The Shannon Capacity of Graphs
CG Seminar

Tommy Reddad

July 4, 2014
A very elusive graph parameter.

- Originally studied by Shannon in 1956.
- Breakthrough work by Lovász in 1979.
- Some work by Alon and hungarians et al.
- ...
Introduction

We wish to send many messages along a “noisy” channel while avoiding confusion.
We wish to send many messages along a “noisy” channel while avoiding confusion.

Graph-theoretically: given a graph G, $V(G)$ is an alphabet.

Definition
Two letters u, v can be *confused* if they are adjacent in G.
Introduction

We wish to send many messages along a “noisy” channel while avoiding confusion.

Graph-theoretically: given a graph G, $V(G)$ is an alphabet.

Definition
Two letters u, v can be *confused* if they are adjacent in G.

At most $\alpha(G)$ distinct 1-letter messages can be sent without confusion. What about longer messages?
Definition

Two k-letter words can be confused if each i^{th} letter are confused or equal.
Definition
Two k-letter words can be confused if each i^{th} letter are confused or equal.

Definition
The strong product $G \cdot H$ is as follows:

- $V(G \cdot H) = V(G) \times V(H)$
- $(u_1, v_1) \sim_{G \cdot H} (u_2, v_2)$ if $u_1 \sim_G u_2$ and $v_1 \sim_H v_2$.

Denote by G^k the k-fold strong product of G with itself.

Two k-letter words u, v are confused iff $u \sim_{G^k} v$.
Definition
Two k-letter words can be confused if each i^{th} letter are confused or equal.

Definition
The strong product $G \cdot H$ is as follows:

- $V(G \cdot H) = V(G) \times V(H)$
- $(u_1, v_1) \sim_{G \cdot H} (u_2, v_2)$ if $u_1 \sim_G u_2$ and $v_1 \sim_H v_2$.

Denote by G^k the k-fold strong product of G with itself.

Two k-letter words u, v are confused iff $u \sim_{G^k} v$.

At most $\alpha(G^k)$ distinct k-letter messages can be sent without confusion.
Definition
Define the *Shannon capacity* of G to be:

$$c(G) = \sup_k \sqrt[k]{\alpha(G^k)}$$

The sequence $(\sqrt[k]{\alpha(G^k)})$ is the *independence sequence*.
Definition
Define the *Shannon capacity* of G to be:

$$c(G) = \sup_k \sqrt[k]{\alpha(G^k)}$$

The sequence $\left(\sqrt[k]{\alpha(G^k)}\right)$ is the *independence sequence*.

$c(G)$ represents the number of distinct messages per use the channel can communicate with no error while used many times.

(Noga Alon)
Definition
Define the *Shannon capacity* of G to be:

$$c(G) = \sup_k \sqrt[k]{\alpha(G^k)}$$

The sequence $(\sqrt[k]{\alpha(G^k)})$ is the *independence sequence*.

$c(G)$ represents the number of distinct messages per use the channel can communicate with no error while used many times. (Noga Alon)

Clearly, $c(G) \geq \alpha(G)$. What about upper bounds?
Consider the following ILP:
- variables $x_u \geq 0$ for each $u \in V(G)$
- constraints $x_u + x_v \leq 1$ for every pair $u \sim v \in G$
- maximizing $\sum_{u \in V(G)} x_u$

This computes $\alpha(G)$. The fractional relaxation computes $\alpha^*(G)$.

Theorem (Shannon) $c(G) \leq \alpha^*(G)$

Theorem (Lovász) If G is perfect, then $\alpha(G) = \alpha^*(G)$.
Consider the following ILP:

- variables $x_u \geq 0$ for each $u \in V(G)$
- constraints $x_u + x_v \leq 1$ for every pair $u \sim v \in G$.
- maximizing $\sum_{u \in V(G)} x_u$

This computes $\alpha(G)$. The fractional relaxation computes $\alpha^*(G)$.

