snO(1), respectively; here
we assume the indegrees of the network, i.e. the num-
ber of parents per node, are at most some constant.
Assuming w.l.o.g. that s ≥ n/2, the algorithm that
tries out all possible partitions {N0, N1} runs in time
(

n
s

)

2snO(1) and space 2snO(1). For instance, putting
s = 4/5n yields time O(2.872n) and space O(1.742n).
This simple scheme is the starting point of the present
study of time–space tradeoffs for exact structure dis-
covery in Bayesian networks, in two respects.

First (in Section 3), we notice that the above scheme
with balanced partitioning (into about equally sized
parts) and recursive application yields time 22n−snO(1)

in space 2snO(1) for any s = n/2, n/4, n/8, In
particular, we get a polynomial-space algorithm with
running time 4nnO(1). This divide and conquer tech-
nique is known as the Gurevich–Shelah recurrence,
originally presented for the Hamiltonian path prob-
lem (Gurevich and Shelah, 1987) and later applied also
elsewhere (Björklund and Husfeldt, 2008; Bodlaender
et al., 2006). Unfortunately, the Gurevich–Shelah re-
currence falls short when one is allowed to use more
space, say 24n/5nO(1).

Our second, main contribution (in Section 4) ad-
dresses the practically more relevant range where the
Gurevich–Shelah recurrence does not apply. By con-
trast, the above outlined simple scheme (unbalanced
and without recursion) applies, but—perhaps some-
what surprisingly—turns out to be suboptimal. In-
deed, we present a completely different approach,
where the idea is to cover the linear orders by a class of
suitably specified partial orders, namely, partial orders
consisting of p node pairs. This pairwise scheme runs
in time 2n(3/2)pnO(1) in space 2n(3/4)pnO(1) for any
p = 0, 1, . . . , n/2. For instance, with p = n/2 we get
time O(2.4495n) in space O(1.733n), thus improving
upon the simple scheme at s = 4/5n in both time and
space (cf. the calculated bounds above).

So far we have assumed that the indegrees are at most
some constant k. A straightforward implementation
of the ideas described above yields time bounds where
the number of possible parent sets appears as a mul-
tiplicative factor (absorbed into nO(1)). Ideally, one

would have that term affecting the running time only
additively. The issue becomes very significant in prac-
tice when k is large, and particularly so if the indegree
is unbounded. With the Gurevich–Shelah recurrence
we, unfortunately, have not found a way to reach this
goal. In sharp contrast, our novel scheme is amenable
to such an implementation. Specifically, we show in
Section 5 that even if the maximum indegree k is let
to grow linearly with the number of nodes (with a de-
cent slope), the indegree bound k will play no role in
the dominating part of the running time bound.

Finally, the pairwise scheme provides a desirable fea-
ture not possessed by previous exact algorithms: easy
and efficient parallelization. We note that while the
Silander–Myllymäki implementation is easy to run in
parallel on n processors, the time requirement per pro-
cessor remains 2n, up to a polynomial factor (Silander
and Myllymäki, 2006). The pairwise scheme goes be-
yond this. We show in Section 6 that the time require-
ment per processor decreases with p as 2n(3/4)p, thus
yielding savings in both time and space, provided that
sufficiently many (2p) processors are available.

While the present work is mostly theoretical, we ex-
pect the techniques also to have practical significance.
In Section 7 we present a preliminary empirical explo-
ration of the potential of the pairwise scheme. With
the current implementation we are not able to beat
the record of 29 nodes, as parallelization remains to be
implemented and certain key operations have not been
optimized to the level of the Silander–Myllymäki im-
plementation. However, we are currently working on
a more streamlined implementation and expect net-
works of 34 nodes to be within reach, if employing
some hundreds of processors in parallel.

2 PRELIMINARIES

In this section, we first formulate the problem of struc-
ture discovery in Bayesian networks. Then we present
one of the possible variants of existing exact algo-
rithms. Finally, we tune the problem formulation to
accomodate for limited space.

2.1 The Structure Discovery Problem

A Bayesian network is a multivariate probability distri-
bution that obeys a structural representation in terms
of a directed acyclic graph (DAG) and a corresponding
collection of univariate conditional probability distri-
butions. For our purposes, it is crucial to treat the
DAG, i.e., the network structure, explicitly, whereas
the conditional probabilities will enter our formalism
only implicitly.

