
Topological Structures for Spatial Databases in Two and Three

Dimensions

T. H. Merrett

School of Computer Science
McGill University,

3480 University St., Montreal, Que. H3A 2A7, Canada,
Email: tim@cs.mcgill.ca

Abstract

In two dimensions, faces are cycles of edges and ver-
tices are cycles of edges. In three dimensions, faces are
cycles of edges and edges are cycles of faces. These
insights provide the basis for topologies of compo-
nents of any number of dimensions in two- and three-
(and more-) dimensional spaces, as might be used for
mapping, computer-aided design, etc. We give data
structures and basic operations for two- and three-
dimensional topologies.

Keywords: spatial data, topological model, 2D, 3D

1 Introduction

Although computer representations for spatial data
have been available for over three decades, it does
no harm, and may be beneficial, to think the sub-
ject through from first principles again from time to
time. The multitudinous approaches that have been
worked out (Samet 1990, Laurini & Thompson 1992)
each have strengths and weaknesses, and alternatives
which may combine the strengths of several should be
investigated.

Spatial data cannot fully be represented merely
as sets of vectors of coordinates. If computer mem-
ory, primary and secondary, had infinite capacity, and
hence no round-off error, point data could be stored
as such coordinate tuples, and coincidence of coordi-
nates for two or more points would suffice to indicate
coincidence of the points. Even so, useful information
would be lost, because points are merely the zero-
dimensional denizens of space. The one-dimensional
denizens (edges), two-dimensional (faces), and so on,
depending on the overall dimensionality of the space
being considered, have relationships among them-
selves as well as with the points (vertices), and these
should also be captured.

To represent these relationships requires a topo-
logical model as well as the metric data. This paper
discusses a topological model. In order to get to essen-
tials, it is preferable to follow ideas which are applica-
ble to any number of dimensions, even though we will
limit ourselves to the practical cases of topologies of
ordinary spaces of only two or three dimensions. This
should be enough to provide a basis for important
applications such as map making, geographical infor-
mation systems, and architectural and other three-
dimensional computer-aided design systems.

Some of these applications, such as geographical
maps, require very large amounts of data, and so we

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Seventeenth Australasian Database Conference
(ADC2005), Hobart, Australia. Conferences in Research and
Practice in Information Technology, Vol. . , Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

will consider data structures which are scalable to
the point of being able to represent more data than
can fit into RAM, the primary memory of comput-
ers. Even for smaller amounts of data, as might be
needed to specify a building or an engineering CAD-
CAM system, the abstractions required by processing
on secondary storage provide helpful simplifications.
For this reason, we need the experiences of databases
rather than of conventional data structures.

The starting point for this paper is the “quad-
edge” model of Guibas and Stolfi (Guibas & Stolfi
1985) for the topology of two dimensions. We will de-
scribe this in the next section and in section 3, but in
terms suited to secondary storage rather than RAM.
The quad-edge model captures the fact that both ver-
tices and faces are cycles of edges in two dimensions.
The resulting representation is sufficient for 2D struc-
tures on any surface, including the topological equiva-
lents of spheres, toruses, etc., and it even offers struc-
tures on one-sided surfaces such as the Klein bottle.
We will not go so far, but the ability to deal with
surfaces with holes, at least, enables the quad-edge
representation to cope with tunnels and bridges when
it is modelling geospatial data.

Guibas and Stolfi’s approach is important enough
to be worth pushing to higher dimensions. The next
section adapts their 2D representation to secondary
storage and then presents the 3D extension. Section 3
discusses operations on the 2D structure, and sec-
tion 4 introduces three-dimensional operations. We
mention Guibas and Stolfi’s very elegant approach at
the end of section 3, but since it does not seem to
extend to 3D, we mainly develop a more practical
implementation. In section 5 we go on to consider
disconnected topologies and holes, and in section 6
we relate the new data structures to some of the clas-
sical approaches.

2 Data Structures in 2D and 3D

Figures 1 and 2 give the topological properties of enti-
ties in, respectively, two and three dimensions. These
entities are vertices (v), edges (e), faces (f) and “3-
topoi” (3t). The latter term is intended for volumet-
ric cells, and is taken, in the same way as the word
“polytope”, from the Greek τ óπoσ (“place”). The in-
tention of this term, and of including both the two-
and three-dimensional topologies in a single discus-
sion, is to emphasize the extensibility of the ideas to
any number of dimensions in fairly obvious ways.

The “# components” lines in each figure give the
usual binomial coefficients. These represent the num-
ber of different basic lower-dimensional denizens of
the respective 2D and 3D spaces. Thus, 2-space has
two basic edges, which if normalized and orthogonal
could form the conventional coordinate axes for met-
ric data (except that we are not in this paper con-
sidering metrics but the more abstract topologies).

v e f
components 1 2 1

←− ←−
hasa1 2 c

−→ −→
hasa2 c 2

Euler v − e + f = 2

Figure 1: Two-dimensional Topology

v e f 3t
components 1 3 3 1

←− ←− ←−
hasa1 2 c b

−→ −→ −→
hasa2 b c 2

Euler v − e + f −3 t = 0

Figure 2: Three-dimensional Topology

Similarly, 3-space has not only three basic edges, but
also three basic faces: these might be visualized as the
three planes formed by each possible pair of orthog-
onal basis edges (except, again, we are being more
general than orthogonality, which is a metric prop-
erty). The 1s for vertices and for faces (in 2-space) or
for 3-topoi (in 3-space) indicate denizens which can-
not be resolved into components.

