
Technical Report SOCS-TR-2009.8

March 2009

Context-Sensitive Ranking of Dependencies
for Software Navigation

Martin P. Robillard and Tristan Ratchford
School of Computer Science

McGill University
Montréal, QC, Canada

{martin,tratch}@cs.mcgill.ca

ABSTRACT
Software navigation during change tasks requires developers
to perform numerous search cycles to discover new elements
related to their task. In a typical search cycle a developer
selects an element of interest, triggers a search for its depen-
dencies, inspects the list of results, and selects a result that
appears to be relevant. We are interested in improving the
efficiency of developers engaged in program navigation by
automatically searching for all dependencies to or from ele-
ments already discovered, and continually providing the list
of dependencies, ranked in decreasing order of likelihood to
be related to the task. In this paper, we present a framework
for the systematic evaluation of ranking algorithms based
on multi-element contexts, and report on a preliminary ex-
periment to assess the value of three ranking strategies for
dependencies: using the topology of the dependency graph,
textual similarity, or combination of both. Our results show
that all three strategies significantly improve the probability
of recommending relevant elements in many situations, but
that no ranking strategy appears to be universally optimal.

Keywords
Software Maintenance, Recommendation Systems, Software
Investigation, Empirical Studies

1. INTRODUCTION
Developers engaged in a change task must typically navi-

gate though source code to find and understand the program
elements (e.g., fields or methods) that are relevant to their
task. Program navigation is often assisted by search tools
that can produce the list of elements that are structurally
or textually related to the elements of interest. Search tools
have been with us for a long time [18], and the functional-
ity they provide is now fully and extensively integrated in
modern development environments. For example, Eclipse
can produce the list of elements that refer to a selected ele-
ment through various shortcut keys, menu commands, and
specialized views.

Unfortunately, using search tools involves a non-negligible
overhead: users must select an element to serve as the search
seed, trigger the search, inspect the list of results, and select
the ones that appear to be relevant. Although it follows a
straightforward process, searching code can nevertheless be

inefficient: developers may waste time on, and then give up,
the inspection of long lists of results [16], developers may
have trouble identifying the right seed [11], etc. We believe
that the efficiency of program navigation can be increased
by automatically performing searches in the background and
continually recommending elements that may be relevant to
the current context.

Background searches were experimented with in state-of-
the-art development tools such as Mylyn [8]. However, we
propose to push the idea further by listing elements related
to a development context ranked in a context-sensitive or-
der. In other words, results of background searches should
be ranked in an order that takes into account the elements
that have already been investigated. This is in contrast to
the standard structured/alphabetical order used by current
integrated development environments (IDEs). By consider-
ing a multi-element context, this paper also expands on re-
cent dependency ranking work by others [7, 14], who focused
on the evaluation of dependencies to a single element (see
Section 6). Considering multi-element contexts introduces
many interesting challenges both for the design of ranking
algorithms and for their evaluation, and addressing these
challenges will help us advance towards the long-term goal of
providing active information delivery [21] for software navi-
gation.

Besides alphabetical order, three classes or alternative
strategies can readily be envisioned to rank dependencies:
based on properties of their structural association with the
seed elements, based on textual similarity to the seed ele-
ments, or to use a combination of both strategies. However,
given the myriad of factors that can influence the success
of program navigation activities, it is difficult to predict
whether advanced ranking strategies would result in effi-
ciency gains, and whether one strategy would necessarily
be more useful than another.

To compare different strategies as rigorously and reliably
as possible, we designed a framework for the systematic
evaluation of ranking strategies for dependencies to multi-
element contexts where rankings are evaluated against bench-
marks. We then conducted a series of experiments with this
framework. Although human subjects were involved in the
creation of the benchmarks, the experiments are not based
on human behavior. The key idea of our experimental de-
sign is to sample a subset of elements from a benchmark,

obtain the references to these elements, rank the resulting
elements, and measure how many top-ranked elements are
also found in the benchmark. This design allowed us to pro-
duce robust and completely replicable results, while avoiding
the risk inherent to the variability of human behavior under
experimental conditions.

Our results show that the three strategies we assessed can
significantly improve the probability of selecting relevant el-
ements from dependent elements in many situations. How-
ever, we did not find statistically significant evidence of the
superiority of a particular strategy, including the composite
strategy, but instead discovered that different contexts tend
to favor either structure-based ranking or textual similarity-
based ranking. We conclude that the results of background
searches should be ranked whenever possible, with various
strategies available at the user’s disposal.

The contributions of this paper include:

• An experimental framework to reliably evaluate de-
pendency ranking strategies that explicitly takes into
account multi-element contexts, and

• A detailed assessment of the value of advanced strate-
gies for the context-sensitive ranking of dependencies
in Java systems.

The remainder of this paper is organized as follows. In
Section 2, we present the theoretical underpinnings for our
experimental framework. In Section 3, we describe the three
algorithms we evaluated as part of our experiment. In Sec-
tion 4 we present the details of our experimental. We present
our results in Section 5, discuss the related work in Section 6,
and summarize the paper in Section 7.

2. THEORETICAL FRAMEWORK
Our experimental framework can be expressed precisely

in terms of the concepts defined below.

Program
We assume the existence of a program P , which we abstract
as a call graph P = (M, C), where m ∈ M is a method (or
function) in the program, and C is the“method call” relation
between two methods in the program. In the presence of
dynamic binding, we consider that (mi, mj) ∈ C if mj is
any method that can potentially be executed as the result
of the call (e.g., all overriding or implementing methods).

Seed and Context
A seed S ⊆ M is the set of elements identified by the devel-
oper as relevant to a task. In practice, a seed can be identi-
fied in various ways, for example by monitoring the interac-
tions of a users with an IDE. A task context T ⊆ M, T ⊇ S
is the hypothetical set of all program elements related to
the task at hand. In the situation we model with our exper-
iment, the goal of the developer is to discover T as efficiently
as possible given S. In contrast to previous work [7, 14], a
novel element of our approach is to support the evaluation
of situations where |S| > 1.