A DAG on a set N is an acyclic graph (N,A) with

node set N and arc set A. A node u is said to be a
parent of v if the arc uv is in A. We denote by Av the
set of parents of v. We associate the DAG with the
edge set A when there is no ambiguity about the node
set. Throughout the paper we denote the cardinality
of N by n.

The problem of Bayesian network structure discovery
is as follows. For each node v ∈ V and a possible par-
ent set Av ⊆ N \ {v} one specifies a local score fv(Av)
that gauges the fit of a class of conditional probability
distributions to a given data set on the involved nodes
under some statistical principle (e.g., Bayesian, maxi-
mum likelihood, minimum description length). Given
these local scores, the task is to find a DAG A that
maximizes the sum of the local scores (Cooper and
Herskovits, 1992; Heckerman et al., 1995),

f(A)
.
=

∑

v∈N

fv(Av) .

We note that this formulation does not directly apply
to the so-called Bayesian approach to structure discov-
ery (Friedman and Koller, 2003; Koivisto and Sood,
2004).

2.2 A Dynamic Programming Algorithm

While the existing exact algorithms for finding an op-
timal network structure exhibit some variability in the
details, the key ideas are the same. We now review one
of the variants, an algorithm the computes the maxi-
mum score—an actual DAG that achieves the optimal
score can then be constructed using standard tech-
niques. The algorithm can be described in two phases.

In the first phase, it computes for each node v ∈ N
and node subset Y ⊆ N \ {v}, the maximum of the
local scores over the subsets of Y , defined as

f̂v(Y)
.
= max

X⊆Y
fv(X) . (1)

In words, f̂v(Y) is the maximum local score for v given
that the parents of v must be selected from Y .

In the second phase, the algorithm effectively goes
through all permutations of the nodes, however, tab-
ulating only intermediate results for the sets of the
first i nodes in the order, for i = 0, 1, . . . , n. Formally,
we define g(∅) .

= 0 and for nonempty subsets Y ⊆ N
recursively:

g(Y)
.
= max

v∈Y

{

g(Y \ {v}) + f̂v(Y \ {v})
}

. (2)

In words, g(Y) is the maximum score over DAGs on
the node subset Y , obtained by selecting a node v that,
when being the last node in the order among the nodes

in Y and thus having the possibility to have parents
from Y \ {v}, yields the largest score. In particular,
g(N) gives the maximum score over all DAGs on N .

The straighforward computation of the values f̂v(Y)
requires 2|Y | steps for fixed v and Y , and hence n3n−1

steps in total. However, this can be significantly im-
proved by dynamic programming, observed first in Ott
and Miyano (2003):

Lemma 1 (Ott and Miyano 2003)

f̂v(Y) = max
{

fv(Y),max
u∈Y

f̂v(Y \ {u})
}

.

This recurrence can be solved in O(n22n) steps.

Given the values f̂v(Y), the recurrence for the val-
ues g(Y) can then be computed in O(n2n) steps in a
straightforward manner. Thus, the algorithm takes a
total of O(n22n) steps, which is nearly optimal, since
the input, as formulated above, may already consist of
n2n−1 (real) numbers.

The space requirement of the above algorithm is
O(n2n) due to the space requirement of storing f̂v(Y)
for each v and Y . This is possible to improve slightly
to O(

√
n2n) by noticing that the two phases can be

merged into a single algorithm that visits every set Y
only once, proceeding level-wise, that is, in increas-
ing cardinality of Y . This amounts to a truly signifi-
cant saving in the space usage, provided that the in-
put, the local scores fv(Av), are given implicitly, that
is, each score fv(Av), once needed, is computed from
(polynomial-space) input data; we next elaborate on
this issue.

