

Text Operators in a

Relational Programming Language

Jiantao Xie

School of Computer Science
McGill University, Montréal

January 2005

A thesis submitted to McGill University
in partial fulfilment of the requirements of the degree of

Master of Science in Computer Science.

Copyright © Jiantao Xie 2005

Contents

Abstract .. iv

Résumé.. v

Acknowledgements .. vi

1 Introduction .. 1

1.1 Background and Related Work.. 1

1.1.1 Forms of Text ... 2

1.1.2 Text/relational Databases.. 5

1.1.3 Text Schemas.. 6

1.1.4 Text Mining .. 8

1.1.5 Aldat and JRelix ... 9

1.2 Motivation ... 10

1.3 Thesis Outline.. 14

2 JRelix System Overview .. 15

2.1 Getting Started... 15

2.1.1 Starting and Terminating JRelix ... 15

2.1.2 Element Declarations ... 16

2.1.3 Commonly Used Commands.. 19

2.2 Assignments .. 20

2.3 Views... 21

2.4 Relational Algebra... 22

2.4.1 Unary Operators ... 22

2.4.2 Binary Operators .. 24

2.5 Domain Algebra .. 28

2.5.1 Horizontal Operations .. 29

2.5.2 Vertical Operations ... 30

 i

2.6 Syntactic Sugar for Nested Queries... 30

3 Users’ Manual for Text Operations .. 33

3.1 Basic Text Operations.. 33

3.1.1 An Example .. 34

3.1.2 Text Definition and Initialization ... 34

3.1.3 Text Information Retrieval and Deletion.. 37

3.2 Regular Expressions .. 38

3.2.1 Introduction .. 38

3.2.2 Regular Expression Syntax... 39

3.3 Binary Grep Operators .. 43

3.3.1 Intersection Grep .. 44

3.3.2 Union Grep ... 46

3.3.3 Difference Grep.. 48

3.3.4 Symmetric Difference Grep.. 49

3.3.5 Left Grep .. 50

3.3.6 Right Grep .. 52

3.4 Text-To-Attribute Operator.. 53

3.5 Markup-To-Nest Operator ... 59

3.5.1 Definition of Null-type Domain ... 59

3.5.2 Markup-To-Nest ... 60

4 Implementation of Text Operations.. 68

4.1 Development Environment.. 68

4.2 JRelix Implementation Overview.. 69

4.3 Basic Text Operations.. 70

4.3.1 Text Storage.. 70

4.3.2 Text Definition and Initialization ... 71

4.3.3 Integration of Text and Relation... 73

4.3.4 Text Listing, Printing and Deleting .. 73

4.4 Binary Grep Operators .. 74

4.5 Text-To-Attribute Operator.. 78

 ii

4.5.1 Range Join .. 78

4.5.1 text2attr Operator ... 79

4.6 Markup-To-Nest Operator ... 84

4.6.1 xML Parser ... 84

4.6.2 mu2nest Operator ... 87

5 Conclusions .. 91

5.1 Summary ... 91

5.2 Future Work... 93

5.2.1 Text Update .. 93

5.2.2 Auto-Markup .. 95

5.2.3 High-level Join ... 96

Bibliography.. 99

 iii

Abstract

JRelix is an implementation of a relational database system which provides a

significantly powerful database programming language and which is especially adept

with complex data. This thesis documents an enhancement of JRelix which provides

intuitive descriptions and efficient manipulations for textual information in the database.

Coupled with the relational and domain algebra in JRelix, the new database system

supports rapid textual information retrieval, flexible text mining, structured text schema

discovery, relational operations on text, transformation between text and relation, and

powerful pattern matching in structured or unstructured data. These endow JRelix with

the capacity of handling complicated textual information from heterogeneous data

sources (e.g., data from the web), and also enrich its searching power on vast bodies of

electronic data as a text/relational database management system.

 iv

Résumé

JRelix est une implémentation d’un système de base de données relationnelle. JRelix

fournit un langage de programmation de base de données expressif et est particulièrement

adepte à traiter des données complexes. Cette thèse propose des améliorations à JRelix

qui permet des descriptions intuitives et la manipulation efficace de données textuelles.

JRelix est capable de traiter des types de données texte, incluant le texte d’origine et des

données de type langage SGML, d'une façon efficace et significative.

Grâce à l'intégration avec l'algèbre relationnelle et l'algèbre de domaine de JRelix, le

nouveau système de base de donnée supporte le recouvrement rapide de données

textuelles, l'exploration flexible de texte, la découverte de schémas de textes structurés,

les opérations relationnelles sur le texte, la transformation entre formats textuels et

relationnels et le filtrage expressif de données structurées ou non-structurées. Ces

fonctions permettent JRelix de supporter des données textuelles complexes venant de

sources hétérogènes (p. ex. du Web), et aussi d'enrichir le pouvoir de recherche sur une

vaste quantité de données électroniques en tant que système de gestion de base de

données relationnelle/textuelle.

 v

Acknowledgements

First and foremost, I would like to express my gratitude to my thesis supervisor, Professor Tim H.

Merrett, for his attentive guidance, enthusiastic encouragement and endless patience throughout the

research for and the preparation of my thesis. Without his invaluable ideas, piercing insight, copious

experience and generous financial support, the way through my graduate studies and life in a foreign

country would not have been so successful and fruitful.

I am grateful to my colleagues in the Aldat laboratory, with a special mention of our JRelix system’s

coordinator Zhongyan Wang who gave me her unstinting assistance on the usage of facilities in the

laboratory and her noteworthy instructions on the enhancement of the system. I would also like to

thank each member of the staff of the School of Computer Science for their administration and

technical support.

I extend my special thanks to my friend John C. Owen for his willingness and devotion in

prove-reading each page of the thesis and in addition for his generous help in my daily life during the

course of my studies. Furthermore, I wish to thank François Pepin for the translation into French of

the thesis abstract and for his constructive suggestions.

Lastly but by no means least I must acknowledge my most sincere appreciation to my parents. They

supported my decision to leave my hometown and pursue a Master’s degree overseas, they gave me

unremitting encouragement and priceless advice in my studies, and without question, they

unhesitatingly sponsored me during the complete time of my University endeavours. It would have

been impossible for me to have achieved so much without their love and endorsement.

 vi

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Text, as a special form of electronic information, nowadays dominates various kinds of

data sources, e.g. the data on the web and in the file systems. Based on the work

undertaken on text research, we are now proposing to integrate text manipulation into

JRelix, which is a relational database system adopting Aldat as its database programming

language. In section 1.1, we will address the research background and the previous

achievements which have been attained in this area. In section 1.2, we will further

present the motivation for the introduction of text manipulation into JRelix. In the last

section, we will outline the content of the thesis.

1.1 Background and Related Work

The application of conventional database technology is becoming increasingly important

in academic research and business enterprises. While the existing design and

development of database systems are sound for traditional data management, the

particular techniques used for manipulating vast bodies of information embedded in text

are repeatedly found to be necessary as a complement to the conventional database

systems. In the last few years, a considerable amount of research and implementations

 1

CHAPTER 1. INTRODUCTION

have been conducted in pattern match, text structure, text database modeling and text

schema discovery, etc.

1.1.1 Forms of Text

The forms of text vary substantially among databases and file systems. It is essential to

understand the diverse nature of text before we start to design our text algebra and model

our text database systems.

 Plain Text

Plain text is the simplest form of text. It can be viewed as a sequence of characters,

words or other bounded strings (i.e. lines) [Tomp97]. Each character in the text can be

identified by its position within the character sequence, and each substring can be

identified by its starting and ending positions. Text matching, thus requires finding

substrings that satisfy the given criteria for exact match or approximate match, and

returns the positions or the values of the matches.

As a sequence of words, text can be parsed into tokens. Substrings can now be identified

by the positions of their first and last words, where position means the number of words

from the beginning of the text , called word sequence or word offset. The problem with

this view is to define the boundaries of the words, which can be white space, punctuation

marks, line-feeds or no boundary at all, as in some Asian languages. An interesting model

of text parsing is presented in the PAT system [Salm94]. Text is considered to be a

collection of overlapping indexed elements:
 Text is a sequence of words

 is a sequence of words

 a sequence of words

 sequence of words

 of words

 words

The starting positions can be at any character position, and in this example they are

 2

CHAPTER 1. INTRODUCTION

chosen to be at the beginning of the words. Text storage and search problems in this

model can also be solved with tries [Shan95].

Many applications require additional structure to be imposed on text, i.e. lines. Under a

line-based model, the text operations, e.g. line matching and line retrieval, are

constrained to within one line. Arbitrary imposing of line boundaries on text makes it

inefficient to retrieve all desired information in multiple lines, e.g. searching with the

Unix file operators grep and diff.

 Marked Up Text

Text is usually a rich combination of content and form [Tomp97]. The forms of text are

typically recorded using some sort of markup [Coom87], which is represented by special

strings of characters, e.g. tags, embedded in the text. A tag is usually distinguished from

the content of the text by beginning with a reserved character that may be disallowed in

the pure text, e.g. angle brackets in SGML [ISO86] and backslashes in LaTeX [Lamp94].

Marking up text with xML tags, where x stands for different kinds of markup standards,

provides more elaborate attributes for the text [Merr03]. As we will discuss in the next

section, markup tags can also be used to encode hierarchical and other complex

structured text.

 Structured Text

Structured text is any text that has an identifiable internal structure [Brown98]. This

structure may be explicitly established by the inclusion of appropriate electronic markups

[Coom87, Tomp89], possibly complemented by an external document type definition

(DTD) or it may be implied by the language contained within the text. The following

example shows an XML file and its associated grammar.

 3

CHAPTER 1. INTRODUCTION

Ther

colle

matc

rathe

divid

searc

“auth

takes

intro

The

sche

than

help

optim

mod

whic

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE note [

 <!ELEMENT note (to, from, heading, body)>

 <!ELEMENT to (#PCDATA)>

 <!ELEMENT from (#PCDATA)>

 <!ELEMENT heading (#PCDATA)>

 <!ELEMENT body (#PCDATA)>

]>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don't forget me this weekend!</body>

</note>

Figure 1.1 An XML file and its associated grammar

e are mainly two structured model types [Tomp97]. The first characterizes text as a

ction of documents, each of which is a simple character string. The search for the

hing strings results in the retrieval of a set of documents containing those strings

r than making direct references to the strings themselves. The second type of model

es documents into named fields, for the purpose of formatting and of restricting

hes. For example, a bibliographic record is subdivided into text fields named

or”, “title” and “biblio” etc. The new OED project in the University of Waterloo

 the second model, which identifies and delimits its dictionary components by

ducing tags into a text stream [Tomp92].

structured text schema, normally expressed as a grammar, is a strong parallel to the

mas for conventional database records, which are far less useful in managing text

in conventional databases [Gonn87]. Grammars are constraints on sets of text that

to record the structure, determine the validity of new data, and guide query

izers. When the text structure is defined by a context-free grammar, text can be

eled and manipulated as trees [Salm96]. This provides the basis for an algebra in

h common needs are conveniently expressed.

4

CHAPTER 1. INTRODUCTION

 Semi-structured Text

In comparison with structured text, some data sources are designed with non-rigid

structures for convenience, e.g. the ACeDB genome database [Thie92], or their schemas

are normally contained within the data, which is usually self-describing, e.g. the HTML

data on the web. They are named semi-structured data. There is no separate schema in

some forms of semi-structured data, and in others it exists but only applies loose

constraints on the data. Semi-structured data has recently emerged as an important topic

because of the growing data sources on the Web, its flexible format for data exchange

between disparate database and its help in the processing of structured data [Bune97].

Different data models have been proposed to reconcile the semi-structured data sources

and rigid structured data sources, e.g. database systems [Abit99].

The general representation of the semi-structured data is kind of a rooted, directed and

labeled graph, such as in the model of the Lore project and the Lorel query language

[McHu97, Abit97b]. Although cycles should be allowed in the data, strategically we also

refer to these graphs as trees with links or mutual definitions of elements [Merr03].

1.1.2 Text/relational Databases

In recent years, text as one form of electronic information is becoming more and more

important for academic research and business enterprises. However, it is stored, accessed

and manipulated in ad hoc fashions, and text management is not federated into the

conventional database approach in many database systems. Typical text management

systems which specify text access languages are incapable of simultaneously processing

conventional data [Wein85]. Alternatively, long data fields are introduced into

conventional databases to provide text storage. However, text manipulations and

structured text are not usually supported by these systems.

If text is to be embedded within conventional databases, the design of text/relational

 5

CHAPTER 1. INTRODUCTION

database has to be able to define views over texts that are accessible from those systems,

without destroying the texts themselves and without undesired duplication of data

[Brown98]. What a federated database system initially needs is a simple text framework

that is compatible with the rest of the database system’s model and encapsulates most of

the significant properties of structured/semi-structured text. The database query language

must then be coupled with operations on text that performs effective query, retrieval and

update of selected text fragments [Raym96].

To combine text manipulation into relational database management, the work in the

Centre for the New OED and Text Research at the University of Waterloo has come up

with a text/relational database management system (T/RDBMS) model and an extended

SQL that provides access to the structured text described by SGML [Blak94]. As

potential clients may depend on the conventional relational database, the proposed

T/RDBMS model is essentially an integration of commercial relation database systems

and commercial full-text search engines. The SQL extension is capable of handling

SGML-based data in a simple way, extracting from highly structured text into relations

and preserving the integrity of complex text units, but it is not designed to address the

needs of semi-structured data and is unable to perform text update. The follow-up

research introduced a structured text ADT for object-relational database, which allows

text to be queried, retrieved, marked up, associated with a schema and integrated with

relational information [Brown98]. The proposed text extensions yield easy definitions

and dynamic constructions of relational views of structured text derived from

hierarchically structured text, marked subtexts, and extracted subtexts.

1.1.3 Text Schemas

For a text document in which structural elements are identified with markups, it is always

necessary to attain its schema which contains element nesting and ordering structures.

Nowadays, there are two types of text formats dominant in the text database systems.

One is the highly structured data, typical of SGML data which is restricted by a

 6

CHAPTER 1. INTRODUCTION

Document Type Declaration (DTD); another is the semi-structured data, typical of Web

sources, e.g. XML and HTML data. A considerable amount of research has been carried

out in the applications of grammars on texts, or the discovery of schemas within texts.

The highly structured data is normally associated with a grammar to describe its content.