Search
A search is a procedure that takes as input a program P =
(M, C) and a seed S, and produces a result R ⊆ M |R∩S =
∅. As an example of a search, we could return all the callers
of methods in S.

Ranking Algorithm
A ranking algorithm rank(P, R, S) is a procedure that orders
a set R according to a particular strategy and in the context
of a particular seed S. A ranking R̄ = {R1, ..., Rn} is an
ordered version of set R (which we denote with an overbar
on the variable name). The set is ordered in decreasing val-
ues of confidence that the element will be relevant to the
developer (i.e, that it will be included in the corresponding
task context T), as determined by the ranking strategy. As
an example of a simplistic ranking algorithm, we could sort
elements in alphabetical order. Naturally, T is not a param-
eter of rank(P, R, S) because at the time of a search we do
not know what the task context is.

Filtering
Given a ranking R̄, we define the operation filtern(R̄) to
return the min(n, |R̄|) elements of R̄ with the highest rank.
For example, filter2({m1, m2, m3}) would return {m1, m2}.
As a shorthand we represent filtern(R̄) as R̄n.

Ranking Precision
The precision of a ranking is a measure of the number of rele-
vant elements in the ranking. We use the standard definition
of precision from the field of information retrieval [1]. For a
task context T and a ranking R̄, the precision is defined as:

precision(R̄, T) =
|R̄ ∩ T |
|R̄|

We can use this formula in the same way to calculate the
precision of filtered rankings R̄n.

3. RANKING ALGORITHMS
Given a seed S, we consider a single type of search that

produces all of the callers and callees of all the methods in S
(i.e. all the neighboring nodes in the call graph according to
our definition of a program). We use this search as a model
of multiple sequential cross-references queries, in part to pro-
duce larger result sets that can more fully test the ranking
strategies. We then apply different ranking algorithms to
the results of this search. The rest of this section provides
the details of the ranking algorithms we studied.

3.1 Random
Random ranks the elements of a set in no particular or-

der. This algorithm will be used as a baseline for comparing
the results of the other algorithms. We did not use Eclipse’s
default alphabetical ranking as a baseline because it poten-
tially interferes with the evaluation of the approach based
on textual similarity, and because we would not be able to
explain why a general purpose scheme such as alphabetical
ranking could be meaningful in the context of a task, except
by accident.

3.2 Topology Analysis
Topology analysis of software dependencies (or “Topo-

logy”) is a technique to produce recommendations for soft-
ware navigation based on the topology of a software depen-
dency graph [10]. The idea behind this algorithm is to rank
elements based on the closeness of their structural associa-
tion with the elements of the seed, and where “closeness” is
defined by a pair of heuristics. We study this ranking algo-

2

rithm as a representative of strategies based purely on struc-
tural analysis. The complete description of the approach,
including the definition of the metrics used, can be found in
a separate paper [10]; The following is a summary (adapted
from [19]).

The topology-based algorithm takes into account two main
characteristics of the call relations between elements: speci-
ficity and reinforcement. Specificity evaluates the “unique-
ness” of a call between a seed element and a recommenda-
tion. For example, if a seed element x is called by five other
elements, x1, ..., x5, and another seed element y is called by
two other elements, y1, y2, then we say that y1 and y2 are
more specific to the seed than x1, ..., x5. Based on the in-
tuition that specific elements are more strongly related to
the seed than less specific ones, our algorithm ranks more
specific elements higher than less specific ones.

Reinforcement evaluates the strength of the intersection
between the seed and a result set. For example, if a seed el-
ement x is related to five other elements x1, ..., x5, and four
of these elements (x1, ..., x4) are already in the seed, then
we say that the remaining element (x5 in our case), is heav-
ily reinforced. On the other hand, if none of the elements
in the result set are also in the seed, we do not consider
the elements to be reinforced. Based on the intuition that
reinforced elements are more strongly related to the seed
than unreinforced elements, our algorithm ranks reinforced
elements higher than less reinforced ones.

The algorithm works by separately analyzing the “calls”
and “called by” relations. First, it obtains, for each element
in the seed, the set of all elements related to it by the relation
type currently analyzed. For example, for the relation type
“called by”, we obtain all callers of each method in the seed.
We then use a formula to produce, for each related element,
a degree of potential interest for the element that is based
on our specificity/reinforcement criterion. We then merge
the results of the analysis of each relation. In the end, our
algorithm produces a single ordered set of elements directly
related to the seed.

3.3 Textual Similarity
We implemented an algorithm that ranks elements based

on how textually similar they are to the elements in the seed
(“TextSim”), as a basic representative of ranking techniques
based on an analysis of the keywords used in definitions and
comments.

TextSim calculates a similarity coefficient between each
method in a seed S and each method in a result set R. The
higher the coefficient assigned to a pair of methods, the more
textually similar they are. Methods in R are then ranked
based on their highest similarity coefficient with any method
in S.

TextSim calculates the similarity coefficient for a pair of
methods using the Vector Space Model [6]. With this ap-
proach, each method is modeled as a vector of index terms.
A term vector is a mapping of the number of occurrences of
terms within a particular document.

We analyzed the source code of all methods to produce
vectors based on terms in the method’s name, the names
of the variables declared within its scope, the names of its
parameters, as well as its associated comments (both regu-
lar and JavaDoc). Within a JavaDoc comment block, the
general comment text and the text of the comments for the
following tags were used: @param, @return, @exception and

@throws. We then obtain similarity coefficients by taking the
cosine distance of a pair of methods’ respective term vectors.
When normalized, the resulting values will range from 0 to
1, where 1 is a perfect match between term vectors and 0
implies no common terms.

Before generating the final term vectors, we used the Apache
Lucene1 text indexing and searching library to remove all
stop words (such as the, and, if) and punctuation from each
text block and convert all text to lowercase. Furthermore,
we broke up compound terms, such those separated by hy-
phenation, or camel case, into separate terms.

