
Copyright c©2006 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
full citation in a prominent place. Copyright for components
of this work owned by others than T. H. Merrett must be
honoured. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or fee. Re-
quest permission to republish from: T. H. Merrett, School
of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the tax-

payers of Québec and of Canada who have paid his salary

and research grants while this work was developed at McGill

University, and from his students (who built the implemen-

tations and investigated the data structures and algorithms)

and their funding agencies.

T. H. Merrett c©06/2

1

Semistructure from Relations
T. H. Merrett

McGill University

Part I
• A programming language talk

disguised as a database talk.

• Why relations?

• Why semistructure?

Part II

• Relations and path expressions.

Part III

• Irregular and unknown structure.

Part IV

• Markup and data on the web.

Integration. Integration. Integration.

Dedicated to the late Alberto Oscar Mendelzon

T. H. Merrett c©06/2
2

Part I A PL talk disguised as a DB talk

• Not top-down (e.g., functional, logic, constraint

paradigms).

• But bottom-up: programming for secondary

storage.

• But not, for the moment, about

– performance or optimization (NB terabytes

or more),

– compiler flexibility or debugging.

T. H. Merrett c©06/2

3

Why relations?

• Unit for bulk data:

the essence of SS programming

(hence necessary for DB).

• High-level operations (relational algebra).

• Abstraction over looping:

like LISP, APL, SETL, .. but for SS.

T. H. Merrett c©06/2

4

Why semistructure?

• Bottom-up approach is empirical, not

theoretical.

• So language must be tested in many

applications.

• Semistructured data is a DB hot topic, but

sufficiently worked out to provide a good test.

What is semistructure?

• Characterized by irregular or unknown

structure.

• Notable language feature is path expressions.

T. H. Merrett c©06/2
5

www.cs.mcgill.cs/∼tim/semistruc/rel2semi.ps.gz

www.cs.mcgill.cs/∼tim/semistruc/recnest.ps.gz

Part II Relations and path expressions

• Paths of attributes.

• Paths of conditions.

• Paths for updates.

T. H. Merrett c©06/2

6

Part II Relations and path expressions

Paths of attributes

• Operations on relations.

• Operations on attributes.

• Nested relations and level changes.

• Paths of attributes.

T. H. Merrett c©06/2

7

Part II Relations and path expressions

Paths of attributes: relations

Family tree example 1.

Child(Name DoB Pa Ma)
Mary 1934 Ted Alice

James 1935 Ted Alice

Joe 1933 Max Sal

Unary operators.

ChildND <− [Name, DoB] where DoB > 1933

in Child;

ChildND(Name DoB)
Mary 1934

James 1935

Name in Child ≡ [Name] in Child

(Name)
Mary

James

Joe

T. H. Merrett c©06/2
8

Part II Relations and path expressions

Paths of attributes: relations, cont.

Family tree example 1.

Child(Name DoB Pa Ma)
Mary 1934 Ted Alice

James 1935 Ted Alice

Joe 1933 Max Sal

Spouse(Ma Pa Wed)
Alice Ted 1933

Binary operators. Note: infixed syntax.

([Ma, Pa] in Child) ujoin [Ma, Pa] in Spouse

(Ma Pa)
Alice Ted

Sal Max

djoin, ijoin, ..

T. H. Merrett c©06/2
9

Part II Relations and path expressions

Paths of attributes: attributes

Domain algebra: red, equiv

let Oldest be red min of DoB;

equiv min of DoB by Pa

equiv min of DoB by Ma, Pa

Family tree example 1.
Child

(Name DoB Pa Ma) Oldest [min Pa] [min Ma,Pa]
Mary 1934 Ted Alice 1932 1932 1934

James 1935 Ted Alice 1932 1932 1934
Joe 1933 Max Sal 1932 1933 1933

Pete 1932 Ted Sal 1932 1932 1932

T. H. Merrett c©06/2

10

Part II Relations and path expressions

Paths of attributes: nesting

Domain algebra subsumes relational algebra.

let ChildN be [Name] in Children;

famChildN <− [ChildN] in Family ;

⇒ famChildN(ChildN(Name))

Level-raising through anonymous singleton

FamChildN <− [red ujoin of ChildN] in Family ;

Family tree example 2.
Family famChildN FamChildN
(Ma Pa Wed Children) ChildN (ChildN)

(Name DoB) (Name) (Name) (Name)
Alice Ted 1933 Mary 1934 Mary Mary Mary

James 1935 James James James
Pete

Sal Ted 1930 Pete 1932 Pete Pete Mary
James
Pete

Path expression

Family/ChildN ≡ [red ujoin of ChildN] in Family

T. H. Merrett c©06/2

11

Part II Relations and path expressions

Paths of attributes

Family tree example 3
Person)
(Name Family)

(Conj Wed Children)
(Name DoB Family)

(Conj Wed Children)
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

Person/Family/Children/Name ≡

[red ujoin of

[red ujoin of Mary

[Name] in James

Children] in Pete

Family] in

Person

T. H. Merrett c©06/2

12

Part II Relations and path expressions

Paths of attributes (cont.)