2.3 Limited Space: The Setting

To study the structure discovery problem with limited
space usage, we need to be explicit about the input of
the problem. To this end, it is convenient to let the
local scores fv(Av), for any node v, be available only
for parent sets Av that belong to a given family of pos-
sible parent sets, denoted as Fv; elsewhere we define
fv(Av)

.
= −∞. Whether the families Fv are repre-

sented implicitly or explicitly affects the space require-
ment of the structure discovery problem: In the former
case, we assume each local score is evaluated based on
input data once needed in time and space polynomial
in n. In the latter case, the local scores are treated as
explicit input, taking already space Ω(

∑

v |Fv|). We
will present our results under both approaches.

We are particularly interested in families Fv that are
downward closed, that is, closed with respect to inclu-
sion: if Y ∈ Fv and X ⊆ Y , then X ∈ Fv. Important
examples of such downward closed families are (a) the

parent sets of cardinality at most k, for some fixed k,
and (b) the parent sets that are contained in a given
set of candidate parents (Perrier et al., 2008). A useful
property of a downward closed family is that its mem-
bers can be listed in essentially linear time. In fact,
in Section 5 we will make use of the following slightly
stronger observation; the proof (omitted) is, e.g., by
visiting the members in increasing order of cardinality
or in lexicographic order.

Proposition 2 Given a set N , a downward closed

family F ⊆ 2N , and sets X and Y with X ⊆ Y ⊆ N ,

the members Z ∈ F with X ⊆ Z ⊆ Y can be listed in

time |F||N |O(1).

3 A DIVIDE & CONQUER SCHEME

We next consider in more detail the partitioning based
approach outlined in the Introduction.

Let Â be an optimal DAG on the node set N . Fix an
integer s with n/2 ≤ s ≤ n. Since Â is acyclic there
exists a partition of N into two sets N0 and N1 of size s
and n−s, respectively, such that every arc between N0

and N1 in Â is directed from N0 to N1; in other words,
the parents of any node in N0 are from N0, while a
node in N1 may have parents also from N0. That said,
one can find Â—strictly speaking, the associated score
f(Â)—by trying out all possible partitions {N0, N1}
and solving the recurrences

g0(Y)
.
= max

v∈Y

{

g0(Y \ {v}) + f̂v(Y \ {v})
}

,

for ∅ ⊂ Y ⊆ N0 with g0(∅) = 0, and

g1(Y)
.
= max

v∈Y

{

g1(Y \ {v}) + f̂v(N0 ∪ Y \ {v})
}

,

for ∅ ⊂ Y ⊆ N1 with g1(∅) = 0; the score of Â is
obtained as the maximum of g0(N0) + g1(N1) over all
partitions {N0, N1}.
We notice that the two subproblems are independent
of each other given the partition {N0, N1}, and thus
can be solved separately. Applying the exact algo-
rithm given in the previous section, the computa-
tion of g0 takes time and space 2snO(1). Computing
g1 can be more expensive, since evaluating the term
f̂v(N0 ∪ Y \ {v}) requires the consideration of all the
2s possible subsets of N0 as parents of v, in addition
to a subset from Y \ {v}. To simplify the analysis, we
assume that the number of possible parent sets, |Fv|,
is polynomial in n, in which case g1 can be computed
in time and space 2n−snO(1). Because there are

(

n
s

)

possible partitions, we have the following result.

Proposition 3 The structure discovery problem in

Bayesian networks can be solved in time
(

n
s

)

2snO(1)

in space 2snO(1) for any s = n/2, n/2 + 1, . . . , n, pro-

vided that each node has nO(1) possible, predetermined

parent sets.

The above approach yields a smooth time–space trade-
off for space bounds between 2n/2nO(1) and 2nnO(1).
However, this is all but the end of the story: Firstly,
within this range a more efficient scheme exists, as we
will show in the next section. Secondly, with space less
than 2n/2nO(1) the above scheme is not applicable, un-
less executed recursively, as we show next.