To address a number of well-known shortcomings of the
basic vector model, we weighed the terms in each vector
using the tf-idf scheme. A tf-idf vector of term weights has
two components: the term frequency (tf), and the inverse
document frequency (idf). Intuitively, the higher the tf
component, the more strongly the term represents a method.

The second component of tf-idf is the inverse document
frequency (idf). The idf captures the intuition that the more
methods that include a term, the less that term can be used
to discriminate between different methods. Combining the
two components using a standard formula yields the final
tf-idf weights [1].

3.4 Topology–Textual Similarity Hybrid
The Hybrid algorithm combines Topology with TextSim

by computing a ranking by averaging the rank of each ele-
ment produced by the two other algorithms. In other words,
if an element was ranked first using Topology and third
using TextSim, the element would receive the average of
these two and would be ranked second with the Hybrid rank-
ing. Collisions are resolved by pseudo-randomly ordering
elements with the same calculated rank. Our initial intu-
ition is that Hybrid would be superior to Topology and
Hybrid because it promotes elements that are related both
structurally and textually to a seed.

4. EXPERIMENTAL SETUP
We designed our experimental framework to simulate the

generation of a recommendation in a situation where a de-
veloper has uncovered a small number of relevant methods
(the seed), and is interested in investigating methods that
are related to the seed, but has no a priori knowledge about
which of the related methods are likely to be the most in-
teresting. Naturally, if the developer knows the code well,
they can safely ignore the recommendations. For example,
a developer working on the line folding feature in a text ed-
itor discovers a few methods related to folding in a Buffer

class. Since these methods are referenced by dozens of other
methods, the developer must perform many searches to find
the next method to inspect. Instead, we can try to rec-
ommend this method by obtaining all the dependencies to
the already-discovered fold methods and recommending the
top-ranked ones for inspection. Using the terminology of
Section 2, we formalize our experimental framework as fol-
lows.

1http://lucene.apache.org/

3

Obtaining Benchmark Data
1. Target program. Choose m target programs Pi =

(Mi, Ci).

2. Task Context. Given a program Pi = (Mi, Ci), de-
termine n task contexts Ti,j ⊆ Mi. A task context
should include elements that are related to the im-
plementation of a clearly-defined high-level concern or
feature that could realistically be associated with a
software modification task.

This part of the experimental setup results in a total of
m × n benchmark task contexts.

Running Trials on Task Contexts
For each task context Ti:

1. Samples. Randomly generate n seeds Si of p elements
such that ∀ Si, Si ⊆ T . The seeds Si thus model a set
of elements a developer has identified as interesting.
For our initial set of experiments, as described in this
paper, we chose seeds of two elements because a sin-
gle element contains too little information to properly
indicate the intention of the developer. As for higher
numbers, we expect that the larger the seed size, the
better the results, so we chose to use two elements
to test the ranking algorithm in the most unfavorable
conditions. In practice, the number of possible dis-
tinct seeds is bounded by the number of distinct sets
of elements that can be formed from the elements of
T (

(|T |
p

)
). To strike a balance between a good support

for statistical testing and practical feasibility, we chose
a baseline of n = 20. Therefore, for each task context
we generate min(20,

(|T |
2

)
) sample seeds.

2. Search. For each seed Si, produce R, the result of a
search defined at the beginning of Section 3.

3. Rank. Apply all the ranking algorithms to R, to pro-
duce the sets R̄Topology, R̄TextSim, and R̄Hybrid.

4. Measure. Measure the precision of R. This precision
corresponds to the probability of randomly choosing a
task context element from the set of results. Measure
the precision of the filtered versions of sets ranked ac-
cording to the various algorithms, using a filter value
of 5. For example, R̄Topology,5. This precision corre-
sponds to the probability of randomly choosing a task
context element from the set of five most highly ranked
results according to the ranking algorithm. We chose
a value of 5 based on experience [10], as a reasonable
measure of results that a developer would consider be-
fore considering giving up looking through the list. We
do not measure recall because the algorithms are not
designed to recreate the task context, but instead to
recommend one or two elements to the developer’s at-
tention.

We consider the trial a success for an algorithm a if:

precision(R̄a,5, Ti) > precision(R, Ti)

In other words, we consider that our ranking had value
for this task context and sample seed if choosing from the
top elements improves a developer’s chance of inspecting an
element in the task context.

Applying Statistical Tests
The previous test can determine if a particular algorithm
has value for a given task context and seed. To be able to
interpret the results at a higher level, we perform statisti-
cal testing on the n seeds derived for a task context to see
if any observed difference in top-5 precision is statistically
significant for the given task context.

4.1 Statistical Analysis
Essentially, differences between rankings can be expressed

in terms of differences in the probabilities of randomly choos-
ing a task context element. The intrinsic value of a ranking
algorithm can be determined by comparing the ranking of
the algorithm with randomly-ordered results. For example,
if 3 out of 10 elements in a result are in the task context, the
chance of randomly choosing a task context element regard-
less of how they are ranked is 0.3. If an algorithm ranks the
results and 2 of the 3 task context elements are in the top 5,
then randomly choosing from the top 5 elements results in
a 0.4 chance of selecting a context element. In this case, we
would consider the ranking to be valid because it increases
the chance of finding a relevant element in the list of results.
For all trials, we calculate the difference in probability

precision(R̄a,5, Ti) − precision(R,Ti)

where a is Topology, TextSim, or Hybrid.
Similarly, we can compare algorithms between them. For

the purpose of our experiment, we compare Topology and
TextSim against each other, and both Topology and Text-

Sim against Hybrid.
To generalize our results from individual trials to entire

task contexts, we must show that any observed difference
is statistically significant across all samples considered. For
this purpose, we strove to use a statistical analysis that could
demonstrate the superiority of an algorithm for a given task
context while being as easy to interpret as possible. Be-
cause we cannot make any assumption about normality in
our population data, we use the Wilcoxon signed-rank test.
This procedure tests the null hypothesis that scores are dis-
tributed symmetrically around a specified central value (0 in
our case). In other words, if no algorithm is better than the
other, roughly half the probability differences will be nega-
tive, and the median will be close to 0. We can reject the
hypothesis if the estimated median is significantly non-zero
(two-tailed test), or greater than 0 (one-tailed test).