Theorem (Shannon)

$$c(G) \leq \alpha^*(G)$$

Theorem (Lovász)

If G is perfect, then $\alpha(G) = \alpha^(G)$.***
Corollary

If G is perfect, then $c(G) = \alpha(G)$.
Corollary

If G is perfect, then $c(G) = \alpha(G)$.

Remark

Let X be a maximal independent set. Then $X^k = \{(u_1, \ldots, u_k) : u_i \in X\}$ is independent in G^k:

$$|X|^k = |X^k| \Rightarrow \alpha(G) \leq k\sqrt[2]{\alpha(G^k)}$$
Corollary

If G is perfect, then $c(G) = \alpha(G)$.

Remark

Let X be a maximal independent set. Then $X^k = \{(u_1, \ldots, u_k) : u_i \in X\}$ is independent in G^k:

$$|X|^k = |X^k| \Rightarrow \alpha(G) \leq k \sqrt[k]{\alpha(G^k)}$$

If $c(G) = \alpha(G)$, then $\alpha(G) = k^{\sqrt[k]{\alpha(G^k)}}$ for every k.

Vertices cannot be “packed” in independent sets in powers of G.
In a sense, C_{2k+3} and \overline{C}_{2k+3} are the simplest imperfect graphs.

Remark

$$c(\overline{C}_{2k+3}) \geq \alpha(\overline{C}_{2k+3}) = 2$$
In a sense, C_{2k+3} and \overline{C}_{2k+3} are the simplest imperfect graphs.

Remark

$$c(\overline{C}_{2k+3}) \geq \alpha(\overline{C}_{2k+3}) = 2$$

Theorem (Bohman, Holzman)

$$\alpha(\overline{C}_{2k+3}^{2^k}) \geq 2^{2^k} + 1$$

We “pack” one vertex into the trivial independent set in $\overline{C}_{2k+3}^{2^k}$!

Corollary

$$c(\overline{C}_{2k+3}) > 2$$
We can use algebraic tools to bound $c(G)$ from above.

- Haemers: matrix representation $A \Rightarrow c(G) \leq \text{rank}(A)$
- Alon: polynomial representation over $\mathcal{F} \Rightarrow c(G) \leq \text{dim}(\mathcal{F})$.
- Lovász: orthonormal representation of vectors...

We will focus on Lovász’ technique, which was the first to appear.
Definition
A d-dimensional orthonormal representation of a graph G is a set of unit vectors $\{x_u \in \mathbb{R}^d : u \in V(G)\}$, such that if $u \not\sim v$, then $x_u \cdot x_v = 0$.

The value of such a representation is:

$$\min_{\|c\|=1} \max_{u \in V(G)} \frac{1}{(c \cdot x_u)^2}$$
Definition
A \(d\)-dimensional orthonormal representation of a graph \(G\) is a set of unit vectors \(\{x_u \in \mathbb{R}^d : u \in V(G)\}\), such that if \(u \not\sim v\), then \(x_u \cdot x_v = 0\).

The value of such a representation is:

\[
\min_{\|c\|=1} \max_{u \in V(G)} \frac{1}{(c \cdot x_u)^2}
\]

Definition
Define \(\vartheta(G)\) to be the minimum value of any orthonormal representation of \(G\).

By the extreme value theorem, \(\vartheta(G)\) is always attained.
Lemma

\[\vartheta(G \cdot H) \leq \vartheta(G) \vartheta(H) \]
Lemma

\[\vartheta(G \cdot H) \leq \vartheta(G) \vartheta(H) \]

Lemma

\[\alpha(G) \leq \vartheta(G) \]
Lemma

\[\vartheta(G \cdot H) \leq \vartheta(G)\vartheta(H) \]

Lemma

\[\alpha(G) \leq \vartheta(G) \]

Theorem

\[c(G) \leq \vartheta(G) \]

Proof.
From the previous two lemmas, we have for any \(k \geq 0 \):

\[\alpha(G^k) \leq \vartheta(G^k) \leq (\vartheta(G))^k \]
The 5-cycle

Order the vertices of C_5 as u_1, u_2, \ldots, u_5.