To solve the subproblems, namely computing g0(N0)
and g1(N1), with less space we may apply the parti-
tioning technique again. The problem of computing
g0(N0) being of the same form as the original prob-
lem, let us turn to look at the problem of computing
g1(N1). As before, we see that there exists a parti-
tioning of the node set N1 into subsets N10 and N11

such that every arc between N10 and N11 in the opti-
mal DAG Â is directed from N10 to N11. So, one can
compute g1(N1) by trying out all possible partitions
{N10, N11} and solving the recurrences

g10(Y)
.
= max

v∈Y

{

g10(Y \{v}) + f̂v((N0 ∪ Y \ {v})
}

,

for ∅ ⊂ Y ⊆ N10 with g10(∅) = 0, and

g11(Y)
.
= max

v∈Y

{

g11(Y \{v}) + f̂v(N0 ∪N10 ∪Y \{v})
}

,

for ∅ ⊂ Y ⊆ N11 with g11(∅) = 0; the score g1(N1) is
obtained as the maximum of g10(N10) + g11(N11) over
all partitions {N10, N11}.
In general, one can apply partitioning recursively, say
d times, and then solve the remaining subproblems by
dynamic programming. For an analysis of the time and
space requirements, it is convenient to assume a bal-
anced scheme: in every step of the recursion, the node
set in question is partitioned into two sets of about
equal sizes; for simplicity, assume n is a power of 2.
Then, at depth d ≥ 0 of the recurrence, the node set
in each subproblem in question is of size s

.
= n/2d;

hence, each subproblem can be solved in time and
space 2snO(1). Because each subproblem of size 2s
is divided into 2

(

2s
s

)

≤ 22s subproblems of size s, the
total number of subproblems of size s that need to be
solved is at most 2n2n/22n/4 · · · 22s = 22n−2s.

Theorem 4 The structure discovery problem in

Bayesian networks can be solved in time 22n−snO(1)

in space 2snO(1) for any s = n/2, n/4, n/8, . . ., pro-

vided that each node has nO(1) possible, predetermined

parent sets.

As a theoretically interesting special case we have the
following.

Corollary 5 The structure discovery problem in

Bayesian networks can be solved in time 4nnO(1) in

space polynomial in n, provided that each node has

nO(1) possible, predetermined parent sets.

4 PARTIAL ORDERS: THE

PAIRWISE SCHEME

We next present a scheme for trading space against
time when the exponential term in the space complex-
ity ranges between 2n and 2n/2.

In general terms, the idea is to fix a class of partial
orders on the node set N such that any linear order
on N can be realized as a linear extension of at least
one of the partial orders in the class. Each partial or-
der in the class corresponds to a restricted instance of
the original task, which is to be solved by a suitably
tailored variant of the basic dynamic programming al-
gorithm. The bucket orders specified by the partitions
of N into two subsets of fixed sizes, described in the
previous section, is a simple example of such a class.
Below we introduce a more “efficient” class.

In what follows, we focus on partial orders that are
specified by p ordered pairs of nodes from N . More
precisely, for a fixed integer p, with 0 ≤ p ≤ n/2, we
pick arbitrarily 2p distinct nodes u1, v1, . . . , up, vp ∈
N and let Cp denote the set of all partial orders
{µ1, . . . , µp} such that each µq is either uqvq (i.e., uq

precedes vq) or vquq (i.e., vq precedes uq). Thus the
cardinality of Cp is 2p. The following lemma tells us
that the class Cp “covers” the linear orders on N ; the
proof is by picking up ordered pairs from a linear order.

Lemma 6 Let p be an integer with 0 ≤ p ≤ n/2, and

let ≺ be a linear order on N . Then there exists a

member R ∈ Cp such that ≺ is a linear extension of R,

that is, uv ∈ R implies u ≺ v.

Because of this coverage property an optimal DAG can
be found by trying out every R ∈ Cp and searching for
an optimal DAG compatible with R. A DAG A is
said to be compatible with a partial order R if any
topological ordering of A is a linear extension of R.

In the dynamic programming algorithm (2) the restric-
tion to linear extensions of R amounts to simple con-
straints on the node subsets that need to be visited.
We see that a set Y ⊆ N can form the |Y | first ele-
ments in a linear extension of R if and only if Y belongs
to the family NR defined as follows.

Definition 1 Let R ∈ Cp. Denote by NR the family

of sets Y ⊆ N satisfying

v ∈ Y implies u ∈ Y for every uv ∈ R .

Since R ∈ Cp contains p disjoint pairs of nodes, and
for each pair one of the four possibilities is excluded,
we have the following.

Lemma 7 Let R ∈ Cp. Then the cardinality of NR is

3p2n−2p.