The “hasa1” lines include the left-pointing arrows
above, and show how denizens relate to denizens of
the immediately lower dimension. Thus, any edge
has exactly two (2) vertices, its endpoints, in either
two or three dimensions. Similarly, in both cases,
any face has a cycle (c) of edges around its boundary.
We will follow the convention that cycles are taken
counterclockwise (just as, in a discussion of metrics,
positive angles are measured counterclockwise). In
three dimensions, a 3-topos is bounded by a ball (b) of
faces, which have their own topological relationships
among themselves, depending on shared edges, that
we will need to be able to infer from the data structure
we aim to build.

The “hasa2” lines are dual to the “hasa1” lines, in
the usual topological sense. In d dimensions, (d− k)-
dimensional entities are dual to k-dimensional enti-
ties: faces to vertices in 2D, 3-topoi to vertices and
faces to edges in 3D. The “hasa2” entries reverse the
orders of the “hasa1” entries. Any face in 3D sepa-
rates exactly two (2) 3-topoi. Any edge in 2D sep-
arates exactly two (2) faces, but any edge in 3D is
surrounded by a cycle (c) of faces (in the 2D special
case, the cycle has two elements). Any vertex in 2D
terminates a cycle (c) of edges, but vertices in 3D
are emballed (b) by edges, which relate to each other
through shared faces. The duality of these statements
with those in the previous paragraph can be seen by
substituting the names of dual entities and suitably
modifying the names of the relationships.

Finally, we give, for each case, the Euler relation-
ships (for connected topologies and embedding spaces

without holes). In two dimensions, the surface con-
taining the entities to be described, must be topo-
logically equivalent to a sphere for the given Euler
relationship to hold. This includes an infinite pla-
nar surface if all directions are imagined to attain the
same “point at infinity”. Thus, a triangle in 2D has 3
vertices, 3 edges and 2 faces (internal and external):
3−3+2 = 2. (A circle must have a vertex, which both
starts and ends its bounding edge.) There are anal-
ogous considerations in three dimensions. The Euler
relationships provide a check on our thinking about
spatial entities, but we do not explicitly use them in
the paper and so do not extend them to embedding
spaces with holes.

Everything else in figures 1 and 2 is independent
of the nature of the embedding space.

These figures guide us to the data structures we
must build to capture two- and three-dimensional
topologies in full generality. The first is the 2D
structure proposed by Guibas and Stolfi (Guibas &
Stolfi 1985). Here is the “quad-edge” representation
of the square shown in figure 3 in a form suited for
secondary storage, i.e., relational.

QE(vf seqE edge dirE)
1 1 a 0
1 2 d 2
2 1 b 0
2 2 a 2
3 1 c 0
3 2 b 2
4 1 d 0
4 2 c 2
F 1 a 3
F 2 b 3
F 3 c 3
F 4 d 3
B 1 d 1
B 2 c 1
B 3 b 1
B 4 a 1

3

1 2

4

F

B

c

d

a

b

Figure 3: Two-dimensional Square

Since figure 1 shows that vertices and faces are
dual and that both are cycles of edges, it makes sense
to combine vertices and faces into the one attribute,
vf, and for each vertex and face to show the sequence,

seqE, of edges, edge that make up the cycle. (We
will understand the sequence numbers to be cyclic,
so that 1 follows 4 in each case.) Each edge clearly
must appear four times in the data structure, once
for each endpoint vertex and once for each face it
separates: this follows from the two 2 entries in fig-
ure 1, hence the name, “quad-edge”. Guibas and
Stolfi thus supposed that each edge can have four “di-
rections” associated with it, and they assigned 0 as
the vertex-direction of an edge leaving the vertex, 2 as
the vertex-direction of an edge arriving at the vertex,
1 as the face-direction of the edge the face is to the
right of, and 3 as the face-direction of the edge the
face is to the left of. This is a useful labelling, because
it allows the representation to encode directions, and
because any tuple with an even dirE then describes
a vertex in vf, while any tuple with an odd dirE de-
scribes a face. Note that the odd directions are at
right angles to the even, and that the sequence, 0, 1,
2, 3, of directions forms a counterclockwise complete
revolution. Figure 3 shows the face-directions as thin
lines.

We will describe operations on this structure in
section 3.

Do not be distracted by the apparent three-
dimensional nature of figure 3. The “back” face, B,
shown behind the “front” face, F, is presented there
as if the square were drawn on a sphere. It could
equally well be the face outside the square, on an in-
finite plane. This just underlines that, topologically,
the exterior face has the same footing as the interior.