Theorem

$$c(C_5) = \sqrt{5}$$
The 5-cycle

Order the vertices of C_5 as u_1, u_2, \ldots, u_5.

Theorem

$$c(C_5) = \sqrt{5}$$

Proof.

$(u_1, u_1), (u_2, u_3), (u_3, u_5), (u_4, u_2), (u_5, u_4)$ is independent in C_5^2, so:

$$c(G) \geq \sqrt{\alpha(C_5^2)} \geq \sqrt{5}$$
The 5-cycle

Order the vertices of C_5 as u_1, u_2, \ldots, u_5.

Theorem

$$c(C_5) = \sqrt{5}$$

Proof.

$(u_1, u_1), (u_2, u_3), (u_3, u_5), (u_4, u_2), (u_5, u_4)$ is independent in C_5^2, so:

$$c(G) \geq \sqrt{\alpha(C_5^2)} \geq \sqrt{5}$$

Unfortunately, $\alpha^*(C_5) = 5/2 > \sqrt{5}$. We need more.
The 5-cycle (cont.)

Proof.
For the upper bound, we give an orthonormal representation:

\[\cos(\gamma) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) \cos(\Gamma) \cdot x_i = 5 - \frac{1}{4} \Rightarrow c(C_5) \leq \vartheta(C_5) = \sqrt{5} \]

This was the first specified imperfect graph capacity!
Proof.

For the upper bound, we give an orthonormal representation:

\[
\cos(\gamma) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) \cos(\Gamma)
\]

\[
c \cdot x_i = 5 - \frac{1}{4} \Rightarrow c(C_5) \leq \vartheta(C_5) = \sqrt{5}
\]

This was the first specified imperfect graph capacity!
The 5-cycle (cont.)

Proof.
For the upper bound, we give an orthonormal representation:

\[
\cos(\gamma) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta) \cos(\Gamma)
\]

\[
c \cdot x_i = 5^{-1/4} \Rightarrow c(C_5) \leq \vartheta(C_5) = \sqrt{5}
\]

This was the first specified imperfect graph capacity!
A generalization

Definition
 A graph G is *vertex-transitive* if for any $u, v \in V(G)$, there is an automorphism σ such that $\sigma(u) = v$.

Example
 C_n, hypercubes, Petersen graph, prisms, Cayley graphs, etc.
A generalization

Definition
A graph G is vertex-transitive if for any $u, v \in V(G)$, there is an automorphism σ such that $\sigma(u) = v$.

Example
C_n, hypercubes, Petersen graph, prisms, Cayley graphs, etc.

Theorem (Lovász)
If G is vertex-transitive and self-complementary, then:

$$c(G) = \vartheta(G) = \sqrt{n}$$
Odd cycles

Theorem (Lovász)

If G is regular with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$, then:

$$\vartheta(G) \leq \frac{-n\lambda_n}{\lambda_1 - \lambda_n}$$

with equality if G is edge-transitive.
Odd cycles

Theorem (Lovász)

If G is regular with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$, then:

$$\vartheta(G) \leq \frac{-n\lambda_n}{\lambda_1 - \lambda_n}$$

with equality if G is edge-transitive.

Corollary

If n is odd, then:

$$\vartheta(C_n) = \frac{n}{1 + \sec(\pi/n)}$$
Theorem (Lovász)
If G is regular with eigenvalues $\lambda_1 \geq \ldots \geq \lambda_n$, then:

$$\vartheta(G) \leq \frac{-n\lambda_n}{\lambda_1 - \lambda_n}$$

with equality if G is edge-transitive.