We used one-tailed tests to compare all three algorithms
with Random, as well as Hybrid with both Topology

and TextSim, because our initial hypothesis is that all al-
gorithms should beat Random, and because we suspected
that Hybrid should beat both its components taken individ-
ually. We used a two-tailed test to compare Topology and
TextSim because we had no a priori theory about which
should be superior.

4.2 Benchmark Data
Our experiment relies on the presence of benchmarks in

the form of task contexts, namely, groups of methods that
could reasonably be associated with a task.

We derived our benchmark data from the results of a pre-
vious empirical study of manual concern location [13]. In
this previous study, different human subjects were asked to
identify the source code for 16 different features (also called

4

Table 1: Target Systems

System Version LOC

GanttProject 2.0.2 43 246
Jajuk 1.2 30 679
JBidWatcher 1.0pre6 23 051
Freemind 0.8.0 70 435

“concerns”) in four non-trivial Java systems (Table 1). The
feature descriptions provided to the subjects consisted of a
few paragraphs of text explaining how the feature worked as
mentioned in the user manual, help pages, or user interface
of the system. For example, for the GanttProject system,
one feature had to do with allowing users to add relation-
ships between tasks in a Gantt chart.

For each feature, three different subjects were asked to
identify the fields and methods that were judged to be the
most relevant to the implementation of the feature. The sub-
jects were undergraduate and graduate students with Java
programming experience in Eclipse. No method, process, or
tool (besides the features of the Eclipse environment) were
given to them to complete this task. This process resulted in
16×3 = 48 different mappings between a feature and source
code. We directly reused these task contexts with only one
small modification: we removed the fields from all contexts,
since the search operation we study in our experiment is
based solely on call dependencies between methods. Of the
48 modified benchmark contexts, 8 have from 3–5 elements
(inclusive); 18 have 6–10 elements; 13 have 11–15 elements,
and 9 have more than 15 elements. Because context sizes
of less than 6 elements cannot produce at least 15 distinct
seeds (i.e., combinations of 2 elements), we had to discard
these contexts as unusable for the purpose of our statistical
analysis.

Overall, the 40 remaining task contexts represent sets of
scattered code elements pertaining to different concerns, in
different systems, and identified by different subjects. We
consider this data to represent a good range of variability in
the program navigation scenarios that could be encountered
by developers. In particular, the fact that we have multiple
contexts produced by different subjects for the same task al-
lows us to interpret the sensitivity of our results to different
personal styles of program navigation. Moreover, large vari-
ation between task contexts for a common concern, which
we observed in [13], allows us to consider all task contexts
as pseudo-independent (i.e., not necessarily correlated). In
prior work [13, Table 2], we measured the level of similarity
between each context for a given task, and our overarching
result was that contexts produced by different developers
vary widely. Even the most similar contexts did not come
even close to being equal. As evidence, for the task with the
most similar contexts (c10), only 6 out of a total of 23 ele-
ments had been included by all three subjects.2 Overall, the
contexts for GanttProject and Jajuk were the least similar,
and the contexts for JBidWatcher and Freemind were the
most similar. We take this lack of complete independence
into consideration in our interpretation of the results. Our
benchmark data is available online.3 It includes the source

2This number corresponds to the original analysis, which
included fields in the task contexts.
3http://www.cs.mcgill.ca/˜martin/concerns

code of the four systems analyzed, the descriptions of all
features considered, and the original feature mappings (i.e.,
task contexts) produced by all the subjects.

4.3 Threats to Validity
In designing our experimental framework, we favored a

strong quantitative design that would facilitate evaluation
of many program navigation situations, that would not re-
quire human judgment to compare the algorithms, and that
could be completely and independently replicated. These
benefits are naturally counter-balanced by a number of lim-
itations, most having to do with the artificial and controlled
context in which we conduct our comparison of the three
algorithms. Three consequences of our experimental design
are particularly noteworthy.

Artificial Contexts
Although our benchmark task contexts were created by hu-
man subjects, they were not collected through actual pro-
gram change tasks. However, analysis of our tasks contexts
clearly shows that different people have different views of
what constitutes a relevant task context. As a result, our
benchmarks are not necessarily better or worse than data
that would have been collected by interviewing a developer
at the end of a task. As an advantage, having different
contexts for a given concern allows us to better draw con-
clusions about the performance of the different algorithms
for a specified task.

Approximate Performance Model
Our main measure of performance is to compare with a ran-
dom selection of elements through a list. However, people do
not necessarily choose elements at random: their intuition,
experience, and numerous other factors come into play. Ran-
domness is the only objective way we could approximate be-
havior, considering that personal characteristics of subjects
may lead to either better or worse performance than Ran-

dom (for instance in the case of mistaken assumptions about
the design of the system).

Approximate Seed Selection Model
We generate our seeds by randomly selecting two elements
from the task context. In practice, developers would proba-
bly not identify elements of interest randomly. For the seeds,
however, the fact that both elements are selected from the
tasks context means that they are at least conceptually re-
lated.

5. RESULTS
We first present the results of the basic assessment of our

three algorithms (against Random), and then the results
of the comparative assessment of algorithms against each
other. For each assessment, we present our raw results and
derive high-level observations from the data.

5.1 Basic Assessment
Table 3 reports the results of the comparison of the three

ranking algorithms with random selection. Each row corre-
sponds to the trials for one task context. In the first column,
we list the name of the (task) context as listed on our web-
site (see Section 4.2). The rows are grouped by concern
(thin lines) and by system (thick lines). Contexts 01–04 are

5

Table 2: Successes vs. Random

System Topology TextSim Hybrid

GanttProject 6/12 3/12 4/12
Jajuk 5/9 7/9 6/9
JBidwatcher 12/12 10/12 11/12
Freemind 7/7 7/7 7/7

Total 30/40 25/40 28/40

defined on GanttProject, contexts 05–08 on Jajuk, contexts
09–12 on JBidWatcher, and contexts 13–15 on Freemind (all
three task contexts for concern 16 were eliminated due to in-
sufficient elements in the context, see Section 4.2).