A truly three-dimensional entity can have more
than two faces per edge. As figure 2 shows, edges are
cycles of faces as well as faces being cycles of edges.
We illustrate this in figure 4, which shows a square
“sandwich” with a diagonal cut, C, which we also
consider to be a face.

3

1 2

4 c

d

a

b

e

f

C

B2

B1

F2

F1

Figure 4: Three-dimensional Square With Cut Face

The data structure dictated by figure 2 takes three
relations. The first two, VE and TF, assign directions
to edges, and, since faces are duals of edges, to faces
in an analogous way.

VE(vertex edge dirE) TF(topos face dirF)
1 a 0 IN1 F1 0
1 d 2 IN1 B1 0
1 e 0 IN1 C 2
1 f 2 IN2 F2 0
2 a 2 IN2 B2 0
2 b 0 IN2 C 0
3 b 2 OUT F1 2
3 c 0 OUT F2 2
3 e 2 OUT B1 2
3 f 0 OUT B2 2
4 c 2
4 d 0

Here, the edge directions from vertex to vertex are
as shown in figure 4 with dirE set to 0 for its source
vertex and 2 for the destination. The topoi are not
shown, to keep the diagram uncluttered, so we now
describe them. As relation TF indicates, there are
two interior topoi: IN1 bounded by faces F1 in front,
B1 behind and the “cut”, C; and IN2 bounded by faces
F2 in front, B2 behind and C. Since each face separates
exactly two topoi, the directions of faces are defined
from topos to topos, with the sources and sinks in this
example chosen arbitrarily to be from interior topoi
to OUT through the front and back faces, and from
IN2 to IN1 through face C. Thus each face has dirF 0
for its source topos, and 2 for the sink topos.

The final relation, FE, shows both faces as cycles
of edges and edges as cycles of faces.

FE(face dirF seqF seqE edge dirE)
F1 3 2 1 a 3
F1 3 2 2 b 3
F1 1 1 3 e 1
F2 3 2 1 c 3
F2 3 2 2 d 3
F2 3 3 3 e 3
B1 1 1 1 f 1
B1 1 1 2 b 1
B1 1 1 3 a 1
B2 3 3 1 f 3
B2 1 1 2 d 1
B2 1 1 3 c 1
C 1 2 1 e 1
C 1 2 2 f 1

This shows sequences for both edge and face: be-
cause they are cycles, it does not matter where the se-
quences start, but we have supposed that seqF starts
on an outside face and passes through the interior,
ending on another outside face, and that seqE follows
edges in alphabetical order. (The way the tuples are
ordered in the above display of FE, it is easier to see
the cycles of edges, but tuple order does not matter
in a relation, and the display is equivalent to one re-
arranged to bring out the cycles of faces.)

Edges have the directions already shown relative to
their endpoints. Their directions relative to the faces
they bound (the odd-numbered directions in dirE)
can no longer be determined by (thin) lines crossing
from one face to another because of the possibility
that more than two faces meet at an edge. But since
we assigned a direction to each face, from the topos
on one side to the topos on the other, then both the
directions of edges relative to faces, dirE, and the di-
rections of faces relative to edges, dirF, can be given
by invoking a right-hand, or counterclockwise, rule.
We will say that if the direction of the face opposes
the right-hand direction around the edge, then the
edge-direction of the face, dirF, is 1 otherwise it is
3. Similarly, if the direction of the edge opposes
the right-hand direction of the face, then the face-
direction of the edge, dirE, is 1 otherwise it is 3. The
“right-hand direction” is the direction the fingers of
the right hand point when its thumb points along the

direction of the face or the edge as given in relations
VE and TF, respectively.

We can refine the topologies relating “balls” of
edges around vertices and of faces around topoi by
joining FE with VE and TF, respectively. Thus, FE
join VE reveals, for vertex 1, for instance, the con-
nections (a, e), (a, f), (d, e) and (d, f) between pairs
of edges that share faces, and similarly for the other
vertices. (Note that (e, f) connect through both ver-
tices 1 and 3.) Correspondingly, FE join TF gives
the pairs of faces (F1,B1), (F1,B1) and (F1,B1) that
share edges for topos IN1, and so on.

These examples conclude our discussion of the
two-and three-dimensional data structures to capture
the general topology. It can be formalized at the ex-
pense of intuitive clarity. In keeping with the name
“quad-edge” for the 2D structure, we can call the
three relations of the 3D structure “face-edge”, re-
flecting the cycles that are central to the structure.
Data structures alone are of small use, so we must
now consider operations on them.

3 Operations in 2D

Guibas and Stolfi (Guibas & Stolfi 1985) assert that
a single, simple, symmetric and self-inverting opera-
tor is sufficient for two-dimensional processing. We
illustrate and implement it now on relation QE from
section 2.