Queries involving the data may use this grammar, which must therefore be made known

to the database. A good example of highly structured data is the New Oxford English

Dictionary, which is converted from its original printed form to a computerized form

with explicitly tag-structured elements [Kazm86]. Text data constrained by a given

grammar can be considered as a parse tree. It results in the convenience of extending

traditional query languages, such as SQL, to include operations on structured text. But on

the other hand, it limits the variability of the structure of text and fails to handle the

irregularity in text databases. Even the approach of allowing absence of subtexts or

introducing optional pattern matching is not satisfactory [Brow98].

Rather than having a fixed grammar that describes all possible forms of the data, the

semi-structured data appears more flexible and thus dominates the data sources on the

Web. To combine the semi-structured data with the traditional data in database systems,

the necessary arises to discover its variable schema. The Lore system has been designed

to generate the “DataGuide” from the semi-structured data, which plays in a traditional

schema role and helps optimize and formulate queries [McHu97]. Another approach of

schema discovery is also proposed based on stochastic grammatical inference [Matt00].

It introduces dynamic grammar into semi-structured data management, and is able to

scale on large data sets and handle complicated text structure. Adopting the schema

discovery tools as an important component in data management, more and more

researches are directed towards semi-structured data extraction and integration from

heterogeneous data sources by defining the architecture of a common metadata

repository and a comprehensive framework [Shet90, Litw90, Gao99, Kori99, Calv01].

 7

CHAPTER 1. INTRODUCTION

1.1.4 Text Mining

Another significant area of research on text is on knowledge discovery, a non-trivial

process of identifying valid, novel, potentially useful and ultimately understandable

patterns in data [Fayy96]. Differing from generic data mining in structured databases,

text mining operates on the textual information normally in unstructured forms, and it

discovers and uses the implicit structure (e.g. grammatical structure) of the texts. It is

subdivided into research on linguistic processes, document classification, and automated

extraction from textual data sources.

Natural language analysis is one of the most fruitful fields of research on text mining.

The early work focused at the word or tag level, e.g. to infer association rules between

individual words [Lin01, Silv98, Coop97]. The more recent work proposed to perform

text mining at the term (or phrase) level, e.g. to extract and analyze terms from a text

collection to construct a term taxonomy [Feld98], or to associate the extracted phrase

with the time factor to identify trends in large text databases [Lent97].

Textual document classification and categorization is one practical research area of text

mining due to the recent increase of documents in the digital form. Machine learning

techniques are predominantly applied in text classification systems, e.g. a general

inductive process automatically builds a classifier by learning, from a set of previously

classified documents, the characteristics of one or more categories [Seba02]. The fruit of

the text classification research is used in many applicative contexts, ranging from the

e-mail automated categorization [Agra99], to the World-Wide-Web navigation [Chaf00,

Midd01] and in general any application requiring document selection or organization.

There are several specialized automated extraction tools implemented in comprehensive

database systems. They are mostly designed for retrieval of biomedical data from

electronic literature sources, e.g. the MuteXt system [Horn03] which is interested in

point mutations, and the KEX [Fuku98] and the ABGENE [Tana02] systems which

 8

CHAPTER 1. INTRODUCTION

identify protein names. Generally, the techniques of supervised learning, pattern

matching and part-of-speech tag marking are used in the extraction processes.

1.1.5 Aldat and JRelix

The relational model of database was first proposed by Dr. E. F. Codd in the classical

paper “A Relational Model of Data for Large Shared Data Banks” in 1970. In Codd’s

relational model, a collection of tables called relations is used for data storage. Nowadays,

his model is widely accepted as a standard in database systems. However, the industrial

implementations of relational database usually lack of expressive computation power and

fail to meet the needs of complex data manipulation. This leads to research in the field of

database programming languages (DBPL). DBMS are capable of handling large amounts

of persistent data, while DBPL provide well-proven and powerful techniques for

generating, manipulating and optimizing data on the databases.

Aldat, as a database programming language based on extended algebra, is designed to

address the needs of massive operations on relations with the secondary storage approach.

In Aldat, each relation is viewed as a table consisting of rows and columns, which are

termed “tuples” and “attributes” respectively. The term “domain” refers to the set of legal

values that attributes can contain, i.e. the data type of an attribute.

There are two kinds of algebra essential in Aldat, namely relational algebra and domain

algebra. Relational algebra, which extends that proposed by Codd, consists of a set of

operations applied on relations for information retrieval. There is no operation performed

on individual tuples. Every relational operator takes relations as operand and produces a

relation as the result, which gives programmers a high level of programming thought.

Domain algebra, introduced as operations on the attributes, provides treatment of

attributes independent of relations [Merr84]. That is to say, it allows programmers to

create new domains called virtual domains, from existing attributes without regard to

where the attributes reside. A virtual domain is only actualized and given a value when an

 9

CHAPTER 1. INTRODUCTION

operand relation is specified through the relational algebra.

JRelix, as the incarnation of Aldat, is a relational database system developed at the Aldat

lab in the School of Computer Science at McGill University. In addition to relational and

domain operations, it provides computations for relational programming [Lui96, Bake98],

nested relations for complex data construct [He97, Hao98], relational states for

object-oriented computing [Zhen02] and event handlers for active database programming

[Sun00], etc. The functionalities of relational OLAP, data mining and multi-database are

also implemented in JRelix.

1.2 Motivation

The federated text/relational databases address the dependence of business enterprises on

the traditional database systems and the needs of text, especially structured text, storage

and manipulation. However, the highly structured text model adopted by these systems

also causes limitations.

The imposition of a schema on the text makes it incapable of catering for the irregularity

in the structure of structured text databases [Abit97a]. Although in some developed

models the absence of subtexts could be allowed, accepting the optional components of

the text in the model produces two phases of extraction and results in unacceptable

efficiency [Brown98]. It is also difficult to decide in advance on a single appropriate

schema, because the data structure and element types may evolve rapidly. Theses

characteristics result in frequent schema modifications, a common headache for database

administration.

Another limitation of the model is its inability to handle the enormous amount of

semi-structured data on the World Wide Web which is varied and irregular. Although

considerable effort has been expended on reconciling data from multiple, heterogeneous

data sources into well-structured data conforming to a single uniform schema [Comp91,

 10

CHAPTER 1. INTRODUCTION

Gao99, Kori99, Calv01], the problems caused by the change of source structure or the

addition of new sources can not be addressed satisfactorily [McHu97].

In most existing text/database models, the capability of text operations focuses on

marked-up text management. However, plain text is more subtle as a sequence of

characters without special strings indicating its structure. If we capture the pattern of its

natural elements such as words, sentences and paragraphs, we might be able to analyze

its structure, and discover the hidden knowledge inside the text. As an example, the

following text gives a description of three computer science courses:

This

of ea

desc

sequ

COM

desc

COMP 575 - Fundamentals of Distributed Algorithms

Study of a collection of algorithms that are basic to the world of concurrent

programming...

Prerequisite: COMP 310

Instructor: Carl Tropper

COMP 617 - Information Systems

Seminar course. A major area of application of the techniques covered in 308-612

is discussed...

Prerequisite: COMP 612

Instructor: Timothy Merrett

COMP 642 - Numerical Estimation

Efficient and reliable numerical algorithms in estimation and their

applications...

Prerequisites: MATH 323, MATH 324 and COMP 350

Instructor: Xiao-Wen Chang

Figure 1.2 A text of course description

 is typical unstructured data on the Web. As we can see from the text, the information

ch course is limited within one paragraph. Inside each paragraph, the course title,

ription, prerequisite and instructor appear on separate lines and in a constant

ence. Furthermore the title, prerequisite and instructor start with the key words

P, Prerequisite and Instructor respectively, which help to distinguish them from the

ription. With a plain text mining tool, we would be able to extract the desired

11

CHAPTER 1. INTRODUCTION

information from the text, and convert it into a relation, as follows:

T

q

i

t

p

e

d

a

a

d

e

Courses

(Title Description Prerequisite Instructor)

 COMP 575 – Fund... Study of a col... COMP 310 Carl Tropper

 COMP 617 – Info... Seminar course... COMP 612 Timothy Merrett

 COMP 642 – Nume... Efficient and ... MATH 323, MATH 324 and ... Xiao-Wen Chang
Figure 1.3 Courses relation

o query the semi-structured/unstructured data in a relational/text database, traditional

uery languages are inappropriate, because the structure of the data is unpredictable, and

n some cases there is no explicit structure at all. Even if a structure can be imposed on

he unstructured data, the structure is irregular, and may evolve rapidly, e.g. the data of

rerequisite in our example may be absent for some elementary courses. Aldat is an

xpressive database language for querying such data effectively. It does not require the

ata schema to be fully known to the system before the performance of data extraction,

nd it provides powerful path expressions which permit a flexible form of navigational

ccess and are particularly suitable when the details of the structure are not clear or the

esired data is dispersed on a complex structure. Figure 1.4 gives a family tree as an

xample of semi-structured data.

12

CHAPTER 1. INTRODUCTION

Person

Figure 1.4 A Semi-structured Family Tree

When querying semi-structured data, we can not expect users to be fully aware of the

data structure. Thus, it is important not to require complete knowledge of the structure to

express meaningful queries [Abit97b]. In Aldat, the following path expression is able to

answer the query “find all members’ names in the family”.

Person/(./)*Name

At the same time, Aldat also allows the retrieval of specific data if the precise position is

known, e.g. to extract the name of Ted’s spouse by specifying the path

Ted FamilyName

AliceSpouse 1932 Children Married

Person Person

Mary Name 1934DoB Family

Alex Spouse 1954Married Children

Person

Joe Name 1956DoB

JamesName 1935 DoB Family

JaneSpouse Married Children1960

Person Person

TomName 1961DoB Sue 1962Name DoB

 13

CHAPTER 1. INTRODUCTION

Person/Family/Spouse

Therefore, extending Aldat to manipulate text can exploit its expressive power in

complicated data inquiry and computation, and will address the needs of

semi-structured/unstructured data manipulation in the text/relational database.

1.3 Thesis Outline

This thesis introduces an Aldat extension for text management, and its implementation on

JRelix. In the first chapter, we will describe our research background on text/relational

database systems, and present the motivation of integrating text manipulation into the

JRelix system which is an incarnation of Aldat. In the second chapter, a brief tutorial of

JRelix will be given. It does not cover every aspect of the system, instead, it provides the

fundamental knowledge of JRelix operations, which is a base for understanding the

discussions in the following chapters. In the third chapter, we will introduce the extended

operations in JRelix in the form of a user’s manual for database programmers. In the

fourth chapter, we will present their implementation details and in the final chapter, a

summary will be given for the thesis, together with the prospect of future research.

 14

CHAPTER 2. JRELIX SYSTEM OVERVIEW

Chapter 2

JRelix System Overview

The purpose of this chapter is to provide a brief tutorial of the JRelix system, on which

our enhancement extension will be based. Section 2.1 helps the users to get started by

presenting the running, the element declarations and some other useful commands in

JRelix. Section 2.2 talks about the initializations and assignments. Section 2.3 introduces

in brief the views in JRelix. In sections 2.4 and 2.5, we navigate the readers through the

usage of relational algebra and domain algebra. In the rest of the chapter, we describe a

newly implemented syntactic sugar which simplifies the queries on the nested relations.

2.1 Getting Started

2.1.1 Starting and Terminating JRelix

JRelix is implemented in Java. It runs in a directory which it uses for data storage. To

start JRelix in the directory, the following command is typed on the command line of the

operating system.

% java JRelix

 15

CHAPTER 2. JRELIX SYSTEM OVERVIEW

If the JRelix system is successfully booted, the copyright information will be displayed

in its run-time environment and a prompt (“>”) will be given for user input.

To t

envir

syste

2.1.2

 D

Atom

Synt

Para

id_l

type

valid

and n

they

In ad

Starting stand alone JRelix.

+---+

| Relix Java version 0.90 |

| Copyright (c) 1997 -- 2003 Aldat Lab |

| School of Computer Science |

| McGill University |

+---+

>

Figure 2.1 JRelix startup

erminate the JRelix system, the command is “quit;”. Consequently, the JRelix

onment will be safely shut down, and control will be returned to the operating

m.

 Element Declarations

omain Declaration

ic domains in JRelix are declared with the keyword domain in the following syntax:

ax: domain <id_list> <type>;

meters:

ist – A list of domains to be declared. Domains in the list are separated by commas.

 – The type of these domains to be declared. There are nine primary domain types

 in JRelix, i.e. integer, short, long, double, float, string, boolean, attribute, universal

umeric. They are consistent with the data types of the same names in Java, should

exist.

dition to the atomic domain types, a complex domain type namely the relation

16

CHAPTER 2. JRELIX SYSTEM OVERVIEW

domain, can be defined in JRelix. A relation domain works as a domain and a relation at

the same time, and is a useful tool to build nested relations. It takes the following syntax

in declaration.

Syntax: domain <domain_name>(<id_list>);

Parameters:

domain_name – The name of the relation domain to be declared.

id_list – The domains in the new relation domain.

Figure 2.2 gives some examples of domain declarations and their explanations.

n

 R

Rela

The

follo

Synt

Para

rel_

id_l

init

synta

tuple

comm

Figu

>domain capacity integer; // integer domain

>domain credits float; // float domain

>domain title, instructor string; // string domains

>domain Assts(asstId, mark); // relation domai

Figure 2.2 Examples of domain declarations

elation Declaration

tions are defined on domains (or called attributes) which have already been declared.

domains in relation can be atomic or complex domains. The declaration of relation

ws the syntax below,

ax: relation <rel_name>(<id_list>) [<initialization>];

meters:

name – The name of the relation to be declared.

ist – A list of domains on which the relation is defined.

ialization – The statement of relation initialization. It adopts the curly bracket

x in which relations start and end with curly brackets (“{” and “}”), while each

 is surrounded by round brackets (“(” and “)”) and different tuples are separated by

as (“,”).

re 2.3 gives an example of relation declarations which generate the relation Courses

17

CHAPTER 2. JRELIX SYSTEM OVERVIEW

shown in figure 2.4.