For each row, the table is organized into three major sec-
tions corresponding to the evaluation of the performance
of a given ranking algorithm with respect to random rank-
ing. Each major section comprises two column listings of
the score median estimated by the test (Med. Est.), and the
level of statistical significance of the test (p-value), respec-
tively. A statistically significant result for a positive median
indicates that there is a statistically significant observed in-
crease in the probability of choosing a context element by
selecting one of the top-5 elements provided by the rank-
ing: In other words, the algorithm was reliably successful
for that context. Results significant at the 0.05-level are in-
dicated with an asterisk (*), and results significant at the
0.01-level are indicated with a double asterisk (**).

Scanning down the p-value column for a ranking algo-
rithm, asterisked values identify contexts for which the given
algorithm would have been useful. For example, going down
the column for Topology, we see that the algorithm suc-
ceeds in 30 out of 40 of the cases, and that it succeeds for
all the concerns of the JBidwatcher system (c09–c12). Al-
ternately, by scanning a given row we can see which of the
algorithms beat random for a given context. Table 2 sum-
marizes the success level (considering any results significant
at the 0.05 level or more to be a success).

Observations
The data of Tables 3 and 2 provides partial answers to our re-
search question and allows us to make a number of high-level
observations about the success of context-sensitive ranking
of search results.

General success level
Given the approximate nature of context-sensitive ranking
algorithms, we naturally expect that rankings will not al-
ways be useful. However, our data shows that all the rank-
ing algorithms we evaluated were successful at least for a
majority of contexts (63–75%).

Comparative success level
All three algorithms also fared more or less equally compared
to a random baseline. In particular, contrary to what we
had expected, Hybrid was not necessarily superior to its
individual component algorithms.

System-relative success level
Perhaps the most surprising aspect of our results is the ap-
parent sensitivity of the ranking algorithms to the different
systems they are applied on. Although there is not enough

data at this level of granularity to validate the relation sta-
tistically, the results of Table 2 are eloquent: with very few
exceptions, all three ranking algorithms were successful for
all task contexts defined on JBidWatcher and Freemind (the
smallest and largest of our target systems, respectively). In
contrast, the algorithms fared reasonably well on Jajuk and
not well at all on GanttProject. A detailed analysis of the
data for GanttProject explains the poor performance of the
ranking algorithms for three difficult contexts (c01-p14, c02-
p06, and c04-p09). For these contexts, many of the seeds
contained at least one element that was not structurally re-
lated to any other element in the context, making it very
unlikely to reliably produce meaningful rankings with our
metric, for any algorithm considered. This was not the
case for c01-p07 and c03-04, however. For these context,
we found no obvious characteristic of the system that could
readily explain the lack of results for the three algorithm,
which may simply have been a coincidence.

Context-relative success level
Taking into account the similarity between the benchmark
task contexts documented in a previous report [13, Table
2], we noticed that the four most similar contexts (c10, c11,
c12, c13) also show a strong correlation in the results of the
algorithm. Although the correlation can be explained ana-
lytically, it is not clear why the results are positive because
there is no a priori relation between how similarly humans
produce task contexts and how successful synthetic ranking
algorithms perform on these contexts. The impact of this
context similarity on our results is simply one of proportion:
In Table2, for JBidWatcher, instead of considering the algo-
rithms successful in 12/12 cases (for instance), it is probably
more reasonable to consider that it was always successful,
but in 4–5 cases. Except for the most similar contexts just
discussed, it is impossible to predict the results of the algo-
rithms based on the similarity of the underlying contexts.
For instance, results for contexts c09-* are positive across
the board, but the different versions of this context are far
from similar (only 3 common elements).

5.2 Comparative Assessment
Evaluating the differences between algorithms yielded much

fewer statistically significant results. This can easily be ex-
plained by two factors. First, while the precision of an un-
filtered result set R can (theoretically) take any value, the
precision of a filtered result set R5 can take only six dis-
tinct values (0/5, 1/5, 2/5, etc.). As a result, the difference
between the filtered precision calculated for two algorithms
can take only 11 distinct values (0/5, ±1/5, ±2/5, etc.). Be-
cause of a lower granularity in the range of possible difference
scores, the likelihood that any distribution will be symmet-
ric is increased. Second, as discussed in Section 5.1, all three
ranking algorithms fared more or less equally against Ran-

dom, so we could not expect large differences between algo-
rithms. In fact, inspection of the individual trial difference
scores shows many sets of 0-valued differences. Attempts to
increase the range of differences by increasing the filter value
to 50% of the total result set did not yield more results. We
thus report our initial findings with a filter window of 5.

Table 5 follows the same format as Table 3, but reports
on the results of the tests comparing the algorithms be-
tween themselves. Again, tests involving Hybrid are one-
tailed, whereas the comparison of Topology with TextSim

6

Table 3: Results of the Wilcoxon Signed-Rank Test, Comparison with Random

Topology/Random TextSim/Random Hybrid/Random

Context Med. Est. p-value Med.Est p-value Med.Est p-value

c01-p03 0.015 0.048∗ 0.015 0.0428∗ 0.015 0.0691
c01-p07 0.015 0.2523 0 0.5157 0.015 0.1359
c01-p14 -0.03 0.9991 -0.03 0.9848 -0.03 0.9848

c02-p03 0.06 0.0312∗ 0.03 0.1329 0.07 0.0204∗

c02-p04 0.075 0.0012∗∗ -0.04 0.994 0.015 0.2256
c02-p06 0 0.6946 0 0.336 0 0.6946

c03-p04 0 0.3114 0 0.3114 0 0.3114
c03-p07 0.045 0.1652 0.1625 0.0017∗∗ 0.105 0.0053∗∗

c03-p08 0.14 0.0005∗∗ 0.14 0.0015∗∗ 0.14 0.001∗∗

c04-p09 0.0275 0.0763 -0.05 0.9986 -0.015 0.7303
c04-p11 0.195 0.0004∗∗ -0.03 0.9933 0.085 0.0069∗∗