Guibas and Stolfi’s single operator, splice(p, q),
works on edge-direction pairs, p=(edgep,dirEp) and
q=(edgeq,dirEq), and consists of two swaps (although
that they are swaps will not be apparent from our
initial implementation).

splice((e, d), (e′, d′)) is
{ swapAfter((e, d), (e′, d′));
swapBefore((e, (d−1)mod4), (e′, (d′−1)mod4))
}

Here the subtraction mod 4 takes direct advantage
of the way we indexed the four edge-directions in
section 2.

As an example, we open the square of fig-
ure 3 at vertex 2, using the QE representa-
tion: splice((a,2),(b,0)) = {swapAfter((a,2),(b,0));
swapBefore((a,1),(b,3))}. The first swap will oper-
ate on the vertex part of QE, and will generate a new
vertex whose name we will suppose is also supplied
as a parameter, VF, along with the parameters of
splice(). The second operates on the face part and
will have the necessary effect of fusing the two faces
F and B.

In our implementation (not Guibas and Stolfi’s),

swapAfter(VF)(p, q) is
if p, q are in different cycles

(i.e. have different vf values)
then resequence seqE for p, q

so that each is last in its respective cycle;
merge the cycles by adding the highest
seqE value for one cycle to all seqE
values for the other and by changing
vf← VF for both

else resequence seqE for q
so that it is last in the cycle;
split the cycle into two by subtracting the
seqE value for p from all larger seqE
values and by changing vf← VF
for these tuples.

The algorithm for swapBefore() is identical except
that “last” becomes “first” in both the then and else
clauses, and the seqE value subtracted (in the else
clause) becomes that of the predecessor of p.

Here is the effect on QE of
splice(5)(F)((a,2),(b,0)) (where the 5 is the vf
parameter for swapAfter() and the F is for swapBe-
fore().

QE(vf seqE edge dirE)
1 1 a 0
1 2 d 2
2→5 1→2→1 b 0
2 2→1 a 2
3 1 c 0
3 2 b 2
4 1 d 0
4 2 c 2
F 1→4 a 3
F 2→1 b 3
F 3→2 c 3
F 4→3 d 3
B→F 1→2→6 d 1
B→F 2→3→7 c 1
B→F 3→4→8 b 1
B→F 4→1→5 a 1

We have coded this algorithm in a database pro-
gramming language with a suitably flexible relational
algebra (don’t try it in SQL!), but providing the back-
ground to explain even the brief result is beyond the
scope of this paper.

To reverse the process and close up the square
again, we repeat the splice() operation, changing only
the two name parameters:

splice(2)(B)((a,2),(b,0)).
The fused vertices are now named 2 again, and the
face B reappears. Apart from this naming, the oper-
ation is its own inverse.

As a further exploration, try converting the square
to a pyramid (remember, a pyramid is a two-
dimensional topological structure if it is taken to be a
partitioning of the sphere), using, in addition to QE
from section 2, the following supplies

Supplies(vf seqE edge dirE)
1′ 1 e 0
2′ 1 f 0
3′ 1 g 0
4′ 1 h 0
5 1 e 2
5 2 f 2
5 3 g 2
5 4 h 2
F′ 1 h 1
F′ 2 h 3
F′ 3 g 1
F′ 4 g 3
F′ 5 f 1
F′ 6 f 3
F′ 7 e 1
F′ 8 e 3

and the four operations
splice(1)(F1)((a,0),(e,0))
splice(2)(F2)((b,0),(f,0))
splice(3)(F3)((c,0),(g,0))
splice(4)(F4)((d,0),(h,0))

You can then go on to build, for example, a tetra-
hedron from the pyramid, using four splices, and a
triangular prism from the tetrahedron, using eight
splices.

We promised a mention of Guibas and Stolfi’s
more elegant but less practical implementation, which

also makes clear that the two components of the
splice() operator are indeed swaps. This requres us
to replace the “enumerated sequence” representation
of cycles in QE by an “element pair” representation.
For the square of figure 3 we show this for both faces
but for only vertex 2 among the vertices. Note that
faces and vertices are not explicitly named in the enu-
merated sequence representation, and that the cycles
alone suffice.

ElementPair
(edgep dirEp edgeq dirEq)

: : : :
a 2 b 0
b 0 a 2
: : : :
a 3 b 3
b 3 c 3
c 3 d 3
d 3 a 3
d 1 c 1
c 1 b 1
b 1 a 1
a 1 d 1

SwapAfter((a,2),(b,0)) operates on the (edgep,dirEp)
columns and swaps (a,2) with (b,0) there: clearly
this produces two cycles of one element each, namely
the two new, free endpoints replacing vertex 2.

SwapBefore((a,1),(b,3)) operates on the
(edgep,dirEp) columns and swaps (a,1) with (b,3),
making a single sycle of eight elements, namely the
fusion of faces F and B. (Try drawing the new thin
lines that result in the opened square!)

The impracticality of this appealing approach is
that it does not easily allow the user to specify the
new name(s) needed (for example, for a new vertex).
(For full treatment, not only is the name needed, but
also the metric data, such as the coordinates for ver-
tex 5.) It also does not extend to three dimensions.