The

Figu

>domain name, title, instructor strg;

>domain capacity intg;

>domain credits float;

>relation Courses(name, credits, title, capacity, instructor) <-

 {("COMP102", 3.0, "Computers and Computing", 45, "Ciaravola"),

 ("COMP208", 3.0, "Computers in Engineering", 100, "Ratzer"),

 ("COMP251", 3.0, "Data Structures", 45, "Crepeau"),

 ("COMP302", 3.0, "Programming Languages", 68, "Friedman"),

 ("COMP310", 3.0, "Computer Systems", 70, "Maheswaran"),

 ("COMP540", 3.0, "Matrix Computations", 25, "Chang"),

 ("COMP642", 4.0, "Numerical Estimation", 15, "Chang"),

 ("COMP644", 4.0, "Pattern Recognition", 25, "Aloupis")

 };

Figure 2.3 An example of relation declarations
Courses

(name credits title capacity instructor)

 COMP102 3.0 Computers and Computing 45 Ciaravola

 COMP208 3.0 Computers in Engineering 100 Ratzer

 COMP251 3.0 Data Structures 45 Crepeau

 COMP302 3.0 Programming Languages 68 Friedman

 COMP310 3.0 Computer Systems 70 Maheswaran

 COMP540 3.0 Matrix Computations 25 Chang

 COMP642 4.0 Numerical Estimation 15 Chang

 COMP644 4.0 Pattern Recognition 25 Aloupis

Figure 2.4 The Courses relation

relations which contain other relations as attributes are called nested relations.

re 2.5 gives an example of nested relation declarations and initialization.

18

CHAPTER 2. JRELIX SYSTEM OVERVIEW

In th

and m

durin

StudA

2.1.3

Now

some

>domain studId, asstId strg;

>domain mark float;

>domain Assts(asstId, mark);

>relation StudAsst(studId, Assts) <-

{("001", {("asst1", 22.0), ("asst2", 25.0), ("asst3", 26.0)}),

 ("002", {("asst1", 24.0), ("asst3", 24.5)}),

 ("003", {("asst2", 27.0), ("asst3", 23.0)}),

 ("004", {("asst1", 23.5), ("asst2", 25.0)})

};

Figure 2.5 An Example of nested relation declarations and initializations

is example, domain Assts is a relation domain defined on two atomic domains asstid

ark. It is adopted as an attribute in the relation StudAsst and is assigned the values

g the declaration and initialization of StudAsst. Figure 2.6 shows the nested relation

sst as the result.

 Commonl

 we know the

 commonly us
StudAsst

(StudId Assts)

 (asstId mark)

 001 asst1 22.0

 asst2 25.0

 asst3 26.0

 002 asst1 24.0

 asst3 24.5

 003 asst2 27.0

 asst3 23.0

 004 asst1 23.5

 asst2 25.0

Figure 2.6 The nested relation StudAsst

y Used Commands

 way to declare basic elements in JRelix. In this section we will list

ed commands for further operations on the database elements.

19

CHAPTER 2. JRELIX SYSTEM OVERVIEW

Command Operation

trace; To turn log on/off.

pr <expr>; To print out the result of the expression or relation.

sr [<rel>]; To display the description of a given relation, or to list all relations in

the system if the argument is omitted.

sd [<dom>]; To display the description of a given domain, or to list all domains in

the system if the argument is omitted.

dr <rellist>; To delete relations in the relation list.

dd <domlist>; To delete domains in the domain list.

srd; To show the dependence of relations on domains.

2.2 Assignments

It is useful to be able to create new relations from the old ones. JRelix provides two

assignment operators, namely replacement assignment (“<-”) and incremental

assignment (“<+”). The replacement operator completely replaces the left-hand relation,

without regard to whether or not it exists. The data in the right-hand relation is copied

into the left-hand relation, and the old data in the left-hand relation is destroyed. The

incremental operators add new tuples to the left-hand relation, and the attributes of the

right-hand relation must be compatible with those of the left-hand relation. The

assignment operation allows renaming attributes, but all attributes of the left-hand

relation must be specified in the list.

Syntax: <rel_A> <- <rel_B>; or

 <rel_A> <+ <rel_B>; or

 <rel_A> [<attr_list_A> <- <attr_list_B>] <rel_B>; or

 <rel_A> [<attr_list_A> <- <attr_list_B>] <rel_B>;

The usage of assignments in the relation initialization has been shown in figures 2.3 and

2.5. Figure 2.7 gives an example of renaming attributes in the relation.

 20

CHAPTER 2. JRELIX SYSTEM OVERVIEW

2

W

a

m

a

b

S

P

r

r

s

r

N

>domain courname, courtitl, courinst strg;

>domain courcred float;

>domain courcapa intg;

>CourDesc [courname, courcred, courtitl, courcapa, courinst <- name, credits, title,

capacity, instructor] Courses;

>pr CourDesc;

+------------+---------------+----------------------+-------------+--------------+

| courname | courcred | courtitl | courcapa | courinst |

+------------+---------------+----------------------+-------------+--------------+

| COMP102 | 3.0 | Computers and Comput | 45 | Ciaravola |

| COMP208 | 3.0 | Computers in Enginee | 100 | Ratzer |

| COMP251 | 3.0 | Data Structures | 45 | Crepeau |

| COMP302 | 3.0 | Programming Language | 68 | Friedman |

| COMP310 | 3.0 | Computer Systems | 70 | Maheswaran |

| COMP540 | 3.0 | Matrix Computations | 25 | Chang |

| COMP642 | 4.0 | Numerical Estimation | 15 | Chang |

| COMP644 | 4.0 | Pattern Recognition | 25 | Aloupis |

+------------+---------------+----------------------+-------------+--------------+

relation CourDesc has 8 tuples
Figure 2.7 An example of renaming attributes

.3 Views

hile the assignments allow the result of the expression to be evaluated and stored in

nother relation, it is however, also useful to be able to defer the process until later. The

echanism for this is called a view in JRelix, which is notated by replacing the

ssignment operators with the keyword is. The syntax of the view definition is given

elow,

yntax: <rel_name> [initial <rel_expr_init>] is <rel_expr>;

arameters:

el_name – The name of the relation to be assigned.

el_expr_init – The expression to be assigned to the view as initial value. This

tatement is optional and is only useful in recursive view executions.

el_expr – The expression to be assigned to the view during the evaluation.

o assignment is performed in the declaration of a view. The expression is evaluated and

21

CHAPTER 2. JRELIX SYSTEM OVERVIEW

assigned to the target relation only when a subsequent assignment, or other operation

such as print, is executed. Figure 2.8 gives an example of view declaration.

;

In th

Cour

when

2.4

The

a rel

poss

The

oper

num

name

2.4.1

Unar

types

 P

Proje

Dupl

>CourView is [name, title] in Courses

Figure 2.8 An example of view declaration

is example, a view CourView is declared on the attributes name and title in the

ses. It is assigned by the result of the expression following the key word is only

 the view is accessed by other operations.

 Relational Algebra

operators in the relational algebra family work on one or more relations and produce

ation as the result. The operation provides a closure of relations and makes it

ible for expressions to be constructed at arbitrary length and in arbitrary complexity.

relational operators and domain operators as well are functional, which means the

ation of the relation does not change the value of the relation. According to the

ber of operands an operator takes, relational algebra is divided into two categories,

ly unary operators and binary operators.

 Unary Operators

y operators take single relations as inputs. In this section we will introduce three

 of most useful operators, i.e. projection, selection, and T-selection.

rojection

ction creates a new relation on a specified subset of the attributes of the operand.

icates will be removed in the result. It takes the following syntax,

22

CHAPTER 2. JRELIX SYSTEM OVERVIEW

Syntax: [<id_list>] in <rel_expr>;

Parameters:

id_list – The attributes to project on.

rel_expr – The input relational expression.

Please note that if the id_list is empty, the operation will return a boolean value, in which

false means the result is empty, and vice versa.

 Selection

Selection picks out tuples of a relation according to a boolean condition on the tuple

values. The boolean condition can involve arbitrary operations on any attributes of the

relation or on any constant values, but it must be able to be evaluated on individual

tuples.

It takes the following syntax,

Syntax: where <bool_cond> in <rel_expr>;

Parameters:

bool_cond – The boolean expression providing criteria for the selection.

rel_expr – The input relational expression.

 T-Selection

Projection and selection can be combined in a single operation, called T-selection. The

syntax is,

Syntax: [<id_list>] where <bool_cond> in <rel_expr>;

Parameters:

id_list – Attributes to be projected on.

bool_cond – Selection criteria.

rel_expr – The input relational expression.

 23

CHAPTER 2. JRELIX SYSTEM OVERVIEW

In the following example we apply T-selection in the Courses relation to the search for

the course(s) instructed by Prof. Chang.

2.4.2

Bina

categ

take

Synt

Para

join

righ

left

id_l

Follo

are u

attrib

shou

the s

>ChangCour <- [name, title] where instructor = "Chang" in Courses;

>pr ChangCour;

+----------------------+----------------------+

| name | title |

+----------------------+----------------------+

| COMP540 | Matrix Computations |

| COMP642 | Numerical Estimation |

+----------------------+----------------------+

relation ChangCour has 2 tuples

Figure 2.9 An example of T-Selection

 Binary Operators

ry operators accept two relations as input and join them together. There are two

ories of binary operators, i.e. µ-joins and σ-joins. Both categories of join operators

the similar syntax:

ax: <left_expr> <join_operator> <right_expr>; or

 <left_expr> [<id_list> :<join_operator>: <id_list>] <right_expr>;

meters:

_operator – Join operator.

t_expr – Relational expressions as right-hand operand.

_expr – Relational expressions as left-hand operand.

ist – Specified attribute list on which to join.

wing the first syntax, the common attributes of the left and the right hand relations

sed as join attributes. In the case when the two relations do not share any common

utes, the user must specify the attributes on which to join, and the second syntax

ld be taken. We will discuss two categories of join operators separately in the rest of

ection,.

24

CHAPTER 2. JRELIX SYSTEM OVERVIEW

 µ-joins

The µ-join operations extend the mathematical operations on sets, which include

intersection, union and difference. The results of their applications contain the union of

the attributes from two operand relations, except difference joins which sometimes lead

to the disappearance of certain attributes containing all null values.

In general, µ-join operators can be defined in terms of three components in the result, i.e.

the center, the left wing and the right wing. They are defined as the following,

 For relation R(X, Y) and S(Y, Z) sharing a common attribute set,Y

 center(R, S) ≡ {(x, y ,z)|(x, y) ∈ R ∧ (y, z) ∈ S}

 left(R, S) ≡ {(x, y, DC)|(x, y) ∈ R ∧ ∀z, (y, z) ∉ S}

 right(R, S) ≡ {(DC, y, z)|(y, z) ∈ S ∧ ∀x, (x, y) ∉ R}

 For relation R(W, X) and S(Y, Z) sharing no common attribute set

 center(R, S) ≡ {(w, x, y, z)|(w, x) ∈R ∧ (y, z) ∈ S ∧ x = y}

 left(R, S) ≡ {(w, x, y, DC)|(w, x) ∈ R ∧ x = y ∧ ∀z, (y, z) ∉ S}

 right(R, S) ≡ {(DC, x, y, z)|(y, z) ∈ S ∧ x = y ∧ ∀x, (x, y) ∉ R}

The symbol DC stands for don’t care, which is a null value defined in JRelix.

Now we are able to give the definition of µ-join operators as shown below,

Operator Definition Description

R ijoin S center(R, S) intersection join

R ujoin S left(R, S) ∪ center(R, S) ∪ right(R, S) union join

R ljoin S left(R, S) ∪ center(R, S) left join

R rjoin S center(R, S) ∪ right(R, S) right join

R djoin S left(R, S) difference join

R drjoin S right(R, S) right difference join

R sjoin S left(R, S) ∪ right(R, S) symmetric difference join

 25

CHAPTER 2. JRELIX SYSTEM OVERVIEW

The following example applies ijoin on the relations Courses and ProfOffice to find out

the offices of the course professors.

>pr ProfOffice;

+----------------------+----------------------+

| professor | office |

+----------------------+----------------------+

| Aloupis | MC 421 |

| Chang | MC 303 |

| Ciaravola | MC 201 |

| Crepeau | MC 101 |

| Friedman | MC 411 |

| Kemme | MC 102 |

| Maheswaran | MC 106 |

| Ratzer | MC 215 |

+----------------------+----------------------+

relation ProfOffice has 8 tuples

> CourOffice <- Courses [instructor :ijoin: professor] ProfOffice;
>pr CourOffice;

+------------+---------+---------+----------------------+----------+------------+--------+

| instructor | name | credits | title | capacity | professor | office |

+------------+---------+---------+----------------------+----------+------------+--------+

| Aloupis | COMP644 | 4.0 | Pattern Recognition | 25 | Aloupis | MC 421 |

| Chang | COMP540 | 3.0 | Matrix Computations | 25 | Chang | MC 303 |

| Chang | COMP642 | 4.0 | Numerical Estimation | 15 | Chang | MC 303 |

| Ciaravola | COMP102 | 3.0 | Computers and Comput | 45 | Ciaravola | MC 201 |

| Crepeau | COMP251 | 3.0 | Data Structures | 45 | Crepeau | MC 101 |

| Friedman | COMP302 | 3.0 | Programming Language | 68 | Friedman | MC 411 |

| Maheswaran | COMP310 | 3.0 | Computer Systems | 70 | Maheswaran | MC 106 |

| Ratzer | COMP208 | 3.0 | Computers in Enginee | 100 | Ratzer | MC 215 |

+------------+---------+---------+----------------------+----------+------------+--------+

relation CourOffice has 8 tuples
Figure 2.10 An example of µ-join

 σ-joins

The σ-join operations extend the truth-valued comparison operations on sets to relations

by applying them to each set of values of the join attribute for each of the other values in

the two relations. The result contains symmetric difference of the attributes from two

 26

CHAPTER 2. JRELIX SYSTEM OVERVIEW

operand relations.

We can define the σ-joins using the following notation. In relations R(W, X) and S(Y, Z),

Rw is the set of values X associated by R with a given value, w, of W, and Sz is the set of

values of Y associated by S with a given value, z, of Z. If W and X are disjoint sets of the

attributes of R, and Y and Z are disjoint sets of the attributes of S, we can give the

definitions as below. X and Y are allowed to be the same set of attributes, but at least

they must be compatible attribute sets.

Operator Definition Name Description

R icomp S {(w, z)|Rw ∩ Sz ≠ Ø} natural composition overlap

R sep S {(w, z)|Rw ∩ Sz = Ø} empty intersection join not overlap

R sup S {(w, z)|Rw ⊇ Sz} greater than or equal join superset

R gtjoin S {(w, z)|Rw ⊃ Sz} greater than join proper superset

R lejoin S {(w, z)|Rw ⊆ Sz} less than or equal join subset

R ltjoin S {(w, z)|Rw ⊂ Sz} less than join proper subset

R eqjoin S {(w, z)|Rw = Sz} equal join equal

To find out the office of the professor of each course, we can also use icomp. In the

following example, the result relation does not contain the attribute instructor nor the

attribute professor because of the symmetric difference operation of icomp applied on the

input attributes.