c04-p40 0.0075 0.0155∗ -0.0075 0.9912 0 0.1404

c05-p04 -0.015 0.5 0.06 0.0071∗∗ -0.015 0.5
c05-p11 0.1275 0.0012∗∗ 0.0475 0.0366∗ 0.08 0.0024∗∗

c06-p04 0.155 0.0045∗∗ -0.035 0.8185 0.085 0.0344∗

c06-p08 0 0.2376 0.0125 0.0286∗ 0.0575 0.0121∗

c07-p05 0.04 0.012∗ 0.07 0.006∗∗ 0.085 0.0042∗∗

c07-p08 -0.0325 0.8804 0.0825 0.0396∗ -0.065 0.981
c07-p10 0 0.4498 -0.04 0.993 -0.02 0.6933

c08-p12 0.37 <0.0001∗∗ 0.17 0.0003∗∗ 0.335 <0.001∗∗

c08-p13 0.095 0.0002∗∗ 0.125 0.0002∗∗ 0.085 0.005∗∗

c09-p10 0.135 0.0037∗∗ 0.135 0.003∗∗ 0.115 0.0097∗∗

c09-p12 0.165 0.0002∗∗ 0.14 0.0006∗∗ 0.195 0.0004∗∗

c09-p13 0.115 0.0013∗∗ 0.17 0.0004∗∗ 0.17 0.0004∗∗

c10-p14 0.0075 0.0289∗ 0 0.2026 0 0.0774
c10-p21 0.05 0.0103∗ 0.125 0.0016∗∗ 0.125 0.0016∗∗

c10-p23 0.085 0.0016∗∗ 0.11 0.0013∗∗ 0.12 0.0013∗∗

c11-p23 0.2825 0.0002∗∗ 0.25 0.0002∗∗ 0.26 0.0002∗∗

c11-p24 0.13 0.0004∗∗ 0.235 <0.0001∗∗ 0.185 <0.0001∗∗

c11-p25 0.285 0.0002∗∗ 0.255 0.0002∗∗ 0.28 0.0002∗∗

c12-p07 0.065 0.0173∗ 0.05 0.0824 0.0675 0.0173∗

c12-p23 0.175 0.0004∗∗ 0.145 0.0005∗∗ 0.1875 0.0003∗∗

c12-p26 0.195 <0.0001∗∗ 0.2025 0.0003∗∗ 0.23 <0.0001∗∗

c13-p21 0.205 0.0002∗∗ 0.15 0.0002∗∗ 0.2125 0.0002∗∗

c13-p27 0.1125 0.0151∗ 0.17 0.0004∗∗ 0.185 <0.0001∗∗

c13-p28 0.31 <0.0001∗∗ 0.1 0.0044∗∗ 0.1525 <0.0001∗∗

c14-p21 0.11 0.0019∗∗ 0.2075 0.0004∗∗ 0.175 0.0004∗∗

c14-p28 0.1 0.017∗ 0.225 0.0003∗∗ 0.155 0.0036∗∗

c15-p29 0.14 0.0007∗∗ 0.1725 0.0002∗∗ 0.165 0.0002∗∗

c15-p32 0.075 0.0012∗∗ 0.015 0.0496∗ 0.0475 0.0113∗

is two-tailed. A positive estimated median indicates that
Topology was superior for that test (and vice-versa). In
the interest of space, we only include data points where we
have a statistically significant rejection of the null hypothe-
sis. Because it compares the two most different algorithms,
the Topology/TextSim column contains the most significant
values.

Table 4 summarizes the success level (considering any re-
sults significant at the 0.05 level or less to be a success). The
results for the Topology/TextSim comparison are split
across two columns to distinguish cases where Topology

beats TextSim (positive median) and the inverse (negative
median).

Table 4: Inter-Algorithm Successes

Hybrid/ Hybrid/ Topo/ Text/
System Topo Text Text Topo

GanttProject 0/12 2/12 4/12 0/12
Jajuk 0/9 2/9 3/9 1/9
JBidwatcher 3/12 0/12 0/12 2/12
Freemind 1/7 2/7 1/7 2/7

Total 4/40 6/40 8/40 5/40

7

Table 5: Results of the Wilcoxon Signed-Rank Test, Inter-Method Comparisons

Hybrid/Topology Hybrid/TextSim Topology/TextSim

Concern Med. Est. p-value Med.Est p-value Med.Est p-value

c02-p04 0.05 0.0098∗∗ 0.1 0.0009∗∗

c04-p09 0.1 0.0107∗

c04-p11 0.1 0.0021∗∗ 0.2 0.0005∗∗

c04-p40 0.05 0.0197 ∗

c05-p11 0.1 0.0401∗

c06-p04 0.1 0.0205∗ 0.2 0.0092∗∗

c07-p08 -0.1 0.0187 ∗

c08-p12 0.1 0.001∗∗ 0.2 0.0082∗∗

c09-p13 0.05 0.0098∗∗ -0.05 0.0197∗

c10-p21 0.05 0.0098∗∗

c11-p24 0.05 0.0098∗∗ -0.1 0.0027∗∗

c13-p21 0.05 0.0098∗∗

c13-p27 0.1 0.0117∗

c13-p28 0.1 0.0024∗∗ 0.2 0.002∗∗

c14-p21 -0.1 0.0248∗

c14-p28 -0.1 0.0243∗

Observations
These tables help us answer our research questions and pro-
vide additional insights on the relative success of each algo-
rithm.

Evaluation of Hybrid

Based on our evidence the value of a hybrid approach is
not demonstrated. Comparisons with Random (Table 2)
show that Hybrid did not help increase the number of cases
where a ranking is useful, and inter-algorithm comparisons
(Table 4) show only a few cases where Hybrid is a better op-
tion. From Table 5 we also see that the cases where Hybrid

beats Topology and/or TextSim are in fact mutually ex-
clusive, so we have no evidence of cases where Hybrid would
be the absolute best strategy.