4 Operations in 3D

In the two-dimensional, quad-edge, representation,
vertices and faces are each cycles of edges, so two
complementary swap() operations suffice as the basic
update. In three dimensions, the face-edge represen-
tation holds mutual cycles in FE and the other, non-
cyclic links in VE and TF. Updates consist of swap()s
for insertion into and removal from cycles, and further
operations, not self-invertible, to deal with the non-
cyclic links.

In two dimensions, the dual of an operation is its
own inverse, as in the case, discussed in section 3, of
opening and closing a square. This example may be
summarized as

Operation split vertex, fuse faces;
Dual/inverse split face, fuse vertices.

In three dimensions, we may have four
distinct possibilities, as for example

Operation add face, split topos;
Inverse remove face, fuse topoi;
Dual add edge, split vertex;
Inverse of dual remove edge, fuse vertices.

We will here only illustrate the 3D update opera-
tions for an instance of this particular family, leaving
formalization for another publication. We start with

the Inverse case, removing face C from the “sand-
wich” of figure 4.

The update is

In FE:
swapAfter(e′)((F1,1),(C,1))
swapAfter(f′)((B1,1),(C,1))

In TF:
Rename IN2 to IN1

Everywhere:
Delete tuples containing C

Here, we are removing face C from after face F1 in
the cycle around edge e, and from after face B1 in
the cycle around edge f. SwapAfter() is as specified
in section 3, adapted for cycles of faces around an
edge. (We could have used swapBefore() instead,
discarding edges e and f and keeping edges named e′

and f′.) Topoi IN1 and IN2 can be found associated
with C in FT and we can suppose that the user has
specified IN1 as the name of the fused topos.

The result, before deleting C, is

FEnoC(face dirF seqF seqE edge dirE)
F1 3 2 1 a 3
F1 3 2 2 b 3
F1 1 1 3 e 1
F2 3 2 1 c 3
F2 3 2 2 d 3
F2 3 1 3 e 3
B1 1 2 1 f 1
B1 1 1 2 b 1
B1 1 1 3 a 1
B2 3 1 1 f 3
B2 1 1 2 d 1
B2 1 1 3 c 1
C 1 1 1 e′ 1
C 1 1 2 f′ 1

and

VE(vertex edge dirE) TFnoC(topos face dirF)
1 a 0 IN1 F1 0
1 d 2 IN1 B1 0
1 e 0 IN1 C 2
1 f 2 IN1 F2 0
2 a 2 IN1 B2 0
2 b 0 IN1 C 0
3 b 2 OUT F1 2
3 c 0 OUT F2 2
3 e 2 OUT B1 2
3 f 0 OUT B2 2
4 c 2
4 d 0

Then all C tuples are removed to give the final result.
The inverse of this, namely the operation that in-

serts face C and splits topos IN1 into IN1 and IN2,
starts with the above final result and provides, for
FE, the additional tuples

(face dirF seqF seqE edge dirE)
C 1 1 1 e′ 1
C 1 1 2 f′ 1

and, for TF

(topos face dirF)
IN1 C 2
IN2 C 0

The update is

In FE:
swapAfter(e)((F1,1),(C,1))
swapAfter(f)((B1,1),(C,1))

Using TF and FE, find faces of topos IN1
linked to F1 or B1 via any edge except e or
f and then, in TF, change the topos for any
other face to IN2

SwapAfter() effectively undoes its previous invoca-
tions on the same faces. The operation on TF finds
all faces that will bound the new topos and renames
them (actually, it works through the complement);
the inputs e, f and IN2 are supplied to the swaps,
or can be found in the new TF tuples for C.

The dual operation splits a vertex by adding an
edge. Given additional tuples for FE

(face dirF seqF seqE edge dirE)
F1′ 1 1 1 g 1
F2′ 3 2 1 g 3

and, for VE

(vertex edge dirE)
5 g 2
1 g 0

the operation to split vertex 1, by inserting a new
edge g, to a new vertex 5, from which edge e
continues to vertex 3 as before is

In FE:
swapAfter(F1)((e,1),(g,1))
swapAfter(F2)((d,3),(g,3))

Using VE and FE, find edges of vertex 1 linked
to e or d via any face except F1 or F2 and then,
in VE, change the vertex for any other edge to 5

Comparison with the previous insertion, of face C,
shows the duality.

The inverse of the dual is the dual of the inverse,
i.e., of the first update discussed in this section.

There are further families of examples, whose im-
plementation is now evident. (They do not exhaust
the possibilites in 3D or the applications of our ap-
proach.) For instance, there are families (operation,
inverse, dual, dual inverse) based on

1. add edge, split face;

2. add vertex, split edge;

and, more closely related to the 2D updates

3. remove face from edge (split edge, fuse topoi).

(In items (1) and (2), the inverse operations must
check that the cardinalities are 2: 2-element cycles of
edges (i.e., 2D) or faces in (1); 2-element collections
around vertices or topoi in (2). Operations in (3)
require only single swaps and simple renaming.)