Corollary
If n is odd, then:

$$\vartheta(C_n) = \frac{n}{1 + \sec(\pi/n)}$$

Is $c(G) = \vartheta(G)$ always?
Kneser graphs

Definition
The *Kneser graph* $KG_{n,r}$ has vertex set the r-sized subsets of \(\{1, \ldots, n\} \), two subsets being adjacent if they are disjoint.
Kneser graphs

Definition
The *Kneser graph* $KG_{n,r}$ has vertex set the r-sized subsets of \{1, \ldots, n\}, two subsets being adjacent if they are disjoint.

Corollary (Lovász)

$$c(KG_{n,r}) = \vartheta(KG_{n,r}) = \binom{n-1}{r-1}$$

Corollary (Erdős-Ko-Rado)

$$\alpha(KG_{n,r}) = \binom{n-1}{r-1}$$
In every case encountered so far, \(c(G) = \vartheta(G) = \sqrt[k]{\alpha(G^k)} \) for some finite \(k > 0 \). Is this always the case?
In every case encountered so far, $c(G) = \vartheta(G) = k\sqrt{\alpha(G^k)}$ for some finite $k > 0$. Is this always the case?

- if G is perfect, $c(G) = \alpha(G)$.
- if G is vertex-transitive self-complementary, $c(G) = \sqrt{\alpha(G^2)}$.
- if G is a Kneser graph, $c(G) = \alpha(G)$.
- ...
In every case encountered so far, \(c(G) = \vartheta(G) = k\sqrt{\alpha(G^k)}\) for some finite \(k > 0\). Is this always the case?

- if \(G\) is perfect, \(c(G) = \alpha(G)\).
- if \(G\) is vertex-transitive self-complementary, \(c(G) = \sqrt{\alpha(G^2)}\).
- if \(G\) is a Kneser graph, \(c(G) = \alpha(G)\).
- ...

If \(c(C_7) = \vartheta(C_7) = \frac{7}{1 + \sec(\pi/7)}\), then \(c(C_7) \neq k\sqrt{\alpha(G^k)}\) for any finite \(k > 0\). Is this possible?
Theorem (Shannon)

In general:

\[c(G \cup H) \geq c(G) + c(H) \]

with equality if \(G \) or \(H \) is perfect.
Theorem (Shannon)

In general:
\[c(G \cup H) \geq c(G) + c(H) \]

with equality if \(G \) or \(H \) is perfect.

So \(c(C_5 \cup K_1) = \sqrt{5} + 1 \), but no power of \(\sqrt{5} + 1 \) is an integer, so:
\[c(C_5 \cup K_1) \neq k\sqrt{\alpha((C_5 \cup K_1)^k)} \]

for any finite \(k > 0 \).
Theorem (Shannon)

In general:

\[c(G \cup H) \geq c(G) + c(H) \]

with equality if \(G \) or \(H \) is perfect.

So \(c(C_5 \cup K_1) = \sqrt{5} + 1 \), but no power of \(\sqrt{5} + 1 \) is an integer, so:

\[c(C_5 \cup K_1) \neq \sqrt[k]{\alpha((C_5 \cup K_1)^k)} \]

for any finite \(k > 0 \).

This indicates that it may still be possible that \(c(C_7) = \vartheta(C_7) \).
Theorem (Haemers)

There is a graph G with $c(G) \leq 7 < \vartheta(G) = 9$.

Remark

G is the Schlafli graph: the intersection graph of 27 lines on a cubic surface.
Theorem (Haemers)

There is a graph G with $c(G) \leq 7 < \vartheta(G) = 9$.

Remark

\overline{G} is the Schl"afli graph: the intersection graph of 27 lines on a cubic surface.

Figure: The Schl"afli graph...
Theorem (Haemers)

There is a graph G with $c(G) \leq 7 < \vartheta(G) = 9$.

Remark

\overline{G} is the Schläfli graph: the intersection graph of 27 lines on a cubic surface.

Figure: The Schläfli graph...

... so, perhaps $c(C_7) < \vartheta(C_7)$. No one knows.
Perhaps the probabilistic method can help. Let $G \sim G_{n,1/2}$.