Topology vs. TextSim

Although in a given context one algorithm may be better
suited than another, the finding that overall Topology is
successful more often is corroborated by both the compari-
son with Random and the inter-algorithm comparisons.

5.3 Conclusions
We are encouraged by our findings that context-sensitive

ranking of dependencies seems to improve the chance of se-
lecting elements relevant to a task in a majority of cases. Al-
though much more work is needed to make context-sensitive
ranking a practical reality, our initial results pave the way
for additional research on the topic, in particular by showing
that one promising avenue for improving the success of the
approach as a whole seems to be through the early deter-
mination of the type of ranking algorithm that may be the
most appropriate to a given task context.

6. RELATED WORK
As part of our previous work on the development of the

topology analysis of software dependencies [10], we evalu-
ated the Topology algorithm using an experimental frame-
work different from the one described in this paper. We also
performed the experiment on a different flavor of the algo-
rithm (which considered field accesses), considered differ-
ent filtering sizes (1–5), and used a different statistical test
(generalized estimating equations). Our experience with this
work led to the improved (and simpler) framework described
in this paper. Also, we conducted our earlier experiment on
different benchmark contexts defined on four target systems
other than the ones used in this paper. Despite all the dif-
ferences, the overall results showed that choosing from the
top results based on topology analysis of software depen-
dencies improved the odds of selecting a context element in
most, but not all, of the scenarios considered. Our most
recent results confirm this initial finding. In contrast to the
above mentioned previous work, however, this paper focused
on the methodological and analytical problems of compar-
ing different ranking algorithms, of which Topology is only
one instance.

We have also tried to compare the value of topology anal-
ysis of dependencies through comparative studies involving
human subjects using a variety of tools [4]. These studies
have been much less conclusive, primarily due to the large
influence of the difficulty of the task on the subjects. The
challenge encountered in this prior work partially motivated
our efforts to develop a quantitative evaluation framework
for ranking algorithms.

Related work by others include that of Hill et al. [7],
who proposed a sophisticated textual similarity algorithm
for ranking structural dependencies to a single seed element.
Their algorithm takes as input a method and produces its
“neighborhood”of structural dependencies (what we call the
search result), ranked according to their textual-similarity

8

metric. For this reason, although the paper describes the
approach as integrating lexical and structural information,
we comparatively consider the approach to be only tex-
tual similarity-based because the only structural analysis
performed is to extract calling dependencies (which must
be done for all algorithms in our experimental framework).
However, in addition to the standard term-based textual
similarity analysis exemplified by our TextSim implemen-
tation, their technique also weighs terms based on where it
appears (e.g., method name vs. local variable), and uses lo-
gistic regression to determine the optimal weights for terms.
Hill et al. evaluate their technique on the same benchmark
set as the one used for this paper, and include a compari-
son of with a version of Topology (labeled “Suade” in the
paper).

Another related approach is that of Saul et al., who re-
cently proposed two techniques to analyze software depen-
dencies to identify code related to a function of interest,
which they also evaluated through synthetic experiments [14].
One of their approaches (FRAN) attempts to rank its neigh-
boring dependencies using a strategy based on a random
walk of the neighboring dependency graph; the other (FRIAR)
uses sets of functions commonly called together to make in-
ferences about which function is the most related to a seed el-
ement. Their evaluation of both approaches (which included
a comparison with a version of our Topology algorithm),
involved feeding 330 functions of the Apache project to de-
termine how well each approach could rediscover benchmark
elements, using statistical analysis to determine significance,
as we have done.

In their evaluation, both Hill et al. and Saul et al. com-
pare the performance of their ranking algorithm to that of
the Suade algorithm [10] which we have used as our Topol-

ogy algorithm, and report superior performance for their
technique. However, both papers only report on evaluations
using single element contexts. This choice analytically ex-
plains the inferior performance of Topology because, for
single element contexts, the better part of the Topology

algorithm is not exercised (see Section 3.2) and the remain-
ing ranking heuristic is too simple to produce reliable rank-
ings in a majority of cases. More importantly, the limita-
tion of the experiments to single element contexts makes
it practically impossible to determine how the different ap-
proaches would fare on multi-element contexts. In brief, al-
though ranking dependencies to single elements potentially
offers valuable benefits to developers who explicitly trigger a
cross-reference dependency search, the long-term goal of our
research is to facilitate active delivery of recommendations
through background searches based on a non-trivial context
of interactions. To facilitate advancing towards this goal,
we provided an experimental framework that makes provi-
sions for multiple-element contexts, as well as a comparative
evaluation of relatively simple baseline techniques.

A wide variety of other systems exist that provide recom-
mendations on elements to visit by using a wide variety of
data sources and analyses. We discuss representative exam-
ples. Feature location approaches attempt to identify pro-
gram elements related to a high-level concepts, with varying
degrees of automation. Originally developed based on dy-
namic analysis [20], the idea has also been investigated us-
ing other techniques such as natural language analysis [15],
or using hybrid approaches [9]. In the context of this pa-
per, feature location approaches are more elaborate than

the cross-reference searches we investigated, as their goal
is generally to identify all elements related to a concept,
as opposed to helping developers identify elements of inter-
est among the results of a given query. Similar to feature
location techniques, impact analysis techniques [2] usually
involve the analysis of software dependencies (e.g., through
coupling measures [3]) to produce an assessment of the ripple
effects of changes in a software system. The goal of feature
location and impact analysis techniques is to provide an ex-
tensive set of source code locations meeting a criterion, as
opposed to the scenario of supporting incremental program
navigation we intend to support.

Program navigation analysis techniques involve monitor-
ing the source code elements visited by a developer in an in-
tegrated development environment, and using this informa-
tion to support the work of developers [5, 8, 12, 17]. These
approaches are conceptually similar but vary in the type of
interaction data collected and analyzed, and in the nature
of the information provided to developers. Among the ap-
proaches cited, Mylyn [8] is noteworthy in that support for
context-based background searches was developed for it, al-
beit without ranking the results in a context-sensitive man-
ner. This feature was not released, however.