It is instructive to visualize each of the operations
in these families: try it!

5 Loops, Shells and Holes

Our discussion so far has been restricted to simple
topologies. For example, faces are bounded by only
one cycle of edges each, and we have not explicitly
considered distinct solids. These are both examples of
disconnected topologies. Our three-dimensional data
structure copes with disconnected solids, e.g., two
separate tetrahedra, ore even one tetrahedron inside
another, without modification. Guibas and Stolfi’s

original two-dimensional structure, the element-pair
representation at the end of section 2, can handle dis-
connected face boundaries without alteration, but our
enumerated-sequence representations in both 2D and
3D must be augmented to distinguish the different
cycles from each other that can now border a single
face.

This is easy. We just add a cycle attribute, and
include it an any treatment of faces, where face has
hitherto been processed on its own. For instance, here
is the representation of the three-dimensional flying
saucer, with three “front” and one “back” (B) faces,
shown in figure 5. (Note that each edge starts and
ends on a single vertex.)

F1

F2

F3

B

c

a

b

1
2

3

Figure 5: Three-dimensional Flying Saucer

VE(vertex edge dirE) TF(topos face dirF)
1 a 0 IN F1 2
1 a 2 IN F2 2
2 b 0 IN F3 2
2 b 2 IN B 2
3 c 0 OUT F1 2
3 c 2 OUT F2 2

OUT F3 2
OUT B 2

FE(cycle face dirF seqF seqE edge dirE)
1 F1 3 2 1 a 3
2 F1 3 2 1 b 3
1 F2 1 2 1 b 1
2 F2 1 1 1 c 1
1 F3 3 2 1 c 1
1 B 1 1 1 a 3

In this minimal example, we use the cycle attribute
to distinguish the two (one-element) cycles bounding
face F1 and similarly for face F2. If these faces had
been bounded by a couple of squares or triangles, the
cycles would have had four or three elements each, but
there would still be two cycles per face. A face with
two islands in it would have three distinct bounding
cycles, and so on.

A type of operation we have not so far considered
includes converting the flying saucer to a doughnut
with three faces, separated by edges a, b and c. Vi-
sually, we would do this by pushing face F3 down until
it is completely flush with the central part of the back
face, B, and then deleting F3 and the part of B it is in
contact with: edge c now bounds faces F2 and B.

In terms of the data structure, the new dough-
nut has VE unchanged, TF unchanged except for the
deletion of tuples pertaining to F3, and FE as follows.

FE(cycle face dirF seqF seqE edge dirE)
1 F1 3 2 1 a 3
2 F1 3 2 1 b 3
1 F2 1 2 1 b 1
2 F2 1 1 1 c 1
2 B 3 2 1 c 1
1 B 1 1 1 a 3

The change to FE is trivial: only the penultimate
tuple shown has changed, by replacing F3 with B, and
ensuring that face B now has two distinct cyles bound-
ing it. We do not even need a swap operation.

6 Antecedents

One of the early topological models was DIME (Cooke
& Maxfield 1967), the Dual Independent Map Encod-
ing developed for the 1970s U.S. Censuses. It was
meant for urban street networks, and identified for
each street (edge) both the terminating intersections
(vertices) and the blocks (faces) to the left and to the
right. We can see that this presaged, for a particular
application, parts of the present general approach.

In three dimensions, octrees, constructive solid ge-
ometry, and the boundary model have engaged the
major efforts at representation and data structures.
Since our work is closest to boundary models, we do
not discuss the others.

The boundary model (b-rep) (Samet 1990,
Mäntylä 1987) holds both metric and topological in-
formation about the boundaries of solids. Topologi-
cally, it follows Poincaré in extending the Euler equa-
tion (section 2) to topologies with any number of dis-
connected components in n-dimensional embedding
spaces (Kline 1990). The model uses vertices, edges
and faces, and adds two further topological elements
which are aggregates: loops are cycles of edges, and
allow faces to be bounded by more than one cycle; and
shells are independent connected components. It in-
cludes the 5×5 possible pairwise relationships among
these five topological entities. The model uses a spe-
cialization of the Euler-Poincaré equation in six vari-
ables (vertex, edge, face, shell, genus and hole, where
genus gives the topology of the embedding space and
hole describes holes in the solids). One equation in
six variables describes a five-dimensional hyperplane
in an abstract six-dimensional space, and so we need
five “basis vectors” to described all possible solids rep-
resented by b-rep. These translate into five “Euler
operators” (Baumgart 1974, Floriani 2003) used to
create and alter solids in b-rep.

Apart from the initialization operator, our above
discussion already includes these Euler operators.
Three are in section 4: namely the “add edge, split
vertex” dual of the “add face, split topos” operator
worked out in that section; the “remove face, fuse
topoi” inverse of the same; and the “add edge, split
face” operator listed among the families at the end of
the section. The fourth is the hole-punching operator
of section 5 that converted flying saucer to torus in
the example given there.