(Family tree example 3.)

Option

Person(/Family/Children)?/Name ≡
Name in Person ujoin
[red ujoin of Ted

[red ujoin of Mary

[Name] in James

Children] in Pete

Family] in
Person

Kleene Star (recursive domain algebra)

Person(/Family/Children)*/Name ≡
let Nom be Name ujoin Ted

[red ujoin of Mary

[red ujoin of James

Nom] in Pete

Children] in Sue

Family ; Tom

[red ujoin of Nom] in Person Joe

T. H. Merrett c©06/2
13

Part II Relations and path expressions

Paths of conditions

Family tree example 1.

Child(Name DoB Pa Ma)
Mary 1934 Ted Alice

James 1935 Ted Alice

Joe 1933 Max Sal

Nullary relation is Boolean

[] in Child ≡ “something in Child” ≡
“there is a child” true

[] where Name = "Joe" in Child true

Path expression

(Family tree example 3).

Name where Family/Children/Name = "Mary"

in Person ≡
Name where

([] where

([] where Name = "Mary" in

Children) in

Family) in

Person

T. H. Merrett c©06/2
14

Part II Relations and path expressions

Paths of conditions, cont.

Recursive path expression

Name where (Family/Children/)*Name = "Mary"

in Person ≡

func mary is

{ Name = "Mary" or

([] where

([] where mary in Children)

in Family)

};

Name where mary in Person

NB and, xor, etc. have no syntactic sugar.

T. H. Merrett c©06/2

15

Part II Relations and path expressions

Paths for updates

Family tree example 1.

Child(Name DoB Pa Ma)
Mary 1934 Ted Alice

James 1935 Ted Alice

Joe 1933 Max Sal

update Child change

DoB <− if Name = "Mary" then "1933"

else DoB;

Child(Name DoB Pa Ma)
Mary 1933 Ted Alice

James 1935 Ted Alice

Joe 1933 Max Sal

T. H. Merrett c©06/2

16

Part II Relations and path expressions

Paths for updates, cont.

Path expression

(Family tree example 3).

update Person/Family/Children change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

update Person change

update Family change

update Children change

DoB <− if Name = "Mary" then "1933"

else DoB;

T. H. Merrett c©06/2

17

Part II Relations and path expressions

Paths for updates, cont.

Recursive path expression

update Person(/Family/Children)* change

DoB <− if Name = "Mary" then "1933"

else DoB; ≡

proc mary33 is

{ DoB <− if Name = "Mary" then "1933"

else DoB;

if [] in Family then update Family change

if [] in Children then

update Children change mary33;

};

update Person change mary33;

T. H. Merrett c©06/2

18

Part III Irregular and unknown structure

• Schema query and update.

Transpose metadata

operator, originally devised

for association data mining.

• Missing and multiple values.

• Wildcards.

• Schema discovery.

T. H. Merrett c©06/2

19

Part III Irregular and unknown structure

Schema query and update.

Union type
Family tree example 4.

domain DoB strg|intg;
Child(Name DoB Pa Ma)

Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

Transpose operator
domain att attr;
domain typ type;
domain val any;
let xpose be transpose(att, typ, val);
transposeChild <−

[Name, DoB, Pa, Ma, xpose] in Child;

transposeChild

(Name DoB Pa Ma xpose)
(att typ val)

Mary intg: Ted Alice Name strg strg:Mary
1934 DoB intg intg:1934

Pa strg strg:Ted
Ma strg strg:Alice

James strg: Ted Alice Name strg strg:James
1935 DoB strg strg:1935

Pa strg strg:Ted
Ma strg strg:Alice

T. H. Merrett c©06/2
20

Part III Irregular and unknown structure

Schema query and update, cont.