 27

CHAPTER 2. JRELIX SYSTEM OVERVIEW

2.5

Inde

attrib

types

oper

Thus

respe

Dom

assoc

or an

not p

A vi

only

defin

>CourOffice <- Courses [instructor :icomp: professor] ProfOffice;

>pr CourOffice;

+------------+----------+----------------------+-------------+----------+

| name | credits | title | capacity | office |

+------------+----------+----------------------+-------------+----------+

| COMP102 | 3.0 | Computers and Comput | 45 | MC 201 |

| COMP208 | 3.0 | Computers in Enginee | 100 | MC 215 |

| COMP251 | 3.0 | Data Structures | 45 | MC 101 |

| COMP302 | 3.0 | Programming Language | 68 | MC 411 |

| COMP310 | 3.0 | Computer Systems | 70 | MC 106 |

| COMP540 | 3.0 | Matrix Computations | 25 | MC 303 |

| COMP642 | 4.0 | Numerical Estimation | 15 | MC 303 |

| COMP644 | 4.0 | Pattern Recognition | 25 | MC 421 |

+------------+----------+----------------------+-------------+----------+

relation CourOffice has 8 tuples

Figure 2.11 An example of σ-join

 Domain Algebra

pendent of relational algebra, domain algebra addresses the needs of computation on

utes, e.g. arithmetic, which relational algebra is unable to meet. There are two main

 of domain algebra, namely scalar operations and aggregate operations. Scalar

ations work within individual tuples while aggregate operations work across tuples.

, they can also be thought of as horizontal operations and vertical operations,

ctively.

ain algebra associates a virtual domain with an expression in declaration. The

iated expression can be constants, relational expressions, other domain expressions

y valid combination of these elements. Recursive definition of a virtual domain is

ermitted.

rtual domain may appear anywhere an actual domain is expected. It is actualized

 when it is referred through the relational algebra. It takes the following syntax in

ition,

28

CHAPTER 2. JRELIX SYSTEM OVERVIEW

Syntax: let <domain_name> be <expr>;

Parameters:

domain_name – The Name of the virtual domain to be defined.

expr – The expression that will actualize the domain.

We will show some examples, which give the general idea of domain algebra in two

categories in the rest of the section. To go deep into the operations, please refer to

previous work on Aldat [Yuan98].

2.5.1 Horizontal Operations

 Horizontal operations combine attribute values in each tuple using scalar operators. For

example, we can concatenate the fields name and title in the Courses relation into one

field with the following commands.

>let course be name cat " " cat title;

>CompCour <- [course, credits, capacity, instructor] in Courses;

>pr CompCour;

+----------------------------------+----------+-------------+-----------------+

| course | credits | capacity | instructor |

+----------------------------------+----------+-------------+-----------------+

| COMP102 Computers and Computing | 3.0 | 45 | Ciaravola |

| COMP208 Computers in Engineering | 3.0 | 100 | Ratzer |

| COMP251 Data Structures | 3.0 | 45 | Crepeau |

| COMP302 Programming Languages | 3.0 | 68 | Friedman |

| COMP310 Computer Systems | 3.0 | 70 | Maheswaran |

| COMP540 Matrix Computations | 3.0 | 25 | Chang |

| COMP642 Numerical Estimation | 4.0 | 15 | Chang |

| COMP644 Pattern Recognition | 4.0 | 25 | Aloupis |

+----------------------------------+----------+-------------+-----------------+

relation CompCour has 8 tuples

Figure 2.12 An example of horizontal operation

29

CHAPTER 2. JRELIX SYSTEM OVERVIEW

2.5.2 Vertical Operations

Vertical operations work across tuples and come up with summaries or orders of the

tuples in the relation. They are divided into reduction and functional mapping operations.

The difference between these two types is whether the tuple order is needed. Each type is

further divided into two subtypes, i.e. one with grouping functions and another without.

The following example sums the number of courses by credit in the Courses relation.

2.6

Prev

as q

secti

synta

relat

furth

comp

Path

Synt

>let numcour be equiv + of 1 by credits;

>CourByCred <- [credits, numcour] in Courses;

>pr CourByCred;

+---------------+-------------+

| credits | numcour |

+---------------+-------------+

| 3.0 | 6 |

| 4.0 | 2 |

+---------------+-------------+

Figure 2.13 An example of vertical operation

 Syntactic Sugar for Nested Queries

ious research has presented different approaches to nested relation operations, such

uery, update and level lifting [Merr84, He97]. As we can see in the preceding

ons, nested relations are subsumed as domains in nesting. Recent work introduced a

ctic sugar for nested relation queries, which regards projection domain and

ional expression as paths towards the low level elements. The syntactic sugar can

er couple with regular expressions and provides an intuitive means of handling

lex structured data.

 expression takes the following syntax,

ax: [<rel_name>/] (<nested_path_expr>/)* [<domain_name>];

30

CHAPTER 2. JRELIX SYSTEM OVERVIEW

Parameters:

rel_name – Top level relation name.

nested_path_expr – Nested path expression, which can be regular expressions.

domain_name – Query domain name.

The regular expression adopted by path expression provide Kleene star (“*”) which

means any occurrence, plus sign (“+”) which means one or more occurrence, question

mark (“?”) which means zero or one occurrence and period (“.”) which matches any path.

For example, “(/name)*” matches a null expression or any repeat of the path expression

“/name”, “(/name)+” matches more than one repeat of “/name”, “(/name)?” matches a

null expression or “/name” and “.*” matches any length of the path expression.

In the rest of the section, we will now present some examples based on the relation

StudAsst that we have already seen in section 2.1.2. In the first example, we retrieve all

assignment ids in the nested relation Assts. As we can see, the level of the attribute asstId

is raised by the path expression and it becomes an attribute in a top level relation.

StudAsst

(StudId Assts)

 (asstId mark)

 001 asst1 22.0

 asst2 25.0

 asst3 26.0

 002 asst1 24.0

 asst3 24.5

 003 asst2 27.0

 asst3 23.0

 004 asst1 23.5

 asst2 25.0

Figure 2.14 The relation StudAsst

31

CHAPTER 2. JRELIX SYSTEM OVERVIEW

In the second exam

can operate a neste

>AsstIds <- Assts/asstId in StudAsst;
>pr AsstIds;
+----------------------+
| asstId |
+----------------------+
| asst1 |
| asst2 |
| asst3 |
+----------------------+
relation AsstIds has 3 tuples

Figure 2.15 Nested retrieval with path expression

ple, we query the marks for assignment 1. It gives us the idea that we

d relation as a top-level relation with the powerful path expressions.
>Asst1Mark <- [mark] where asstId = "asst1" in StudAsst/Assts;
>pr Asst1Mark;
+---------------+
| mark |
+---------------+
| 22.0 |
| 23.5 |
| 24.0 |
+---------------+
relation Asst1Mark has 3 tuples

Figure 2.16 A nested query with path expression

32

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Chapter 3

Users’ Manual for Text Operations

The feature of handling text is added into the JRelix system by text operators. These

operators accept plain text as the input and generate a new text or relation as the output.

In this chapter, the users’ manual of text operators in the JRelix system is presented.

Section 3.1 describes the types of valid input and basic text operations. It gives the

details of the text definition, initialization, information retrieval and deletion. Section 3.2

introduces six basic binary grep operators on the text, namely igrep, ugrep, dgrep, sgrep

or diff, lgrep and rgrep. Section 3.3 presents another operator, called text2attr, which

breaks a text into tokens and turns them into tuples in a relation. Section 3.4 ends the

chapter by introducing the mu2nest operator which is used to handle marked-up text, e.g.

XML and HTML.

3.1 Basic Text Operations

Compared with relations, text is a sequence of elements without regular repetitions which

can be captured and converted into tuples. The valid input to the text type element in the

JRelix system is plain text, in other words, textual data in the ASCII format. The plain

text on Unix or Linux with the line-feed “\n”, and that on the MS Windows systems with

 33

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

line-feed “\r\n” are both acceptable. JRelix unifies the text formats with line-feed “\n”

before it becomes a JRelix text.

3.1.1 An Example

In this example, we are going to import a text file person.txt into JRelix, which resides

under the path "/home/user/jxie4/thesis/person.txt". The format of person.txt is ASCII

plain text. We define a JRelix text named person and initialize it with the person.txt file.
>text person <- "/home/user/jxie4/thesis/person.txt";

The text person is imported to JRelix.
>st;

---------------------------------- Text Table ----------------------------------

Name Length Content

--

person 203 Ted married Alice in 1932. Their childre

--

>pr person;

--

 Text person

--

Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe

was born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James

and Jane had Tom in 1961 and Sue in 1962).

--

Text person has 203 characters

3.1.2 Text Definition and Initialization

A JRelix text must be defined and initialized before using. A text can only be initialized

when it is defined. Its content can be assigned by a plain text file on the disk, by a

relation or by another text.

 34

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

3.1.2.1 Define a Text

Syntax: text <text_name>;

The simplest way to define a text is to define a text without initialization. With the above

command, JRelix defines a text called text_name and sets its length to 0.

Example:

>text person;

>st;

---------------------------------- Text Table ----------------------------------

Name Length Content

--

person 0

--

3.1.2.2 Initialize with a Plain Text File

JRelix also allows users to initialize a text with an ASCII file on the local disk. An

absolute file pathname should be given and surrounded by double quotation marks.

Syntax: text <text_name> <- <full_file_path>;

full_file_path is a pathname string surrounded by quotation marks. The text file is

copied from the given path and the file length will be calculated.

Note: JRelix accepts absolute file pathnames on both Unix platforms and MS Windows

platforms. For UNIX platforms, the prefix of an absolute pathname is "/". For Windows

platforms, the prefix of an absolute pathname is encoded as "\\".

Example:

Unix -
>text person <- "/home/user/jxie4/thesis/person.txt";

Windows -
>text person <- "C:\\JRelix\\person.txt";

 35

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

3.1.2.3 Initialize with another Text or Relation

A new text can also be assigned by a JRelix text or relation that already exists. JRelix

transforms the format of the input text/relation and assigns it to the new text.

Syntax: text <text_name> <- <other_text_or_relation>;

Example:

In the first example we initialize a text newperson with the text person.
>text newperson <- person;

>pr newperson;

--

 Text newperson

--

Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe

was born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James

and Jane had Tom in 1961 and Sue in 1962).

--

Text newperson has 203 characters

In the second example we create a text BoMtext from the relation BoM.
>pr BoM;

+----------------------+-------------+----------------------+

| assembly | qty | subassembly |

+----------------------+-------------+----------------------+

| cover | 1 | plate |

| cover | 2 | screw |

| fixture | 2 | plug |

| fixture | 2 | screw |

| plug | 1 | mould |

| plug | 2 | connector |

| wallplug | 1 | cover |

| wallplug | 1 | fixture |

+----------------------+-------------+----------------------+

relation BoM has 8 tuples

>text BoMtext <- BoM;

>pr BoMtext;

--

 Text BoMtext

--

cover 1 plate

cover 2 screw

 36

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

fixture 2 plug

fixture 2 screw

plug 1 mould

plug 2 connector

wallplug 1 cover

wallplug 1 fixture

--

Text BoMtext has 132 characters

>st;

---------------------------------- Text Entry ----------------------------------

Name Length Content

--

person 203 Ted married Alice in 1932. Their childre

newperson 203 Ted married Alice in 1932. Their childre

BoMtext 132 cover 1 plate cover 2 screw fixture 2 pl

--

3.1.3 Text Information Retrieval and Deletion

3.1.3.1 Print Command

For the convenience of JRelix programmers, it is possible to use the same command pr to

print out the content of the texts as the relations. The print text command, pt, is also

acceptable.

Syntax: pr <text_name>;

 or pt <text_name>;

Note: Some JRelix operators accept both relations and texts as parameters. To avoid the

ambiguity in using these operators, it is NOT allowed to define relations and texts with

the same name. Thus using command pr to print out the content of the texts is not

ambiguous to the programmers or to the JRelix system.

3.1.3.2 Show Text Command

In the same way that the command sr retrieves the information of the relations in JRelix,

sr or st has the same effect on texts.

 37

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Syntax: sr <text_name>;

 or st [<text_name>];

JRelix prints out the name, the length and part of the content of the text. The text_name

parameter in the command st is optional. If it is absent, JRelix will retrieve the

information of all texts in the system.

Note: If we use the command sr without giving the text_name, JRelix will only list all

the relations instead of texts in the system.

3.1.3.2 Delete Text Command

Unlike relations which are composed of domains and relations, texts are not attributes of

any other elements. A programmer can delete or redefine a text at any time. The syntax of

deleting a text is

Syntax: dr <text_name>;

 or dt <text_name>;

Note: It is not necessary to delete a text before defining a new one with the same name.

JRelix automatically replaces the old one with the definition of the new text.

3.2 Regular Expressions

3.2.1 Introduction

Text operators are integrated into JRelix to retrieve interesting information from text.

Before starting to discuss text operators, it is essential to introduce regular expressions

which will be used in our text operators.

Basically, regular expressions are a way to describe a set of strings based on common

characteristics shared by each string in the set. They can be used as a tool to search, edit

or manipulate text or data. For example, the expression “Andrew” matches any substring

 38

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

“Andrew” and the expression “A.*w” matches any substring starting with the letter “A”

and ending with letter “w”.

There are many different formulations of regular expressions we can choose from, such

as grep, Perl, JDK, Python and PHP. The one adopted herein is Java Regular Expression.

Its syntax is similar to the Unix grep. Compared with the line-based pattern matching in

Unix grep, Java regular expressions have higher flexibility. A match can be individual

characters, words, sentences across lines or the whole text.

Note:

1. In the implementations of the eight text operators, grep can be performed across

lines and paragraphs without specifying “\n” in their patterns. In other words, they

can match any characters with the wildcard “.” and do not need to worry whether the

matching string is separated by line-feed or not.

2. The pattern-matching in the text operators is case sensitive.

3. Although a match can extend across lines, the expressions ^ and $ still match just

after or just before, respectively, a line terminator or the end of the input sequence.

3.2.2 Regular Expression Syntax

Now that a general idea of what regular expressions are and why they are used has been

established, it is important to explain their syntax more clearly. The syntax of Java

regular expressions is similar to that of Unix grep. Most of the grep expressions we

already known can be applied on the patterns of the text operators. It is only necessary to

briefly mention the regular expression syntax which the programmers are likely to use

and which is different from Unix grep.

 39

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

♦ Characters

Construct Matches

x The character x

\\ The backslash character

\t The tab character

\n The newline (line feed) character

\r The carriage-return character

The character expressions are used to match individual characters.