Thus, our face-edge representation is at least as
powerful as b-rep. In fact it is more powerful, because
b-rep does not support free faces or wire-frame struc-
tures (Floriani 2003). Here is the face-edge represen-
tation of the free face shown as a “sail” on the three-
sided “football” on the left side of figure 6. (Note the
similarity to the free edges in 2D after we opened the
square in section 3.)

1
1 3

d e
a
b

2

2
b
a

a
b

c
c c

Figure 6: (l) Football with sail (r) Linked footballs

VE(vertex edge dirE) TF(topos face dirF)
1 a 0 IN ab 0
1 b 0 IN bc 0
1 c 0 IN ca 0
2 a 2 OUT ab 2
2 b 2 OUT bc 2
2 c 2 OUT ca 2
1 d 0 OUT ade 2
2 e 0 OUT ade 0
3 d 2
3 e 2

FE(cycle face dirF seqF seqE edge dirE)
1 ab 1 1 1 a 1
1 ab 3 2 2 b 3
1 bc 1 1 1 b 1
1 bc 3 1 2 c 3
1 ca 1 2 1 c 1
1 ca 3 2 2 a 3
1 ade 3 3 1 a 3
1 ade 3 1 2 e 3
1 ade 1 1 3 d 1

Weiler (Weiler 1986b) gives a detailed discussion of
three-dimensional entities which cannot be mapped to
a two-dimensional manifold (which quad-edge, in our
two-dimensional discussion, does). The right-hand
part of figure 6 and both parts of figure 7 show ex-
amples adapted from that paper.

Here is the face-edge data structure for the two
footballs, connected at a single vertex, shown on the
right of figure 6. The first six tuples of each of VE,
TF and FE are identical to the first six tuples of each
for the single football just discussed, so we do not
repeat them.

VE(vertex edge dirE) TF(topos face dirF)
: : : : : :
2 a′ 0 IN′ ab′ 0
2 b′ 0 IN′ bc′ 0
2 c′ 0 IN′ ca′ 0
3 a′ 2 OUT ab′ 2
3 b′ 2 OUT bc′ 2
3 c′ 2 OUT ca′ 2

FE(cycle face dirF seqF seqE edge dirE)
: : : : : : :
1 ab′ 1 1 1 a′ 1
1 ab′ 3 2 2 b′ 3
1 bc′ 1 1 1 b′ 1
1 bc′ 3 1 2 c′ 3
1 ca′ 1 2 1 c′ 1
1 ca′ 3 2 2 a′ 3

The left side of figure 7 shows a similar construct,
two cylinders with teardrop cross-sections, joined on
the edge defined by the apexes of the tear.

1

2

a

b

a

b

c
2 1

a

Figure 7: (l) Common edge (r) Vertex on face

VE(vertex edge dirE) TF(topos face dirF)
1 a 2 IN a 0
1 c 0 IN b 0
1 a′ 0 IN abc 0
2 b 2 IN′ a′ 0
2 c 2 IN′ b′ 0
2 b′ 0 IN′ abc′ 0

OUT a 2
OUT b 2
OUT abc 2
OUT a′ 2
OUT a′ 2
OUT abc′ 2

FE(cycle face dirF seqF seqE edge dirE)
1 a 1 1 1 a 1
1 b 3 2 1 b 3
1 abc 3 2 3 a 3
1 abc 1 1 2 c 1
1 abc 1 1 1 b 1
1 abc 3 2 4 c 3
1 a′ 1 1 1 a′ 1
1 b′ 3 2 1 b′ 3
1 abc′ 3 2 3 a′ 3
1 abc′ 1 3 2 c′ 1
1 abc′ 1 1 1 b′ 1
1 abc′ 3 4 4 c′ 3

Finally, from the right-hand side of figure 7, we
represent a face with a vertex constrained to lie in the
face. This requires either a fourth relation in the data
structure, linking face with vertex, or a trick within
the existing face-edge representation. The trick is in-
dicated by the dashed edge in the figure, which has
vertex 2 at both ends: we make a fake, single-edged
face to be an inner boundary for the face including the
vertex, and use the metric data (not covered in this
paper) to ensure that it has vanishing area and cir-
cumference. In the data structure below, this face is
called f (for “fake”) and its bounding edge (dashed)
is called d. (Note that there is only one topos in
this two-dimensional structure, namely the surround-
ing space, U.)

VE(vertex edge dirE) TF(topos face dirF)
1 a 0 U T 0
1 a 2 U T 2
2 b 0 U F 0
2 b 2 U F 2

FE(cycle face dirF seqF seqE edge dirE)
1 T 3 1 1 a 3
2 T 1 1 1 b 1
1 f 3 2 2 b 3

We have not completed an analysis of Weiler’s ex-
tensions (Weiler 1986a) to the Euler operators, which
we hope to show can all be captured by the operators
of section 4.