The restricted dynamic programming algorithm eval-
uates the function gR defined by gR(∅) .

= 0 and for
nonempty Y ∈ NR recursively:

gR(Y)
.
= max

v∈Y

Y \{v}∈NR

{

gR(Y \ {v}) + f̂v(Y \ {v})
}

. (3)

It follows that gR(N) equals the optimum score over
DAGs compatible with R.

We summarize the above findings:

Lemma 8 Let p be an integer with 0 ≤ p ≤ n. Then

for any partial order R ∈ Cp it holds that

gR(N) = max{f(A) : A is compatible with R} ,
and, furthermore,

max
R∈Cp

gR(N) = max
A

f(A) ,

where A runs through all DAGs on the n-node set N .

We see that gR can be computed in time and space
|NR|nO(1), provided that the number of possible par-
ents for each node is polynomial in n. Thus we have
obtained the following time–space tradeoff result, re-
ferred to as the pairwise scheme.

Theorem 9 The structure discovery problem in

Bayesian networks can be solved in time 2n(3/2)pnO(1)

in space 2n(3/4)pnO(1) for any p = 0, 1, 2, . . . , n/2,
provided that each node has nO(1) possible, predeter-

mined parent sets.

Proof: The space complexity is obtained by rewriting
|NR| = 3p2n−2p as 2n(3/4)p. The time complexity is
obtained by multiplying |NR|nO(1) = 3p2n−2pnO(1) by
|Cp| = 2p. �

The bounds in Theorem 9 should be compared to
bounds that arise from the basic partitioning scheme
(Proposition 3). For a comparison we set the space
complexities equal (up to polynomial factors) and in-
vestigate the resulting running time bounds. To this
end, we first solve p from 2n(3/4)p = 2s, giving
p = (n − s)/ log2(4/3). We also set s = rn, yielding
the running time bound

2na(r) , a(r)
.
= r − r log2 r − (1− r) log2(1− r) (4)

for the partitioning method and the bound

2nb(r) , b(r)
.
= 1 + (1− r) log2

2

3

/

log2

3

4
(5)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0.5 0.6 0.7 0.8 0.9 1

r

a(r)

b(r)

Figure 1: Comparison of the functions a and b, de-
fined in (4) and (5), respectively. Note that the values
b(r) correspond to the time complexity of the pairwise
scheme only for 0.7924 . . . ≤ r ≤ 1.

for the pairwise scheme. Note that the pairwise scheme
only applies for 0 ≤ p ≤ n/2, which in terms of r
amounts to 0.7924 . . . ≤ r ≤ 1. Within this range, b(r)
appears to be strictly less than a(r), except at r = 1, in
which case both schemes yield the running time bound
of 2n (up to polynomial factors); see Figure 1.

5 UNBOUNDED INDEGREE

So far we have assumed that the number of possible
parent sets per node is polynomial in the number of
nodes n. This is a reasonable assumption, e.g., when,
each node is allowed to have at most some constant
number k of parents. However, the polynomial fac-
tors in the running time bounds of Theorems 4 and 9
grow directly with the number of possible parent sets
and thus heavily affect the performance in practice.
In what follows, we aim at an implementation of the
pairwise scheme (Theorem 9) such that the number of
possible parent sets affects the running time additively

rather than multiplicatively.

The idea is to arrange the computation of the recur-
rence (3) in such a way that some of the computa-

tions for f̂v(Y \ {v}), the maximum local score among
the parent sets contained in Y \ {v}, are reused. Per-
haps the most immediate attempt to do this would be
dynamic programming according to the recurrence in
Lemma 1; unfortunately, this seems to require space
proportional to 2n/

√
n, for each v, when proceeding

level-wise (Ott and Miyano, 2003): to compute the

scores f̂v(Y) for sets Y of size ℓ one needs to access

the scores f̂v(X) of sets X of size ℓ − 1. Luckily, it
turns out that a sparse dynamic programming variant
solves the task with less space.

Our key insight is the following simple observation,

which we state in plain terms; the proof is omitted.

Lemma 10 Let X and Y be sets with X ⊆ Y . Let

A .
= {Z ⊆ Y : X ⊆ Z} ,

B .
= {Z ⊆ Y : x 6∈ Z for some x ∈ X} .