Yet another class of approaches recommend source code
elements related to a task using an analysis of the revision
history of a software system [22, 23]. Although one could
envision designing quantitative experiments to validate most
code recommendation approaches, the experimental frame-
work we contribute in this paper only applies to approaches
where the seed (queried element) is of the same type as the
elements found in the results, and where the seed is concep-
tually associated with the results.

7. SUMMARY
Software navigation is generally assisted by search tools

that produce results that are not ordered in a task-meaningful
way, requiring developers to scan long lists of results to find
potentially relevant elements. Automatically recommend-
ing developers structurally-related elements that are likely
to be pertinent to their task has the potential to increase
the efficiency of developers navigating source code. To help
assess the value of ranking schemes for dependency recom-
mendations based on multi-element contexts, we designed
a completely replicable experimental framework. We used
our framework to evaluate three different ranking algorithms
based on: dependency structure, textual similarity, and a
combination of both. Our results show that all three algo-
rithms significantly increase the chance of selecting a rele-
vant element from the search results in a majority of the
benchmark cases studied. All three algorithms also fared
almost equally well overall, but for individual cases we ob-
served many situations where one type of fundamental ap-
proach works very well while the other does not. The main
conclusion we draw from this observation is that it may not
be desirable to apply a universal composite algorithm that
may be weaker than some of it components. Ultimately,
characteristics of the task could guide the choice of algo-
rithm used to rank background search results. Future re-
search should help determine what these characteristics are,
and how we can take them into account for choosing the
ranking strategy.

9

Acknowledgments
The authors are grateful to Nachi Nagappan for his valuable
insights on our statistical analysis, and to Barthélémy Da-
genais and Gail Murphy for comments on the paper. This
work was funded by NSERC and IBM.

8. REFERENCES
[1] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto.

Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[2] Shawn A. Bohner and Robert S. Arnold. Software
Change Impact Analysis. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996.

[3] Lionel C. Briand, Jürgen Wüst, and Hakim Lounis.
Using coupling measurement for impact analysis in
object-oriented systems. pages 475–482, 1999.

[4] Brian De Alwis, Gail C. Murphy, and Martin P.
Robillard. A comparative study of three program
exploration tools. In Proceedings of the 15th IEEE
International Conference on Program Comprehension,
pages 103–112, 2007.

[5] Robert De Line, Mary Czerwinski, and George
Robertson. Easing program comprehension by sharing
navigation data. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing, pages 241–248, 2005.

[6] A. Wong G. Salton and C.S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[7] Emily Hill, Lori Pollock, and K. Vijay-Shanker.
Exploring the neighborhood with Dora to expedite
software maintenance. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated
Software Engineering, pages 14–23, 2007.

[8] Mik Kersten and Gail C. Murphy. Using task context
to improve programmer productivity. In Proceedings of
the 14th ACM SIGSOFT International Symposium on
the Foundations of Software Engineering, pages 1–11,
2006.

[9] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian
Marcus, Giuliano Antoniol, and Václav Rajlich.
Feature location using probabilistic ranking of
methods based on execution scenarios and information
retrieval. IEEE Transactions on Software Engineering,
33(6):420–432, 2007.

[10] Martin P. Robillard. Topology analysis of software
dependencies. ACM Transactions on Software
Engineering and Methodology, 17(4):1–36, 2008.

[11] Martin P. Robillard, Wesley Coelho, and Gail C.
Murphy. How effective developers investigate source
code: An exploratory study. IEEE Transactions on
Software Engineering, 30(12):889–903, 2004.

[12] Martin P. Robillard and Gail C. Murphy.
Automatically inferring concern code from program
investigation activities. In Proceedings of the 18th
International Conference on Automated Software
Engineering, pages 225–234, 2003.

[13] Martin P. Robillard, David Shepherd, Emily Hill,
K. Vijay-Shanker, and Lori Pollock. An empirical
study of the concept assignment problem. Technical

Report SOCS-TR-2007.3, School of Computer Science,
McGill University, 2007.

[14] Zachary M. Saul, Vladimir Filkov, Premkumar
Devanbu, and Christian Bird. Recommending random
walks. In Proceedings of the the 6th joint meeting of
the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 15–24, 2007.

[15] David Shepherd, Zachary P. Fry, Emily Hill, Lori
Pollock, and K. Vijay-Shanker. Using natural
language program analysis to locate and understand
action-oriented concerns. In Proceedings of the 6th
International Conference on Aspect-oriented Software
Development, pages 212–224, 2007.

[16] Jonathan Sillito, Gail Murphy, and Kris De Volder.
Questions programmers ask during software evolution
tasks. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 23–34, 2006.

[17] Janice Singer, Robert Elves, and Margaret-Anne
Storey. NavTracks: supporting navigation in software
maintenance. In Proceedings of the 21st IEEE
International Conference on Software Maintenance,
pages 325–334, 2005.

[18] Warren Teitelman and Larry Masinter. The Interlisp
programming environment. IEEE Computer,
14(4):25–33, April 1981.

[19] Frédéric Weigand-Warr and Martin P. Robillard.
Suade: Topology-based searches for software
investigation. In Proceedings of the 29th International
Conference on Software Engineering, pages 780–783,
2007.

[20] Norman Wilde and Michael C. Scully. Software
reconnaissance: Mapping program features to code.
Software Maintenance: Research and Practice,
7:49–62, 1995.

[21] Yunwen Ye, Gerhard Fischer, and Brent Reeves.
Integrating active information delivery and reuse
repository systems. In Proceedings of the 8th ACM
SIGSOFT International Symposium on the
Foundations of Software Engineering, pages 60–68,
2000.

[22] Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and
Mark C. Chu-Carroll. Predicting source code changes
by mining change history. IEEE Transactions on
Software Engineering, 30(9):574–586, 2004.

[23] Thomas Zimmermann, Peter Weißgerber, Stephan
Diehl, and Andreas Zeller. Mining version histories to
guide software changes. In Proceedings of the 26th
ACM/IEEE International Conference on Software
Engineering, pages 563–572, 2004.

10