Theorem (Erdős)

*With high probability, $\alpha(G) = (2 + o(1)) \log n$.**
Perhaps the probabilistic method can help. Let $G \sim G_{n,1/2}$.

Theorem (Erdős)

*With high probability, $\alpha(G) = (2 + o(1)) \log n$.***

Theorem (Juhász)

*With high probability, $\vartheta(G) = \Theta(\sqrt{n})$.***

So w.h.p. $\Omega(\log n) \leq c(G) \leq O(\sqrt{n})$.
Perhaps the probabilistic method can help. Let $G \sim G_{n,1/2}$.

Theorem (Erdős)

With high probability, $\alpha(G) = (2 + o(1)) \log n$.

Theorem (Juhász)

With high probability, $\vartheta(G) = \Theta(\sqrt{n})$.

So w.h.p. $\Omega(\log n) \leq c(G) \leq O(\sqrt{n})$.

No one currently understands the behaviour of $\alpha(G^k)$.

Conjecture (Alon)

With high probability, $c(G) = \Theta(\log n)$.
Computational considerations

- Each $\sqrt[k]{\alpha(G^k)}$ is NP-hard to compute.
Computational considerations

- Each $\sqrt[k]{\alpha(G^k)}$ is NP-hard to compute.
- Every graph whose capacity is known has either:
 - $c(G) = \alpha(G)$
 - $c(G) = \sqrt{\alpha(G)}$
 - $c(G) \neq \sqrt[k]{\alpha(G^k)}$ for any $k > 0$
Computational considerations

- Each $k\sqrt[\text{ } k]{\alpha(G^k)}$ is NP-hard to compute.
- Every graph whose capacity is known has either:
 - $c(G) = \alpha(G)$
 - $c(G) = \sqrt[\text{ } k]{\alpha(G)}$
 - $c(G) \neq k\sqrt[\text{ } k]{\alpha(G^k)}$ for any $k > 0$
- Even when $c(G)$ is not attained in $k\sqrt[\text{ } k]{\alpha(G^k)}$, this sequence may behave badly; it may not well-approximate $c(G)$. (Alon)
Computational considerations

- Each $\sqrt[k]{\alpha(G^k)}$ is NP-hard to compute.
- Every graph whose capacity is known has either:
 - $c(G) = \alpha(G)$
 - $c(G) = \sqrt[2]{\alpha(G)}$
 - $c(G) \neq \sqrt[k]{\alpha(G^k)}$ for any $k > 0$
- Even when $c(G)$ is not attained in $\sqrt[k]{\alpha(G^k)}$, this sequence may behave badly; it may not well-approximate $c(G)$. (Alon)

Seems obvious that the decision problem “$c(G) \geq k$?” is NP-hard.
Computational considerations

- Each $\sqrt[k]{\alpha(G^k)}$ is NP-hard to compute.
- Every graph whose capacity is known has either:
 - $c(G) = \alpha(G)$
 - $c(G) = \sqrt{\alpha(G)}$
 - $c(G) \neq \sqrt[k]{\alpha(G^k)}$ for any $k > 0$
- Even when $c(G)$ is not attained in $(\sqrt[k]{\alpha(G^k)})$, this sequence may behave badly; it may not well-approximate $c(G)$. (Alon)

Seems obvious that the decision problem “$c(G) \geq k$?” is NP-hard.

First things first: is “$c(G) \geq k$?” decidable?
References

Noga Alon.
The Shannon capacity of a union.

Tom Bohman and Ron Holzman.
A nontrivial lower bound on the Shannon capacities of the complements of odd cycles.

W. Haemers.
On some problems of Lovász concerning the Shannon capacity of a graph.

Ferenc Juhász.
The asymptotic behaviour of Lovász’ theta-function for random graphs.

L. Lovász.
On the Shannon capacity of a graph.

C.E. Shannon.
The zero error capacity of a noisy channel.