Then 2Y = A ∪ B and B =
⋃

x∈X 2Y \{x}.

In terms of the set functions fv and f̂v, for an arbitary
v, the above lemma amounts to the following general-
ization of Lemma 1; the proof (omitted) is immediate

by Lemma 10 and the definition of f̂v.

Lemma 11 Let X and Y be subsets of N \ {v} with

X ⊆ Y . Then

f̂v(Y) = max
{

max
X⊆Z⊆Y

fv(Z),max
u∈X

f̂v(Y \ {u})
}

.

Note that Lemma 1 is obtained as a special case of
Lemma 11, with X = Y .

Lemma 11 leaves us the freedom to choose a suitable
node subset X for each set of interest Y . How we
make this choice is guided by the fact that, in the
evaluation of gR by dynamic programming, we need
the values f̂v(Y) only for sets Y that belong to NR;
in what follows, we consider R ∈ Cp fixed. By storing

the values f̂v(Y) only for Y ∈ NR we adhere to the
space requirement (up to a polynomial factor) already
needed for storing gR(Y) for each Y ∈ NR. Thus
our goal is to choose X such that Y \ {u} ∈ NR for
all u ∈ X. To this end, we let X consist of all such
nodes in Y that have no larger node in Y (w.r.t. R).
Accordingly, for Y ∈ NR define

XY
.
= {u ∈ Y : uv 6∈ R for all v ∈ Y } .

Furthemore, define the tail of Y as

TY
.
= {Z ⊆ Y : XY ⊆ Z} .

In the next two lemmas we first show that XY indeed
has the desired property (in a maximal sense), and
then that the tails for different sets Y are pairwise
disjoint, and thus optimally cover the subsets of N .

Lemma 12 Let Y ∈ NR and u ∈ Y . Then Y \ {u} ∈
NR if and only if u ∈ XY .

Proof: “If”: Let u ∈ XY . Let st ∈ R. By the defini-
tion of NR we need to show that t ∈ Y \ {u} implies
s ∈ Y \ {u}. So, suppose t ∈ Y \ {u}, hence t ∈ Y .
Now, since Y ∈ NR, we must have s ∈ Y . It remains
to show that s 6= u. But this holds because ut 6∈ R by
the definition of XY .

“Only if”: Let u 6∈ XY . Then we have uv ∈ R for some
v ∈ Y . But u 6∈ Y \ {u} and v ∈ Y \ {u}, implying
Y \ {u} 6∈ NR by the definition of NR. �

Lemma 13 Let Y and Y ′ be two distinct sets in NR.

Then the tails of Y and Y ′ are disjoint.

Proof: Suppose the contrary that Z ∈ TY ∩ TY ′ .
W.l.o.g. let w ∈ Y \ Y ′. Thus w 6∈ Z, for Z ⊆ Y
and Z ⊆ Y ′. Therefore, w 6∈ XY and w 6∈ XY ′ , for
XY ⊆ Z and XY ′ ⊆ Z. We conclude that wv ∈ R
for some v ∈ Y and wv′ ∈ R for some v′ ∈ Y ′. But
by the definition of R we must have v = v′. Thus we
have arrived at wv ∈ R, w 6∈ Y ′, and v ∈ Y ′, which is
a contradiction given that Y ′ ∈ NR. �

We now merge the ingredients given above into an al-
gorithm for evaluating gR using the recurrence (3),
for a fixed R ∈ Cp. In Algorithm 1 below, gR[Y]

and f̂v[Y] denote program variables that correspond

to the respective target values gR(Y) and f̂v(Y) to be
computed. Also, recall that Fv denotes the family of
possible parent sets for node v.

Algorithm 1

1. Let

gR[∅]← 0 .

2. For each v ∈ N , if ∅ ∈ Fv, then let

f̂v[∅]← fv(∅) ; else let f̂v[∅]← −∞ .

3. For each nonempty Y ∈ NR, in increasing order
of cardinality:

(a) let

gR[Y]← max
v∈XY

{

gR[Y \ {v}] + f̂v[Y \ {v}]
}

;

(b) for each v ∈ Y let f̂v[Y] be the larger of

max
Z∈TY ∩Fv

fv(Z) and max
u∈XY

f̂v[Y \ {u}] .