Nice support is provided for our approach by Tse
and Gold, whose paper (Tse & Gold 2003) we did
not obtain until after completing this work. They
show that the Euler operators in the two-dimensional,
quad-edge, case are much simpler to implement than
with the traditional b-rep data structures. Our
present work, which has stong parallels to theirs, is
not restricted to components forming 2D manifolds.
(Since they are interested in application to cadastres,
for which hidden faces are not observable, the fact
that they cannot accommodate edges that are cycles
of more than two faces is not a problem for their ap-
plication.) They are working with TINs, triangulated
irregular networks, and go on to show how to con-
struct them with their Euler operators.

7 Conclusions

We have given a preliminary discussion of topologi-
cal representations for multidimensional data on sec-
ondary storage. We have covered two-dimensional
data on open or closed surfaces, omitting discussion
of one-sided surfaces. We have introduced a represen-
tation for three dimensions and a set of basic opera-
tions.

Completing three dimensions and pressing on to
higher dimensions are interesting future possiblilities,
but more significant would be a detailed study of a
range of applications and existing systems in the light
of the approach in this paper. We have commenced
this for geospatial data, and have yet to cover engi-
neering and architectural CAD. Such a study would
ground the work of completing the 3D operations.
The present paper does not consider applications be-
cause we believe that, for generality and depth, the
initial approach should deal purely with the proper-
ties of space itself.

Accounting for metric aspects is the other major
omission of this paper. For linear spaces (straight
edges, planar faces, etc.), the Clifford, or geomet-
ric, algebra (Bayliss 1996, Snygg 1997), which han-
dles angles in any number of dimensions, is a clear
complement, supplemented by a coordinate system.
(In three dimensions, the additions to the data struc-
ture are particularly compact, since points, edges and
faces each have three components.) This will enable
the calculations of areas, volumes, masses, etc., as
well as to determine if a free edge lies above or below
a face, and so on.

8 Acknowledgements

We are indebted to the Networks of Centres of Ex-
cellence program for support through the GEOIDE
Project, GEODEM, and the Natural Sciences and
Engineering Research Council of Canada for support
under grant OGP0004365. We are grateful to Chris
Gold for insisting on the importance of the quad-edge
method for geospatial data and for bringing to our at-
tention the work of Guibas and Stolfi.

References

Baumgart, B. (1974), Geometric modelling for com-
puter vision, Technical Report CS-463, Stanford
U., Palo Alto, CA. Ph.D. thesis.

Bayliss, W. E., ed. (1996), Clifford (Geometric) Alge-
bras: With Applications in Physics, Mathemat-
ics, and Engineering, Birkhaeuser, Boston.

Cooke, D. & Maxfield, W. (1967), The development of
a geographic base file and its uses for mapping, in
‘Papers from the Fifth Annual Conference of the

Urban and Regional Information Systems Asso-
ciation’, ., pp. 207–19.

Floriani, L. D. (2003), Solid modeling: part
two (boundary schemes). Lecture notes,
URL=www.cs.umd.edu/class/fall2003/cmsc828D/solidmodeling-
828D-2.pdf.

Guibas, L. & Stolfi, J. (1985), ‘Primitives for the ma-
nipulation of general subdivisions and the com-
putation of voronoi diagrams’, ACM Transac-
tions on Graphics 4, 74–123.

Kline, M. (1990), Mathematical Thought from An-
cient to Modern Times, Oxford University Press,
New York and Oxford. In three volumes.

Laurini, R. & Thompson, D. (1992), Fundamentals
of Spatial Information Systems, Academic Press,
London.

Mäntylä, M. (1987), An Introduction to Solid Mod-
eling, Computer Science Press, Rockville, Mary-
land.

Samet, H. (1990), The Design and Analysis of Spa-
tial Data Structures, Addison-Wesley Publishing
Company Ltd., Reading, Mass. & Don Mills,
Ont.

Snygg, J. (1997), Clifford Algebra: A Computational
Tool for Physicists, Oxford University Press,
New York.

Tse, R. O. C. & Gold, C. (2003), ‘A proposed
connectivity-based model for a 3-d cadastre’,
Computers, Environment and Urban Systems
27(4), 427–45.

Weiler, K. (1986a), Boundary graph operators for
non-manifold geometric modeling topology rep-
resentations, in M. J. Wozny, H. V. McLaugh-
lin & J. L. Encarnaćâo, eds, ‘IFIP 5.2 Work-
ing Conf. on Geometric Modelling for CAD Ap-
plications’, North-Holland, Rensslaerville, N.Y.,
pp. 37–66. IFIP WG 5.2 Working Conference,
Rensselaerville, NY, 12–14 May 1986.

Weiler, K. (1986b), The radial edge structure: A topo-
logical representation for non-manifold geomet-
ric modeling, in M. J. Wozny, H. V. McLaugh-
lin & J. L. Encarnaćâo, eds, ‘IFIP 5.2 Work-
ing Conf. on Geometric Modelling for CAD Ap-
plications’, North-Holland, Rensslaerville, N.Y.,
pp. 3–36. IFIP WG 5.2 Working Conference,
Rensselaerville, NY, 12–14 May 1986.