Node: The carriage-return character (\r) is eliminated from the text by JRelix before it is

imported into the system. Thus the pattern “\r” will match nothing in the texts.

♦ Character classes

Construct Matches

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

♦ Predefined character classes

Construct Matches

. Any character (also match the line terminators in our implementation)

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

 40

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Predefined character classes offer the wildcards that match a group of characters which

are commonly used. For example, “\w+” matches any words and “\d+” matches any

sequence of digits in the text.

♦ POSIX character classes (US-ASCII only)

Construct Matches

\p{Lower} A lower-case alphabetic character: [a-z]

\p{Upper} An upper-case alphabetic character:[A-Z]

\p{ASCII} All ASCII:[\x00-\x7F]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]

\p{Print} A printable character: [\p{Graph}]

\p{Blank} A space or a tab: [\t]

\p{Cntrl} A control character: [\x00-\x1F\x7F]

\p{XDigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

♦ Boundary matchers

Construct Matches

^ The beginning of a line

$ The end of a line

♦ Logical operators

Construct Matches

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

 41

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

♦ Quantifiers

Greedy Reluctant Possessive Meaning

 x? x?? x?+ x, once or not at all

 x* x*? x*+ x, zero or more times

 x+ x+? x++ x, one or more times

 x{n} x{n}? x{n}+ x, exactly n times

 x{n,} x{n,}? x{n,}+ x, at least n times

 x{n,m} x{n,m}? x{n,m}+ x, at least n but not more than m times

More convenient than the Unix grep, Java regex returns character sequences of any

length instead of a whole line. Quantifiers make it possible to specify the length of the

sequence to be matched. There are three kinds of quantifiers, namely greedy, reluctant,

and possessive quantifiers.

Greedy quantifiers eat the entire input string prior to attempting the first match. If the

attempt to match the entire input string fails, the matcher backs off the input string

character by character until a match is found or there are no more characters left from

which to back off.

In contrast to the greedy quantifiers, the reluctant quantifiers start at the beginning of the

input string and then reluctantly eat one character at a time looking for a match. The last

thing they try is the entire input string.

In the same manner as the greedy quantifiers, the possessive quantifiers read in the whole

input string and try to find a match. Unlike the greedy quantifiers, they do not back off if

they fail to match and return with finding nothing.

The most useful quantifiers to the programmers are the greedy quantifiers and the

reluctant quantifiers, which return the longest and shortest matches respectively. For

 42

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

example, the greedy expression “<.*>” matches the whole XML file and the reluctant

expression “<.*?>” matches the individual XML tags.

♦ Quoting

The backslash character (“\”) serves to introduce escaped constructs as well as to quote

characters which otherwise would be interpreted as unescaped constructs. Thus the

expression “\\” matches a single backslash, “\.” and “\?” match a full stop (“.”) and a

question mark (“?”) respectively, and pattern “.*?(\.|\?|!)” matches a sentence.

Some general ideas about the regular expressions to be used in the text operators have

now been made known. Similarly, the most useful patterns for the JRelix programmers in

handling the text and the new Java regular expression syntax beyond Unix grep have

been discussed. More examples will be shown when we introduce the individual

operators in the following sections.

3.3 Binary Grep Operators

A new set of relational operators are suggested by the need of textual pattern matching. It

would be opportune to be able to find a substring or a match for a more general regular

expression in plain text. The first six operators are called binary grep operators. They

supply a matching pattern and defined attributes for the result relation, which binary

greps associate with the proper values according to the types of the attributes. Basically,

the input of a binary grep is two relevant texts, and the output is a joined relation

containing the information retrieved from the texts by the matching pattern.

The six members in the binary grep family, namely the igrep, ugrep, dgrep, sgrep, lgrep

and rgrep, share similar names. Like the names of the join operators, the first letters of

the names of the binary operators indicate the types of relational operations being done

on the result of the grepping. For example, igrep means the result is the intersection of

two greps, and sgrep means the result is the symmetric difference of two greps.

 43

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

The six binary grep operators follow the similar syntax which is given below.

Syntax: <text1> xgrep(<pattern> (, <attr>)+) <text2>

x stands for i, u, d, s, l or r, respectively.

Parameters:

text – The input texts as the source of the grep.

pattern – The match pattern, which will be applied on both texts.

attr - The domains predefined by the user, which will be used as the attributes in the

result relation. Users can specify two kinds of attributes, namely value and position, for

the results from two texts. Values are the string-type attributes used for the matched

strings in the texts and positions are the integer-type attributes used for the starting

position of the strings. The positions of the attribute parameters within their types

determine the source of their value and the sequence of their occurrence in the result

relation. That is to say, the first attributes of string type and integer type will be used for

the matches and their positions in the left-hand text and the second attributes will be used

for the right-hand text. The second position parameter can be omitted. More attributes

than the first two strings and the two integers will be ignored.

Some examples for the individual bi-grep operators will be shown now. Their usage and

meaning will be discussed in the following sections.

3.3.1 Intersection Grep

The first binary grep, namely intersection grep or igrep, applies the pattern to the texts

separately and presents the intersection of the results to the user. i means that an

intersection operation is performed. It also serves to distinguish this binary operator from

the unary grep and other operators in the bi-grep family. Please note the following

example.

Given two texts, Jtext and Stext,

 44

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>pr Jtext;

--

 Text Jtext

--

On his way to work,

Joe met Sue. "Let's

go out tonight", he invited

her. After work, he met her

at her apartment and they

went to a movie

which he enjoyed a lot.

--

>pr Stext;

--

 Text Stext

--

Sitting in a movie

with Joe, Sue

wondered why she had accepted his

invitation. She had just

started to paint her apartment

and did not really have time.

--

>domain val1, val2 strg;

>domain pos1, pos2 intg;

>JStextlink <- Jtext igrep("\w+", pos1, val1, val2, pos2) Stext;

>pr JStextlink;

+-------------+----------------------+----------------------+-------------+

| pos1 | val1 | val2 | pos2 |

+-------------+----------------------+----------------------+-------------+

| 3 | his | his | 65 |

| 11 | to | to | 104 |

| 21 | Joe | Joe | 25 |

| 29 | Sue | Sue | 30 |

| 71 | her | her | 113 |

| 95 | her | her | 113 |

| 103 | her | her | 113 |

| 107 | apartment | apartment | 117 |

| 117 | and | and | 128 |

| 132 | to | to | 104 |

| 135 | a | a | 11 |

| 137 | movie | movie | 13 |

| 161 | a | a | 11 |

+-------------+----------------------+----------------------+-------------+

relation JStextlink has 13 tuples

 45

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

igrep returns a relation containing the common words in two texts. The values of val1

and val2 come from Jtext (left-hand operant) and Stext (right-hand operant) respectively.

pos1 and pos2 give the positions of the words in the texts. The sequence of the attributes

in the relation comes out the same as specified by the programmer.

We noted that the pattern “\w+” is used to grep individual words. That is to say, “\w” is

used to match any single letter, and “+” is to tell the operator to concatenate the

consecutive letters together and return them as a word.

3.3.2 Union Grep

The remainder of the binary greps follows similar lines. The union grep, ugrep, applies

the union operation on the grep results. It retains all grepped strings from two texts, even

the strings that have no matches in another text. The positions of the unmatched strings

are set to null values, DC, in the result.

The following is an example with the same input Jtext and Stext as in section 3.3.1.
>JStextunion <- Jtext ugrep("\w+", pos1, val1, val2, pos2) Stext;

>pr JStextunion;

+-------------+----------------------+----------------------+-------------+

| pos1 | val1 | val2 | pos2 |

+-------------+----------------------+----------------------+-------------+

| dc | dc | She | 82 |

| dc | dc | Sitting | 0 |

| dc | dc | accepted | 56 |

| dc | dc | did | 132 |

| dc | dc | had | 52 |

| dc | dc | had | 86 |

| dc | dc | have | 147 |

| dc | dc | in | 8 |

| dc | dc | invitation | 70 |

| dc | dc | just | 90 |

| dc | dc | not | 136 |

| dc | dc | paint | 107 |

| dc | dc | really | 140 |

| dc | dc | she | 48 |

| dc | dc | started | 96 |

 46

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

| dc | dc | time | 152 |

| dc | dc | why | 44 |

| dc | dc | with | 20 |

| dc | dc | wondered | 35 |

| 0 | On | dc | dc |

| 3 | his | his | 65 |

| 7 | way | dc | dc |

| 11 | to | to | 104 |

| 14 | work | dc | dc |

| 21 | Joe | Joe | 25 |

| 25 | met | dc | dc |

| 29 | Sue | Sue | 30 |

| 35 | Let | dc | dc |

| 39 | s | dc | dc |

| 42 | go | dc | dc |

| 45 | out | dc | dc |

| 49 | tonight | dc | dc |

| 59 | he | dc | dc |

| 62 | invited | dc | dc |

| 71 | her | her | 113 |

| 76 | After | dc | dc |

| 82 | work | dc | dc |

| 88 | he | dc | dc |

| 91 | met | dc | dc |

| 95 | her | her | 113 |

| 100 | at | dc | dc |

| 103 | her | her | 113 |

| 107 | apartment | apartment | 117 |

| 117 | and | and | 128 |

| 121 | they | dc | dc |

| 127 | went | dc | dc |

| 132 | to | to | 104 |

| 135 | a | a | 11 |

| 137 | movie | movie | 13 |

| 144 | which | dc | dc |

| 150 | he | dc | dc |

| 153 | enjoyed | dc | dc |

| 161 | a | a | 11 |

| 163 | lot | dc | dc |

+-------------+----------------------+----------------------+-------------+

relation JStextunion has 54 tuples

Similarly to what we did in igrep, the pattern “\w+” is used to grep individual words into

a relation. The values of val1 and val2 are necessarily the same because the union

 47

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

operation is applied on the grepped strings. The value of the position attribute tells

whether the string appears in the text: If the string appears, the position value gives the

position of the string; otherwise, it gives a null value which indicates there is no match

for the string in the text. Unlike the way igrep discards the unmatched strings, the result

of ugrep contains all data retrieved from both texts.

3.3.3 Difference Grep

Similar to the djoin operator in the binary join family, the difference grep operator, called

dgrep, returns the difference of the grepped strings from two texts. That is to say, dgrep

subtracts the grepped string set of the right-hand text from that of the left-hand text, and

presents it as the result.

In order to show the function of dgrep, the text Stext is revised a little bit and have

another text Stext’. Please note that the difference between Stext and Stext’ only exists in

the second and third lines.

>pr Stext';

--

 Text Stext'

--

Sitting in a movie

with Joe, Sue wondered

why she had accepted his

invitation. She had just

started to paint her apartment

and did not really have time.

--

And then we look for the difference between Stext and Stext’ with the tool dgrep.

>Stextdgrep <- Stext dgrep(".*?$", pos1, val1, val2, pos2) Stext';

 48

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>pr Stextdgrep;

+-------------+----------------------+

| pos1 | val1 |

+-------------+----------------------+

| 20 | with Joe, Sue |

| 35 | wondered why she had |

+-------------+----------------------+

relation Stextdgrep has 2 tuples

The result is that the difference exists in the lines starting at the 20th character and the

35th character, that is to say, the second and the third lines. In the same manner as the

djoin operator, dgrep does not show the attribute with all null values in the result, even if

the programmer gives its name in the parameters. In this example, “.*?\n” can also be

used as the match pattern because “\n” and “$” are alternatives in current implementation.

The question mark (“?”) in the pattern tells the pattern matcher to stop at the first

occurrence of the line-feed (“\n” or “$”), and return the matched string before going on

for another match.

If we do it the other way round, we will get the result presented by Stext’, which actually

tells the same thing.

>Stextdgrep' <- Stext' dgrep(".*?$", pos2, val2, val1, pos1) Stext;

>pr Stextdgrep';

+-------------+----------------------+

| pos2 | val2 |

+-------------+----------------------+

| 20 | with Joe, Sue wonder |

| 44 | why she had accepted |

+-------------+----------------------+

relation Stextdgrep' has 2 tuples

3.3.4 Symmetric Difference Grep

Operator dgrep only shows the matches which exist in the left-hand text but not in the

right-hand text. Inspired by the sjoin operator, we implemented a symmetric difference

grep, or sgrep, which returns the difference from both sides. In other words, it combines

 49

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

two difference greps, text1 dgrep text2 and text2 dgrep text1.

>Stextdiff <- Stext sgrep(".*?\n", pos1, val1, val2, pos2) Stext';

>pr Stextdiff;

+-------------+----------------------+----------------------+-------------+

| pos1 | val1 | val2 | pos2 |

+-------------+----------------------+----------------------+-------------+

| dc | dc | why she had accepted | 44 |

| dc | dc | with Joe, Sue wonder | 20 |

| 20 | with Joe, Sue | dc | dc |

| 35 | wondered why she had | dc | dc |

+-------------+----------------------+----------------------+-------------+

relation Stextdiff has 4 tuples

The result is the symmetric difference of the lines in both texts. It comes out the same as

the union of the two dgreps which can be found in section 3.3.3. As other binary grep

operations, the values of val1 and val2 are equivalent, and the value of the position tells

to which text the matched string belongs.

We can see from this example, that the sgrep operator has a similar function to the diff

command on Unix, which is commonly used to compare and find out the difference

between text documents. Thus the sgrep operator has an alias: diff. The following

command will produce the same result as the example above.

Stextdiff <- Stext diff(".*?\n", pos1, val1, val2, pos2) Stext';

3.3.5 Left Grep

The following two grep operations are sometimes useful when we are concerned about

the grep results on one side and the unmatched results on the other side can be left out.

What the lgrep operator does is to retrieve the strings in the left-hand text and only the

related strings in the right-hand text. It is equal to the union of igrep and dgrep.

We still use the Jtext and Stext to give the example.
>JStextleft <- Jtext lgrep("\w+", pos1, val1, val2, pos2) Stext;

 50

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>pr JStextleft;

+-------------+----------------------+----------------------+-------------+

| pos1 | val1 | val2 | pos2 |

+-------------+----------------------+----------------------+-------------+

| 0 | On | dc | dc |

| 3 | his | his | 65 |

| 7 | way | dc | dc |

| 11 | to | to | 104 |

| 14 | work | dc | dc |

| 21 | Joe | Joe | 25 |

| 25 | met | dc | dc |

| 29 | Sue | Sue | 30 |

| 35 | Let | dc | dc |

| 39 | s | dc | dc |

| 42 | go | dc | dc |

| 45 | out | dc | dc |

| 49 | tonight | dc | dc |

| 59 | he | dc | dc |

| 62 | invited | dc | dc |

| 71 | her | her | 113 |

| 76 | After | dc | dc |

| 82 | work | dc | dc |

| 88 | he | dc | dc |

| 91 | met | dc | dc |

| 95 | her | her | 113 |

| 100 | at | dc | dc |

| 103 | her | her | 113 |

| 107 | apartment | apartment | 117 |

| 117 | and | and | 128 |

| 121 | they | dc | dc |

| 127 | went | dc | dc |

| 132 | to | to | 104 |

| 135 | a | a | 11 |

| 137 | movie | movie | 13 |

| 144 | which | dc | dc |

| 150 | he | dc | dc |

| 153 | enjoyed | dc | dc |

| 161 | a | a | 11 |

| 163 | lot | dc | dc |

+-------------+----------------------+----------------------+-------------+

relation JStextleft has 35 tuples

We can find that the number of tuples in the result is exactly the number of words in Jtext.