Lemma 14 Algorithm 1 correctly computes gR, that

is, gR[Y] = gR(Y) for all Y ∈ NR.

Proof: By the definition of gR in (3) and by Lemma 11
it suffices to notice that, by Lemma 12, the condition
“v ∈ Y and Y \ {v} ∈ NR” is equivalent to v ∈ XY ,
given that Y ∈ NR. Note also that maximizing over
TY ∩Fv is equivalent to maximizing over TY , since, by
convention, fv(Z) = −∞ for Z 6∈ Fv. �

We are ready prove the main result of this paper.

Theorem 15 The structure discovery problem in

Bayesian networks can be solved in time
[

2n(3/2)p +

2pF
]

nO(1) in space 2n(3/4)pnO(1) for any p =
0, 1, 2, . . . , ⌊n/2⌋, provided that for each node v the

family of possible parent sets Fv is downward closed

and of size at most F .

Proof: By Lemmas 8 and 14 it suffices to run Algo-
rithm 1 for every R ∈ Cp, that is, |Cp| = 2p times.

The time requirement of Algorithm 1 is dominated by
steps 3(a) and 3(b). Given Y , the set XY can clearly
be constructed in time nO(1). Thus the contribution of
step 3(a) in the total time requirement is |NR|nO(1) =
3p2n−2pnO(1) (Lemma 7).

We then analyze the time requirement of step 3(b), for
fixed v. By Proposition 2 the maximization of the local
scores over TY ∩ Fv can be done in time polynomial
in |TY ∩ Fv|. Since, by Lemma 13, these families are
disjoint for different Y ∈ NR, the total contribution
to the time requirement is polynomial in |Fv| ≤ F ,
for each v. Because step 3(b) is executed |NR| times,
the total time requirement of step 3(a) is |NR|nO(1) +
FnO(1).

Combining the time bounds of step 3(a) and (b)
and multiplying by 2p yields the claimed bound
2p

[

3p2n−2p + F
]

nO(1) =
[

2n(3/2)p + 2pF
]

nO(1).

The space requirement is |NR|nO(1) = 3p2n−2pnO(1),

since, by Lemma 12, the values gR[Y] and f̂v[Y] are
needed only for Y ∈ NR. �

When there is no restrictions on the possible parent
sets (i.e., each node has 2n−1 possible parent sets), we
get the following.

Corollary 16 The structure discovery problem in

Bayesian networks can be solved in time 2n+pnO(1) in

space 2n(3/4)pnO(1) for any p = 0, 1, 2, . . . , ⌊n/2⌋.

On the other hand, if each node is allowed to have at
most k parents, we get a significantly better running
time bound, even if k is let to grow linearly in the
number of nodes n; the proof (omitted) is by direct
comparison of the binomial coefficient

(

n−1
k

)

and the
bound 3p2n−2p in the stringest case, at p = n/2.

Corollary 17 The structure discovery problem in

Bayesian networks can be solved in time 2n(3/2)pnO(1)

in space 2n(3/4)pnO(1) for any p = 0, 1, 2, . . . , ⌊n/2⌋,
provided that each node is allowed to have at most

0.238n parents.

6 ON PARALLELIZATION

We note that the pairwise scheme described in the pre-
vious sections allows for efficient parallelization. Ob-
viously, each partial order R ∈ Cp can be treated in
parallel. Furthermore, as in the Silander–Myllymäki
implementation, the optimal local scores over given
sets of possible parents in step 3(b) of Algorithm 1
can be precomputed—that is, not merging with step
3(a)—in parallel for each of the n nodes. In total, this

amounts to parallelization onto 2pn processors (each
with own memory); this is efficient in the sense that
the running time per processor is scaled down by the
same factor. So, if ignoring factors polynomial in n,
the running time per processor becomes 2n(3/4)p (un-
der the conditions of Corollary 17), thus exponentially
less than 2n when p grows.