Query on structure

Find all integer dates of birth

intgDoB <− where xpose/att = quote DoB and

xpose/typ = intg in Child;

intgDoB

(Name DoB Pa Ma)
Mary intg:1934 Ted Alice

Update on structure

domain DoB strg|intg;

Child(Name DoB Pa Ma)
Mary intg:1934 Ted Alice

James strg:1935 Ted Alice

update Child change DoB <− (strg)DoB

using where xpose/att = quote DoB and

xpose/typ = intg in Child;

Child(Name DoB Pa Ma)
Mary strg:1934 Ted Alice

James strg:1935 Ted Alice

T. H. Merrett c©06/2
21

Part III Irregular and unknown structure

Missing and multiple values

I By union type
domain child strg;
domain DoB intg;
domain Name strg;
domain chiln(Name, DoB);
domain Children child|chiln;
domain Conj strg;
domain Wed strg;

Family(Conj Wed Children)
Alice 1933 child:Bernice

relation Chiln(DoB,Name) <−
{(1934,"Mary"),(1935,"James")};

update Family/Children add Chiln ≡
update Family change

update Children add Chiln;
Family(Conj Wed Children)

Alice 1933 child: Bernice

chiln:
(Name DoB)
Mary 1934
James 1935

T. H. Merrett c©06/2
22

Part III Irregular and unknown structure

Missing and multiple values, cont.

II By polymorphic relation
domain Conj strg;
domain Wed strg;
domain Child strg;
let Name be Child;
let Children be relation(Name);

Family(Conj Wed Child) Name Children

(Name)
Alice 1933 Bernice Bernice Bernice

update Family change
replace Child with Children;

update Family/Children add Chiln

Family(Conj Wed Children)
Alice 1933 (Name)

Bernice
(DoB Name)
1934 Mary

1935 James

T. H. Merrett c©06/2

23

Part III Irregular and unknown structure

Wildcards

Family tree example 5.

FamEmp

(Name Family Employer)
(Conj Wed) (Boss Conj Subord)

Ted Alice 1933 Pete Alan Carole

famEmp/./Conj ≡

[red ujoin of

[red ujoin of Conj] in

.] in FamEmp

...should give Alice, Alan:

T. H. Merrett c©06/2

24

Part III Irregular and unknown structure

Wildcards, cont.

Transpose analyses leaves only:
transposeAll(att,typ) for non-leaf

as well as for leaf attributes.
let nonleaves be transposeAll(att) djoin

transpose(att);

FamEmp

(Name Family Employer) nonleaves

(..) (..) (att)
Family

Employer

let FE be [red ujoin of eval att] in nonleaves;

famEmp/./Conj ≡ famEmp/FE/Conj ≡

[red ujoin of

[red ujoin of Conj] in

FE] in FamEmp

(Conj)
Alice

Alan

T. H. Merrett c©06/2
25

Part III Irregular and unknown structure

Recursion and wildcards

Person//Name ≡ Person(/.)*/Name ≡

let Nom be Name ujoin

[red ujoin of Nom] in .;

[red ujoin of Nom] in Person;

Family tree example 3
Person)
(Name Family)

(Conj Wed Children)
(Name DoB Family)

(Conj Wed Children)
(Name DoB Family)

Ted Alice 1933 Mary 1934 Max 1956 Sue 1957 —
Tom 1958 —

James 1935 Ann 1959 Joe 1960 —
Sal 1930 Pete 1932 —

(Name):{(Ted), (Mary), (James), (Pete), (Sue), (Tom), (Joe)}

T. H. Merrett c©06/2

26

Part III Irregular and unknown structure

Schema discovery

Person

(Name Family)
(Conj Children)

(Name Family)
(Conj Children)

(Name)

let attrib be self;

let schema be transpose(attrib) union

[attrib, schema] in .;

Schema <− [attrib, schema] in Person;

Schema

(attrib schema)
(attrib schema)

(attrib schema)
(attrib schema)

(attrib schema)
(attrib)

Person Name

Family Conj
Children Name

Family Conj
Children Name

T. H. Merrett c©06/2
27

Part IV

Markup and data on the web.

Semstructure/text

• Specialized operator, mu2nest:

marked-up → nest, including order

information.

• Text querying: metadata relational operator,

grep.

Other applications

• Data Streams? Skyline?

www.cs.mcgill.cs/∼tim/semistruc/rel2semi.ps.gz

www.cs.mcgill.cs/∼tim/semistruc/recnest.ps.gz

T. H. Merrett c©06/2
28

Highlights

• Binary operators must be infixed.

• Nullary relations are Boolean.

• Need domain algebra as well as relational

algebra.

• Domain algebra subsumes relational algebra

for nesting.

• Nesting => recursive nesting (no 2nd class).

• Metadata is important for advanced work:

– transpose, transposeAll, quote, eval, self

T. H. Merrett c©06/2
29

Conclusion

• Thinking relations through carefully →

• Subtle adjustments to query syntax →

• General purpose SS programming language →

• Everything XML and XQuery can do and more.

Integration. Integration. Integration.

T. H. Merrett c©06/2

30