Compared to the ugrep operation, there is no null value in the position on the left side in

 51

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

the lgrep operation, which means the unmatched strings on the right side are not included

in the result.

3.3.6 Right Grep

The Right grep is the reverse operation of left grep: it returns all the grepped strings from

the right-hand text and only the matched strings from the left-hand grep. It is equal to the

union of the intersection grep and right difference grep.

Please see the following example:

>JStextright <- Jtext rgrep("\w+", pos1, val1, val2, pos2) Stext;

>pr JStextright;

+-------------+----------------------+----------------------+-------------+

| pos1 | val1 | val2 | pos2 |

+-------------+----------------------+----------------------+-------------+

| dc | dc | She | 82 |

| dc | dc | Sitting | 0 |

| dc | dc | accepted | 56 |

| dc | dc | did | 132 |

| dc | dc | had | 52 |

| dc | dc | had | 86 |

| dc | dc | have | 147 |

| dc | dc | in | 8 |

| dc | dc | invitation | 70 |

| dc | dc | just | 90 |

| dc | dc | not | 136 |

| dc | dc | paint | 107 |

| dc | dc | really | 140 |

| dc | dc | she | 48 |

| dc | dc | started | 96 |

| dc | dc | time | 152 |

| dc | dc | why | 44 |

| dc | dc | with | 20 |

| dc | dc | wondered | 35 |

| 3 | his | his | 65 |

| 11 | to | to | 104 |

| 21 | Joe | Joe | 25 |

| 29 | Sue | Sue | 30 |

| 71 | her | her | 113 |

 52

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

| 95 | her | her | 113 |

| 103 | her | her | 113 |

| 107 | apartment | apartment | 117 |

| 117 | and | and | 128 |

| 132 | to | to | 104 |

| 135 | a | a | 11 |

| 137 | movie | movie | 13 |

| 161 | a | a | 11 |

+-------------+----------------------+----------------------+-------------+

relation JStextright has 32 tuples

As we have expected, the number of tuples in the result is equal to the number of words

in Stext. It is useful when we want to focus on the words in the right-hand text and throw

away the noisy words in the left-hand text.

3.4 Text-To-Attribute Operator

Basically, a text is a sequence of characters, whose meaning depends on the order of its

elements. It does not have intrinsic repetition that can be caught and turned into tuples.

However, if its order is captured by sequencing attributes, text can indeed seem to be a

set of tuples. The decision has to be made as to what attributes are going to be used to

give rise to the text, e.g. characters and their sequence, words and their sequence, or

sentences and their sequence etc. This can be done by implementing a simple text mining

tool, which is able to extract the internal structure of the text, and retrieve the desired

information (e.g. gene and protein sequences) from the textual documents, as has been

discussed in section 1.1.4.

The text2attr operator is an operator on text which creates a relation containing text

elements and their sequence. It can also be used in domain algebra, which works on text

attributes and produces a nested relation. text2attr takes parameters in groups. Each

group allows the programmers to retrieve one level of the elements, such as characters,

words or sentences. It contains patterns, strings, and integers as parameters, which

provide the matching pattern, the name of the element attribute and the name of the

 53

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

element sequence attribute to the operator respectively. Either, but not both, of the

element name and element sequence name is optional, in the case where only the element

or only the sequence is wanted. At least one group of parameters should be given.

Syntax: text2attr((<pattern>, <attr>[, <attr>])+) <text>

Example:

>domain sentseq intg;

>domain sent strg;

>sentences <- text2attr(".*?\.", sentseq, sent) Jtext;

>pr sentences;

+-------------+---+

| sentseq | sent |

+-------------+---+

| 0 | On his way to work, Joe met Sue. |

| 1 | "Let's go out tonight", he invited her. |

| 2 | After work, he met her at her apartment and they went to a movie |

+-------------+---+

relation sentences has 3 tuples

This is a simple example with only one group of parameters used to capture the sentences

in the text. The pattern ".*?\." tells the matcher to grep a sequence of characters that ends

with a full stop (“.”). The parameters sentseq and sent give the names of the element

attribute and the element sequence attribute respectively. The text2attr operator returns

three sentences it found in the text and gives their sequence. The attributes appear in the

relation at the sequence specified by the programmer.

For elements that are hierarchically related, text2attr can take more than one group of

parameters and join different levels of elements together, according to the sequence of

the parameters. It is the programmer’s responsibility to give the parameters in the correct

sequence according to the natural structure of the text, and make the output meaningful.

For example, the sequence of “characters, words, sentences” is more meaningful than

“characters, sentences, words”.

 54

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Example:

>domain charseq, wordseq, sentseq intg;

>domain char, word, sent strg;

>hiertext <- text2attr(".", charseq, char, "\w+|\s+|\p{Punct}", wordseq, word, ".*?\.", sentseq,

sent) Jtext;

>pr hiertext;

+-------------+------------+-------------+----------------+-------------+----------------------

+

| charseq | char | wordseq | word | sentseq | sent |

+-------------+------------+-------------+----------------+-------------+----------------------

+

| 0 | O | 0 | On | 0 | On his way to work, |

| 1 | n | 0 | On | 0 | On his way to work, |

| 2 | | 1 | | 0 | On his way to work, |

| 3 | h | 2 | his | 0 | On his way to work, |

| 4 | i | 2 | his | 0 | On his way to work, |

| 5 | s | 2 | his | 0 | On his way to work, |

| 6 | | 3 | | 0 | On his way to work, |

| 7 | w | 4 | way | 0 | On his way to work, |

| 8 | a | 4 | way | 0 | On his way to work, |

| 9 | y | 4 | way | 0 | On his way to work, |

| 10 | | 5 | | 0 | On his way to work, |

| 11 | t | 6 | to | 0 | On his way to work, |

| 12 | o | 6 | to | 0 | On his way to work, |

| 13 | | 7 | | 0 | On his way to work, |

| 14 | w | 8 | work | 0 | On his way to work, |

| 15 | o | 8 | work | 0 | On his way to work, |

| 16 | r | 8 | work | 0 | On his way to work, |

| 17 | k | 8 | work | 0 | On his way to work, |

| 18 | , | 9 | , | 0 | On his way to work, |

| 19 | | 10 | | 0 | On his way to work, |

| 20 | | 10 | | 0 | On his way to work, |

| 21 | J | 11 | Joe | 0 | On his way to work, |

| 22 | o | 11 | Joe | 0 | On his way to work, |

| 23 | e | 11 | Joe | 0 | On his way to work, |

| 24 | | 12 | | 0 | On his way to work, |

| 25 | m | 13 | met | 0 | On his way to work, |

| 26 | e | 13 | met | 0 | On his way to work, |

| 27 | t | 13 | met | 0 | On his way to work, |

| 28 | | 14 | | 0 | On his way to work, |

| 29 | S | 15 | Sue | 0 | On his way to work, |

| 30 | u | 15 | Sue | 0 | On his way to work, |

| 31 | e | 15 | Sue | 0 | On his way to work, |

| 32 | . | 16 | . | 0 | On his way to work, |

| 33 | | 17 | | 1 | "Let's go out tonig |

| 34 | " | 18 | " | 1 | "Let's go out tonig |

| 35 | L | 19 | Let | 1 | "Let's go out tonig |

| 36 | e | 19 | Let | 1 | "Let's go out tonig |

| 37 | t | 19 | Let | 1 | "Let's go out tonig |

| 38 | ' | 20 | ' | 1 | "Let's go out tonig |

| 39 | s | 21 | s | 1 | "Let's go out tonig |

| ... | ... | ... | ... | ... | ... |

| 153 | e | 71 | enjoyed | 2 | After work, he met |

 55

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

| 154 | n | 71 | enjoyed | 2 | After work, he met |

| 155 | j | 71 | enjoyed | 2 | After work, he met |

| 156 | o | 71 | enjoyed | 2 | After work, he met |

| 157 | y | 71 | enjoyed | 2 | After work, he met |

| 158 | e | 71 | enjoyed | 2 | After work, he met |

| 159 | d | 71 | enjoyed | 2 | After work, he met |

| 160 | | 72 | | 2 | After work, he met |

| 161 | a | 73 | a | 2 | After work, he met |

| 162 | | 74 | | 2 | After work, he met |

| 163 | l | 75 | lot | 2 | After work, he met |

| 164 | o | 75 | lot | 2 | After work, he met |

| 165 | t | 75 | lot | 2 | After work, he met |

| 166 | . | 76 | . | 2 | After work, he met |

+-------------+------------+-------------+----------------+-------------+----------------------

+

relation hiertext has 167 tuples

The pattern “\w+|\s+|\p{Punct}” is used to capture a word, a sequence of writespace

characters or a punctuation. Here text2attr captures three levels of elements and joins

them into a relation according to the sequence of the parameter groups. The number of

parameter groups is not limited in text2attr, but the result is meaningful only when the

captured elements are hierarchically related.

The text2attr operator can be applied to text-type or string-type attributes in domain

algebra. In the following example text2attr is used to parse the words in the attribute

sent.

Syntax: text2attr((<pattern>, <attr>[, <attr>])+) <attr_or_text>

Example:

>let words be text2attr("\w+", wordseq, word) sent;

>sentences' <- [sentseq, sent, words] in sentences;

>pr sentences';

+-------------+----------------------+----------------------+

| sentseq | sent | words |

+-------------+----------------------+----------------------+

| 0 | On his way to work, | 64 |

| 1 | "Let's go out tonig | 65 |

| 2 | After work, he met | 66 |

+-------------+----------------------+----------------------+

relation sentences' has 3 tuples

 56

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>pr .words;

+----------------------+-------------+----------------------+

| .id | wordseq | word |

+----------------------+-------------+----------------------+

| 64 | 0 | On |

| 64 | 1 | his |

| 64 | 2 | way |

| 64 | 3 | to |

| 64 | 4 | work |

| 64 | 5 | Joe |

| 64 | 6 | met |

| 64 | 7 | Sue |

| 65 | 0 | Let |

| 65 | 1 | s |

| 65 | 2 | go |

| 65 | 3 | out |

| 65 | 4 | tonight |

| 65 | 5 | he |

| 65 | 6 | invited |

| 65 | 7 | her |

| 66 | 0 | After |

| 66 | 1 | work |

| 66 | 2 | he |

| 66 | 3 | met |

| 66 | 4 | her |

| 66 | 5 | at |

| 66 | 6 | her |

| 66 | 7 | apartment |

| 66 | 8 | and |

| 66 | 9 | they |

| 66 | 10 | went |

| 66 | 11 | to |

| 66 | 12 | a |

| 66 | 13 | movie |

| 66 | 14 | which |

| 66 | 15 | he |

| 66 | 16 | enjoyed |

| 66 | 17 | a |

| 66 | 18 | lot |

+----------------------+-------------+----------------------+

relation .words has 35 tuples

The virtual attribute words is defined on the string type attributes sent and is actualized in

the relation sentences’. It turns out to be a nested relation containing the words parsed by

 57

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

text2attr and their sequences.

Application:

With the intrinsic ability to match the implicit patterns and extract the desired

information from the text, the text2attr operator can also be used as a simple text mining

tool. For example, the following text, CourDesc, contains descriptions of three courses as

shown in figure 3.1.

T

c

w

A

d

s

r

COMP 575 - Fundamentals of Distributed Algorithms

Study of a collection of algorithms that are basic to the world of concurrent

programming...

Prerequisite: COMP 310

Instructor: Carl Tropper

COMP 617 - Information Systems

Seminar course. A major area of application of the techniques covered in 308-612 is

discussed...

Prerequisite: COMP 612

Instructor: Timothy Merrett

COMP 642 - Numerical Estimation

Efficient and reliable numerical algorithms in estimation and their applications...

Prerequisites: MATH 323, MATH 324 and COMP 350

Instructor: Xiao-Wen Chang
Figure 3.1 The CourDesc text

he text gives the course name, introduction, prerequisites and instructors for each

ourse. The lines containing different information of the course start with different key

ords, e.g. COMP, Prerequisite and Instructor etc, which helps to predict their contents.

nd all information for one course is bounded within one paragraph, which helps to

istinguish the different courses. The patterns of the text are obvious. We will try to do

ome text mining on the text and extract some useful information into a relation, which is

eady for further computer process.

58

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>domain name, course, description, prerequisite, instructor strg;

>CName <- text2attr("^COMP \d+ -.*?$", name, ".*?\n\n", course) CourDesc;

>CDesc <- text2attr("^[^(Prerequisite)(COMP)(Instructors)(\n)].+?$", description, ".*?\n\n",

course) CourDesc;

>CPrer <- text2attr("^Prerequisite.*?$", prerequisite, ".*?\n\n", course) CourDesc;

>CInst <- text2attr("^Instructors.*?$", instructor, ".*?\n\n", course) CourDesc;

>CourDescRel <- [name, description, prerequisite, instructor] in (CName ijoin CDesc ijoin CPrer ijoin

CInst);

>pr CourDescRel;

+----------------------+----------------------+----------------------+----------------------+

| name | description | prerequisite | instructor |

+----------------------+----------------------+----------------------+----------------------+

| COMP 575 - Fundament | Study of a collectio | Prerequisite: COMP 3 | Instructors: Carl Tr |

| COMP 617 - Informati | Seminar course. A ma | Prerequisite: COMP 6 | Instructors: Timothy |

| COMP 642 - Numerical | Efficient and reliab | Prerequisites: MATH | Instructors: Xiao-We |

+----------------------+----------------------+----------------------+----------------------+

relation CourDescRel has 3 tuples

In this example, different kinds of course information are extracted into intermediate

relations, e.g. CName, CDesc, CPrer and CInst, by text-to-attribute operations. Each

operation accepts two groups of parameters. The first group matches the desired

information and gives it the attribute name, and the second group matches the whole

paragraph that identifies the course to which it belongs. The ijoin operation following the

extraction commands assemble different information of the same course into the same

tuple. The result of the mining example is shown in the relation CourDescRel.