7 EMPIRICAL RESULTS

We have implemented the pairwise scheme in the C++
language. We examined the running time for the limit
of 16 gigabytes of memory, letting the number of nodes
n vary from 25 to 31, with maximum indegree set to
3 (the local scores were taken as given, so computing
them is not included in the running time estimates).
First we estimated the minimum number of node pairs
p that yields a memory requirement of at most 16 gi-
gabytes. Then we ran Algorithm 1 for a single partial
order R ∈ Cp; the resulting running time was multi-
plied by 2p to get the total running time, see Table 7.
The experiments were run on a 3.66-GHz Intel Xeon
with 32 GB of RAM.

Table 1: The implemented pairwise scheme given 16
gigabytes of memory. Reported are CPU hours in to-
tal, T , and as divided to 2p processors.

n p T T/2p

25 0 2 2.12
26 2 9 2.27
27 4 41 2.56
28 7 331 2.59
29 9 1660 3.24
30 12 13322 3.25
31 14 67748 4.14

We see that the current implementation is feasible up
to around 31 nodes (4 weeks using 100 processors, 3
days using 1000 processors). However, we believe that
by a more careful implementation both the time and
the space requirement can be reduced to about one
tenth, which should bring networks on 34 nodes to
within reach (with massive parallelization).

Acknowledgements

The authors wish to thank Petteri Kaski, Fedor Fomin,
Saket Saurabh, and Yngve Villanger for useful discus-
sions on the Gurevich–Shelah recurrence. The research
was supported in part by the Academy of Finland,
Grant 125637.

References

S. Arnborg, D. G. Corneil, and A. Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM J. Alg.
Disc. Meth., 8:277–284, 1987.

R. Bellman. Dynamic programming treatment of the trav-
elling salesman problem. J. Assoc. Comput. Mach., 9:
61–63, 1962.

A. Björklund and T. Husfeldt. Exact algorithms for exact
satisfiability and number of perfect matchings. Algorith-
mica, 52:226–249, 2008.

H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster,
D. Kratsch, and D. M. Thilikos. On exact algorithms
for treewidth. In ESA, pages 672–683, 2006.

G. F. Cooper and E. Herskovits. A Bayesian method for the
induction of probabilistic networks from data. Machine
Learning, 9:309–347, 1992.

D. Eaton and K. Murphy. Exact Bayesian structure learn-
ing from uncertain interventions. In Proc. of the 23rd
Conference on Uncertainty in Artificial Intelligence and
Statistics (AISTAT). Omnipress, 2007. Electronic only.

N. Friedman and D. Koller. Being Bayesian about network
structure: A Bayesian approach to structure discovery in
Bayesian networks. Machine Learning, 50(1–2):95–125,
2003.

Y. Gurevich and S. Shelah. Expected computation time
for Hamiltonian path problem. SIAM J. Comput., 16:
486–502, 1987.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243, 1995.

M. Held and R. Karp. A dynamic programming approach
to sequencing problems. J. Soc. Indust. Appl. Math.,
(10):196–210, 1962.

M. Koivisto. Advances in exact Bayesian structure discov-
ery in Bayesian networks. In Proc. of the 22nd Con-
ference on Uncertainty in Artificial Intelligence (UAI),
pages 241–248. AUAI Press, 2006.

M. Koivisto and K. Sood. Exact Bayesian structure discov-
ery in Bayesian networks. Journal of Machine Learning
Research, 5:549–573, 2004.

E. Lawler. A comment on minimum feedback arc sets.
IEEE Trans. on Circuit Theory, pages 296–297, 1964.

S. Ott and S. Miyano. Finding optimal gene networks using
biological constraints. Genome Informatics, (14):124–
133, 2003.

E. Perrier, S. Imoto, and S. Miyano. Finding optimal
Bayesian network given a super-structure. Journal of
Machine Learning Research, 9:2251–2286, 2008.

T. Silander and P. Myllymäki. A simple approach for find-
ing the globally optimal Bayesian network structure. In
Proc. of the 22nd Conference on Uncertainty in Artificial
Intelligence (UAI), pages 445–452. AUAI Press, 2006.

A. Singh and A. Moore. Finding optimal Bayesian net-
works by dynamic programming. Technical report,
Carnegie Mellon University, June 2005.