The text2attr operator can also be applied on texts in domain algebra and create a nested

relation for each tuple in the actualized relation. It is similar to its application on

attributes and further examples are not to be given in this section.

3.5 Markup-To-Nest Operator

3.5.1 Definition of Null-type Domain

Before considering the markup-to-nest operator, we would like to introduce the new

feature of defining null type domain in JRelix, in other words, defining a domain without

 59

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

specifying its type. It will be needed it in section 3.5.2 when we run the recursion with

the mu2nest operator.

Syntax: domain <domain_list>;

With this command, the system is told to define domains in domain_list with an

undefined type and to leave the domain types to be specified in further operations.

Example:

>domain Spouse, Married, Name, DoB;

>sd;

------------------------------- Domain Entry -------------------------------

Name Type NumRef IsState Dom_List

--

Name undefined 0 false

Spouse undefined 0 false

Married undefined 0 false

DoB undefined 0 false

--

In the example we define domain Spouse, Married, Name and DoB without giving their

types. In the following section we can see that the mu2nest operator accepts the null type

domains and assigns their domain types in the run-time. The null type domains are

shown with type undefined in the domain list before the specification.

3.5.2 Markup-To-Nest

The operators introduced in the previous sections are designed for operations on plain

text. Other than plain text, another kind of embedded text data is important, namely the

marked-up text. Marking up the text with xML tags specified more elaborate information

than the plain text. For example, by marking up the text person in section 3.1.1, we have

a semi-structured text personmu:

 60

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

<Person>

 <Name>Ted</Name> married

 <Family><Spouse>Alice</Spouse> in <Married>1932</Married>. Their children,

 <Children><Name>Mary</Name> (<DoB>1934</DoB>) married

 <Family><Spouse>Alex</Spouse> in <Married>1954</Married>

 (<Children><Name>Joe</Name> was born to Mary and Alex in <DoB>1956</DoB>

 </Children>)

 </Family>

 and <Name>James</Name> (<DoB>1935</DoB>) married

 <Family><Spouse>Jane</Spouse> in <Married>1960</Married>

 (<Children>James and Jane had <Name>Tom</Name> in

 <DoB>1961</DoB> and <Name>Sue</Name> in <DoB>1962</DoB>

 </Children>).

 </Family>

 </Children>

 </Family>

</Person>

The markup-to-nest operator, mu2nest, is implemented to handle the marked-up text. It

works on a marked-up text or a marked-up string attribute and produces a nested relation.

Syntax: mu2nest(<exclude_pattern>, (<attr>)*) <text>

Parameters:

text – The source text.

exclude_pattern – The pattern indicating what is to be excluded from the text. The

excluded strings will not appear in the content attribute. The usual things a programmer

wishes to exclude in the text are the mark-up tags.

attr – There are 3 possible types of parameters that mu2nest takes in the following order:

content, start and length. They are attributes of string-type, integer-type and integer-type

predefined by the programmer. Similar to the JRelix computation, mu2nest adopts the

positional convention and recognizes the parameters by the order of their appearance.

That is to say, if the programmer wants to omit some of the parameters, the commas

should be left in, expect that the omitted parameter is the last parameter.

1. content – The content of the element after excluding undesired strings matched by the

pattern. The tags will be included in the content if the programmer gives a null

pattern (“”).

2. start – The absolute starting position of the element in the text, with tags excluded.

 61

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

3. length – The content length of the element, with tags excluded.

The following is a simple example on the text personmu.

Example:

>domain content strg;

>domain start, length intg;

>personnest <- mu2nest("<.*?>", content, start, length) personmu;

>pr personnest;

+----------------------+---------+---------+------------------+------------------+

| content | start | length | Name | Family |

+----------------------+---------+---------+------------------+------------------+

| Ted married Alice in | 0 | 203 | 20 | 21 |

+----------------------+---------+---------+------------------+------------------+

relation personnest has 1 tuple

>pr .Name;

+----------------------+----------------------+-------------+-------------+

| .id | content | start | length |

+----------------------+----------------------+-------------+-------------+

| 20 | Ted | 0 | 3 |

+----------------------+----------------------+-------------+-------------+

relation .Name has 1 tuple

>pr .Family;

+----------------------+--+

| .id | content |

+----------------------+--+

| 21 | <Family .abspos=12><Spouse>Alice</Spouse> in <Married>1932 |

+----------------------+--+

relation .Family has 1 tuple

The value of content in relation personnest is the whole text with tags excluded. We can

see that mu2nest extracts the specified attributes at the top level and generates nested

relations for the child-elements. To the leaf child-element Name, mu2nest applies the

similar rule to that of the top-level element, and retrieves the attributes content, start and

length for the nested relation Name. Since Family recursively contains marked-up text,

mu2nest does not descend into it. mu2nest only extracts its content as a marked-up string

and creates a nested relation for it.

 62

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Note: In the case when a nested relation already exists with the same name before

mu2nest creates one, mu2nest checks for its structure. If the old relation is compatible

with the one mu2nest is going to create, i.e. they have identical attributes in the same

order, new tuples will be appended to the old one. Otherwise, the operation will abort.

According to the positional convention used on the parameters, the invocations

 mu2nest("<.*?>", content, , length) personmu

and

 mu2nest("<.*?>", content) personmu

are both acceptable. The former generates content and length, the latter generates content

as extracting attributes.

The mu2nest operator can also be applied in the domain algebra and extract structure

information from string-type attributes in the relations. To go deeper in the text personmu,

we now apply mu2nest to Family in personnest.

Example:

>let F be mu2nest("<.*?>", content, start, length) Family;

>personnest' <- [content, start, length, Name, F] in personnest;

>pr personnest';

+----------------------+-------------+-------------+----------------+----------------+

| content | start | length | Name | F |

+----------------------+-------------+-------------+----------------+----------------+

| Ted married Alice in | 0 | 203 | 35 | 40 |

+----------------------+-------------+-------------+----------------+----------------+

relation personnest' has 1 tuple

>pr .F;

+--------+----------------------+---------+---------+----------+----------+----------+

| .id | content | start | length | Spouse | Married | Children |

+--------+----------------------+---------+---------+----------+----------+----------+

| 40 | Alice in 1932. Their | 12 | 191 | 37 | 38 | 39 |

+--------+----------------------+---------+---------+----------+----------+----------+

relation .F has 1 tuple

 63

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

>pr .Spouse;

+----------------------+----------------------+-------------+-------------+

| .id | content | start | length |

+----------------------+----------------------+-------------+-------------+

| 37 | Alice | 12 | 5 |

+----------------------+----------------------+-------------+-------------+

relation .Spouse has 1 tuple

>pr .Married;

+----------------------+----------------------+-------------+-------------+

| .id | content | start | length |

+----------------------+----------------------+-------------+-------------+

| 38 | 1932 | 21 | 4 |

+----------------------+----------------------+-------------+-------------+

relation .Married has 1 tuple

>pr .Children;

+----------------------+------------------------+

| .id | content |

+----------------------+------------------------+

| 39 | <Children .abspos=43>< |

+----------------------+------------------------+

relation .Children has 1 tuple

With the help of domain algebra, mu2nest analyses the marked-up text in Family in a

similar manner to what it did on personmu. Again it extracts the information at the top

level, returns a single-tuple relation .F and creates nested relations for the elements one

level down.

We noticed that mu2nest leaves the element Children with structures unanalyzed. To go

further and expand all levels in the text personmu, we need recursion in domain algebra.

Since this example nests Children inside Family, and Family inside Children, we define

two virtual attributes for Family and Children mutually.

Example:

Step 1. Define null domains.

>domain Family, Children, Family', Children', Spouse, Married, Name, DoB;

In the previous examples, the child-element attributes, such as Name, Spouse and

 64

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

Married, are generated by mu2nest automatically in the run-time. But in this example, we

are going to define virtual domain Family’ and Children’ on these undefined domains.

Thus we need to define them as null domains first to make JRelix accept the definition of

Family’ and Children’. Their domain types will be given in the run-time.

Step 2. Define recursive domains mutually.

>domain c strg;

>domain s, l intg;

>let Family' be [c, s, l, Spouse, Married, Children'] in mu2nest("<.*?>", c, s, l) Family;

>let Children' be [c, s, l, Name, DoB, Family'] in mu2nest("<.*?>", c, s, l) Children;

warning: domain 'Children'' is being referenced.

We can see that Family’ is defined on Children’, and Children’ is defined on Family’.

They are also defined on the null domains we declared above.

Step 3. Run the recursion.

>personrecu <- [c, s, l, Name, Family'] in mu2nest("<.*?>", c, s, l) personmu;

>pr personrecu;

+----------------------+-------------+-------------+--------------+--------------+

| c | s | l | Name | Family' |

+----------------------+-------------+-------------+--------------+--------------+

| Ted married Alice in | 0 | 203 | 41 | 63 |

+----------------------+-------------+-------------+--------------+--------------+

relation personrecu has 1 tuple

>pr .Family';

+------+----------------------+-------+-------+------------+------------+------------+

| .id | c | s | l | Spouse | Married | Children' |

+------+----------------------+-------+-------+------------+------------+------------+

| 61 | Alex in 1954 (Joe wa | 63 | 52 | 49 | 50 | 57 |

| 61 | Jane in 1960 (James | 141 | 62 | 52 | 53 | 60 |

| 63 | Alice in 1932. Their | 12 | 191 | 43 | 44 | 62 |

+------+----------------------+-------+-------+------------+------------+------------+

relation .Family' has 3 tuples

>pr .Spouse;

+----------------------+----------------------+-------------+-------------+

| .id | c | s | l |

+----------------------+----------------------+-------------+-------------+

| 43 | Alice | 12 | 5 |

 65

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

| 49 | Alex | 63 | 4 |

| 52 | Jane | 141 | 4 |

+----------------------+----------------------+-------------+-------------+

relation .Spouse has 3 tuples

>pr .Married;

+----------------------+----------------------+-------------+-------------+

| .id | c | s | l |

+----------------------+----------------------+-------------+-------------+

| 44 | 1932 | 21 | 4 |

| 50 | 1954 | 71 | 4 |

| 53 | 1960 | 149 | 4 |

+----------------------+----------------------+-------------+-------------+

relation .Married has 3 tuples

>pr .Children';

+------+----------------------+-------+-------+------------+------------+------------+

| .id | c | s | l | Name | DoB | Family' |

+------+----------------------+-------+-------+------------+------------+------------+

| 57 | Joe was born to Mary | 77 | 37 | 55 | 56 | dc |

| 60 | James and Jane had T | 155 | 46 | 58 | 59 | dc |

| 62 | Mary (1934) married | 43 | 160 | 46 | 47 | 61 |

+------+----------------------+-------+-------+------------+------------+------------+

relation .Children' has 3 tuples

>pr .Name;

+----------------------+----------------------+-------------+-------------+

| .id | c | s | l |

+----------------------+----------------------+-------------+-------------+

| 41 | Ted | 0 | 3 |

| 46 | Mary | 43 | 4 |

| 46 | James | 120 | 5 |

| 55 | Joe | 77 | 3 |

| 58 | Tom | 174 | 3 |

| 58 | Sue | 190 | 3 |

+----------------------+----------------------+-------------+-------------+

relation .Name has 6 tuples

>pr .DoB;

+----------------------+----------------------+-------------+-------------+

| .id | c | s | l |

+----------------------+----------------------+-------------+-------------+

| 47 | 1934 | 49 | 4 |

| 47 | 1935 | 127 | 4 |

| 56 | 1956 | 110 | 4 |

| 59 | 1961 | 181 | 4 |

| 59 | 1962 | 197 | 4 |

+----------------------+----------------------+-------------+-------------+

relation .DoB has 5 tuples

 66

CHAPTER 3. USERS’ MANUAL FOR TEXT OPERATIONS

We noted that the recursion invoked by the mutual definitions of Family’ and Children’

extracts the structure of Person at all levels. The recursion comes to an end when it

encounters a null value in Family’, and presents the result as recursive nested relations.

The text structure of Person explored by mu2nest is illustrated below. The numbers in the

brackets are surrogates of nested relation, which would help in finding out the original

data in the tables above. We also noticed that when mu2nest encounters two or more

elements with the same name at the same level, it appends them as different tuples in the

nested relation with the same surrogate.

Person
(Name Family)
 (Spouse Married Children)
 (Name DoB Family)
 (Spouse Married Children)
 (Name DoB Family)
 Ted (63)
 Alice 1932 (62)
 Mary 1934 (61)
 Alex 1954 (57)
 Joe 1956 dc
 James 1935 (61)
 Jane 1960 (60)
 Tom 1961 dc
 Sue 1962 dc

 67

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Chapter 4

Implementation of Text Operations

After presenting the users’ manual of text operations, we go deeper into the

implementation of these new features in the JRelix system. In this chapter, the

implementation details are given. Sections 4.1 and 4.2 introduce the general development

environment and the overview of the existing JRelix system architecture. In section 4.3,

the strategy of text storage and the implementation of basic text operations are

interpreted. In sections 4.4 to 4.6, the design and implementation of three groups of text

operators, namely binary grep operator, text-to-attribute operator and markup-to-text

operator, are presented in detail for both relation algebra and domain algebra.

4.1 Development Environment

The JRelix system is developed in Java. The new version of JRelix is implemented on

JDK 1.4.0 or higher and runs on the platform of UNIX, Linux, MS Windows and any

other operating system that supports Java.

The parser of the JRelix programming language is generated by two parser tools: JJTree

and JavaCC. JavaCC, Java Compiler Compiler, is written in Java and is capable of

 68

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

generating a parser from a high-level grammar specification in a text file and converting

it into a Java program which recognizes matches in the grammar. As a complement to

JavaCC, JJTree is a preprocessor of JavaCC which inserts parse tree building actions at

various places in the JavaCC source. The output of JJTree is run through JavaCC to

create the parser. JDK, JavaCC and JJTree together constitute the platform for the JRelix

implementation.

4.2 JRelix Implementation Overview

The JRelix system contains four main components. They are the Parser, the Interpreter,

the Execution Engine and the Data Storage. The parser and the interpreter work as the

front-end processor and the interface between the user and the execution engine. The

execution engine is invoked by the interpreter and fulfills the task passed from it. Data

storage manages the data in the system as disk files or as run-time data in the RAM. The

relations between the components are shown in Figure 4.1.

The Parser reads the command-line input from the console, analyzes the command

syntax and builds up an input tree for the command which can be interpreted by the

interpreter. The parser is built with the help of JJTree and JavaCC [SDV96 & Kang03].

The Interpreter runs in an infinite loop. It calls the parser, receives the input tree,

Figure 4.1 The JRelix system

domain

operation

relation

operation

text

operation

Executionuser input function Data

calls command Parser Interprete

r

 tree
Engine

Storage

 69

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

traverses the tree, decomposes the user input into function calls and executes the calls by

invoking the execution engine. It is implemented in Java and represented by the class

interpreter.

The Execution Engine consists of function modules, i.e. Relation Processor [Hao98],

Virtual Domain Actualizer[Yuan98] and Event Processor[He97], which can be invoked

by the interpreter and fulfill the task of computations or data operations.

The Data Storage is the data which permanently resides on the disk and the run-time

data in the RAM. There are two types of data in the JRelix system, the user-defined data

which represents the elements that users defined in the system, and the system

information data which describes the current status of the system. They are managed by

both the interpreter and the execution engine.

4.3 Basic Text Operations

As a new element introduced into the JRelix system, text has its own set of operation

commands. For the convenience of the programmer, most of the text commands are

integrated into the commands we are already using to handle relations. This section talks

in detail about the implementation of basic text operation commands. We will start with

the text storage in the system, and then we will go to the basic operations such as

definition and deletion, and at the end we will finish the section by introducing the

integration of the text commands and the relation commands.

4.3.1 Text Storage

Similar to the relations in JRelix, the text elements have their own storage in the system.

The storage of text consists of two parts: the text table and the text files.

The Text table, basically a hash table, is one type of system information data. It registers

 70

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

the texts existing in the system with their names, data lengths and part of their contents.

Every entry in the text table has the following structure.

Item Type Description

Name String Text name

Length Integer Text file length

Abstr String First 40 characters of text content

The text table resides in the RAM in run-time. It is written to the .text file on the disk

when JRelix shuts down, and read from the same file when JRelix boots up. The text

table is represented by the TextTable class in the current implementation.

The Text file is an ASCII file stored permanently on the disk with the suffix .text in the

filename. It represents the text in the system. Unlike the relation files which are loaded

into the RAM sometime in run-time, the text files are only opened and read during the

operation and they never reside in the RAM. The text file is represented by the Text class

in the implementation.

4.3.2 Text Definition and Initialization

 Define an Empty Text

The user is allowed to define a text without initialization. In this case, JRelix defines an

empty text in the system by inserting an entry into the text table without creating a text

file. The text length is set to 0 and the text abstract is set to null in the text table. An

empty text is acceptable as input to the text operators, but no operation is actually

executed on the text.

 Initialize with an ASCII File

JRelix adopts a similar syntax in text initialization as in relation initialization. It opens

 71

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

the input ASCII file by the absolute pathname, and copies the content of the file into a

*.text file under the running directory. The format of the text files on the Windows

platform is converted to the one on the UNIX platform during the initialization by

replacing “\r\n” with “\n” in the input file. Meanwhile, an entry is appended to the text

table in the memory with the name, file length and abstract of the new text.

 Initialize with a Text or a Relation

The process of initialization with another text is similar to that with an ASCII file. The

difference is that the system reads the input from the running directory instead of the

given file path. No format conversion is needed in the copy process.

Text initialization with relations is implemented to make it possible to apply the text

operations on the relation data. The data in the relation is converted into a string format

and written into the text file during the text initialization. Tuples are separated by

line-feeds and the fields in the same tuple are separated by tab characters in the text file.

The following example shows the content of text BoMtext which comes from a relation

BoM.

>pr BoM;
+----------------------+-------------+----------------------+
| assembly | qty | subassembly |
+----------------------+-------------+----------------------+
| cover | 1 | plate |
| cover | 2 | screw |
| fixture | 2 | plug |
| fixture | 2 | screw |
| plug | 1 | mould |
| plug | 2 | connector |
| wallplug | 1 | cover |
| wallplug | 1 | fixture |
+----------------------+-------------+----------------------+
relation BoM has 8 tuples
>text BoMtext <- BoM;

 72

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

>pr BoMtext;
--
 Text BoMtext
--
cover 1 plate
cover 2 screw
fixture 2 plug
fixture 2 screw
plug 1 mould
plug 2 connector
wallplug 1 cover
wallplug 1 fixture
--
Text BoMtext has 132 characters

4.3.3 Integration of Text and Relation

To increase the usability of this new feature in JRelix, and to make it possible to handle

text and relations in the same way, some basic relational operators are enhanced to

handle the text as well as the relations. The following table gives the relational operators

which are able to work on text and their equivalent textual operators.

Relational Operator on Text Equivalent Textual Operator Usage

pr text_name; pt text_name; print out text

sr text_name; st text_name; show text information

dr text_name; dt text_name; delete text

Texts are not allowed to share or reuse relation names, and vice-versa.

4.3.4 Text Listing, Printing and Deleting

 Listing

The show-text command lists all the entries in the text table or one specified entry if the

text name is given as the parameter. To make the output look tidy, the tab characters in

the content are already converted into space characters during the text initialization. A

 73

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

typical text listing is shown below.
>sr;
---------------------------------- Text Entry ----------------------------------
Name Length Content
--
person 203 Ted married Alice in 1932. Their childre
newperson 203 Ted married Alice in 1932. Their childre
BoMtext 132 cover 1 plate cover 2 screw fixture 2 pl
--

 Printing

The print-text command prints the content of the text with its name and length. No

conversion is done on the content before printing.
>pr person;
--
 Text person
--
Ted married Alice in 1932. Their children, Mary (1934) married Alex in 1954 (Joe
was born to Mary and Alex in 1956) and James (1935) married Jane in 1960 (James
and Jane had Tom in 1961 and Sue in 1962).
--
Text person has 203 characters

 Deleting

The delete-text command deletes the text file and removes the corresponding entry in the

text table if given text exists. Otherwise, it does nothing except to return with a warning.

4.4 Binary Grep Operators

The binary grep family consists of six members, namely igrep, ugrep, dgrep, sgrep (diff),

lgrep and rgrep. They differ from each other in the relational operation applied on the

grepped matches in the texts. The strategies in their implementation are almost the same.

Generally speaking, the binary operators take the following sequential steps in the

implementation.

 74

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

 Generate attributes from the syntax tree passed by the parser.

 Apply the match pattern to two texts respectively, and create two intermediate

relations containing the matches from the texts.

 Apply the corresponding binary-join operation on the intermediate relations.

 Set the values of unmatched fields to null, and arrange attributes to user-specified

order.

We are now step by step going to explain the details of the implementation with a

concrete example. Assume that we have two texts Jshort and Sshort.

>pr Jshort;
--
 Text Jshort
--
Joe invited Sue to a movie which he enjoyed a lot.
--
Text Jshort has 50 characters
>pr Sshort;
--
 Text Sshort
--
Joe invited Sue to a movie which she only enjoyed a little.
--
Text Sshort has 59 characters

We want to find the difference between these two texts. Here the tool we use is sgrep,

also called diff.

>domain val1, val2 strg;
>domain pos1, pos2 intg;
>JSdiff <- Jshort diff("\w+", pos1, val1, val2, pos2) Sshort;
>pr JSdiff;
+-------------+----------------------+----------------------+-------------+
| pos1 | val1 | val2 | pos2 |
+-------------+----------------------+----------------------+-------------+
| dc | dc | little | 52 |
| dc | dc | only | 37 |
| dc | dc | she | 33 |
| 33 | he | dc | dc |
| 46 | lot | dc | dc |
+-------------+----------------------+----------------------+-------------+
relation JSdiff has 5 tuples

 75

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

The Symmetric difference grep extracts the different words in two texts and gives their

occurrence positions. Four steps have been taken behind the screen.

Step 1. Generate attributes from given parameters.

Before running the pattern matching, we first validate the parameters provided by the

user and pass the attributes to the pattern matcher. Basically, we need three attributes for

each text. They are:

The Value attribute, which will contain the values of matches returned by the text

matcher. In the example, predefined domain val1 is accepted as the value attribute for the

left-hand text and val2 for the right-hand text. If any of the given domains is undefined,

bigrep will abort and print out a domain-not-declared message.

The Position attribute, which will give the positions of the matches in the text. In the

example, the integer type domains pos1 and pos2 are parsed as position attributes for the

left-hand and right-hand text respectively. If any of the position attributes are omitted by

the user, bigrep will pass a null value to the matcher.

The Sequence attribute, which will keep the sequence information for the matches. It is

a system-information attribute which is automatically created by bigrep and passed to the

matcher. The Sequence attribute is not contained in the result of binary grep operations.

The first step is executed in the interpreter. After the necessary attributes are prepared,

they are passed with the matching pattern to the matchers in two Text instances.

Step 2. Grep in texts.

Each Text instance validates the attributes received from the interpreter or creates a

default attribute if any of them is null. Afterwards, it applies the pattern to the text and

puts the matches into a relation. The text matcher is built with the help of the Java Pattern

 76

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

class and Matcher class.

In our example, the matcher generates the following intermediate relations for the

matches in Jtext and Stext, and returns them to the interpreter. We can see that the

domains given by the user become attributes which contain value and position

information for two texts. The sequence information which is not useful to bigrep will be

ignored in the interpreter.

Matches in Jtext: Matches in Stext:
+--------------+---------+---------+ +--------------+---------+---------+
| val1 | pos1 | _seql | | val2 | pos2 | _seqr |
+--------------+---------+---------+ +--------------+---------+---------+
Joe	0	0		Joe	0	0
invited	4	1		invited	4	1
Sue	12	2		Sue	12	2
to	16	3		to	16	3
a	19	4		a	19	4
movie	21	5		movie	21	5
which	27	6		which	27	6
he	33	7		she	33	7
enjoyed	36	8		only	37	8
a	44	9		enjoyed	42	9
lot	46	10		a	50	10
+--------------+---------+---------+ | little | 52 | 11 |
 +--------------+---------+---------+

Step 3. Apply binary join to intermediate relations.

The difference between the six binary operations exists in the relational operations

applied on the intermediate relations. The intersection operation is applied in igrep, and

the symmetric difference operation is applied in sgrep, etc.

The relational operation on the two relations is shown below. The values of val1 and val2

are always the same, but we want the value attribute of the unmatched side to be null.

Furthermore, the attributes are not in the desired order, thus we have one more step to go.

 77

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

+----------+-------------+-------------+----------+-------------+-------------+
| val1 | pos1 | _seql | val2 | pos2 | _seqr |
+----------+-------------+-------------+----------+-------------+-------------+
he	33	7	he	dc	dc
little	dc	dc	little	52	11
lot	46	10	lot	dc	dc
only	dc	dc	only	37	8
she	dc	dc	she	33	7
+----------+-------------+-------------+----------+-------------+-------------+

Step 4. Clarifying and presenting.

The last step is to set the values of the unmatched tuples to null value (“dc”) to make the

result more readable. Finally the relation is projected to the user-specified attributes and

presented as the output of the binary grep operation.

+-------------+----------------------+----------------------+-------------+
| pos1 | val1 | val2 | pos2 |
+-------------+----------------------+----------------------+-------------+
dc	dc	little	52
dc	dc	only	37
dc	dc	she	33
33	he	dc	dc
46	lot	dc	dc
+-------------+----------------------+----------------------+-------------+

4.5 Text-To-Attribute Operator

4.5.1 Range Join

To address the needs of retrieving the hierarchical structure from the text, the feature of

range joins, namely high-range join and low-range join, is added in JRelix for the system

programmers. That is to say, the function of range joins is implemented in the Relation

class, but the JRelix parse is not amended to accept the range-join operation from the

JRelix programmer. If the JRelix enhancement is to subsequently open range joins to the

JRelix programmer, only a thorough testing is needed on the operation before it becomes

functional. Figure 4.2 illustrates the implementation strategy of range joins.

 78

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Sort in ascending order for lojoin,
descending order for hijoin.

Old S <- null

read R

read S

lojoin X< lojoin Y<

4.5.1 text2attr Operator

The text2attr operator is implemented to extract different levels of elements in the text

and join them together according to their natural structure. It takes parameters in groups,

each of which contains a compulsory string as the matching pattern, an optional integer

type domain as the match sequence attribute and an optional string type domain as the

match value attribute. In this section, we will discuss how it works with the following

N

=

hijoin X > hijoin Y >
X:Y

∞ Stop

Create tuple of result
from R, S,
Old S <- tuple from S

read S

read R

Old S <- tuple from S

read S

Create tuple of result
from R, Old S

read R

Y

Figure 4.2 Implementing Range-join R[X join Y]S

 79

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

example. We apply text2attr to text JmetS and retrieve its textual structure.

>pr JmetS;
--
 Text JmetS
--
After work, Joe met Sue.
--
Text JmetS has 24 characters
>domain charseq, wordseq intg;
>domain char, word strg;
>charword <- text2attr(".", charseq, char, "\w+|\s+|\p{Punct}", wordseq, word) JmetS;
>pr charword;
+-------------+----------------------+-------------+----------------------+
| charseq | char | wordseq | word |
+-------------+----------------------+-------------+----------------------+
| 0 | A | 0 | After |
| 1 | f | 0 | After |
| 2 | t | 0 | After |
| 3 | e | 0 | After |
| 4 | r | 0 | After |
| 5 | | 1 | |
| 6 | w | 2 | work |
| 7 | o | 2 | work |
| 8 | r | 2 | work |
| 9 | k | 2 | work |
| 10 | , | 3 | , |
| 11 | | 4 | |
| 12 | J | 5 | Joe |
| 13 | o | 5 | Joe |
| 14 | e | 5 | Joe |
| 15 | | 6 | |
| 16 | m | 7 | met |
| 17 | e | 7 | met |
| 18 | t | 7 | met |
| 19 | | 8 | |
| 20 | S | 9 | Sue |
| 21 | u | 9 | Sue |
| 22 | e | 9 | Sue |
| 23 | . | 10 | . |
+-------------+----------------------+-------------+----------------------+
relation charword has 24 tuples

The text is parsed into characters and words, and they are presented in a relation

structured according to their natural hierarchy. In the interpreter, three steps are executed

to produce the relation.

 80

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Step 1. Generate attributes.

The first step is to generate the attributes for the pattern matcher from the parameters

given by the user. As introduced in section 4.4, there are three types of attributes needed

by the matcher:

The Value attribute – comes from the string type domain provided by the user. If no

string type domain is found in the parameters, a null value will be passed to the matcher.

The Position attribute – is automatically created by the interpreter for the reason that the

user is not asked to provide this parameter. It will be left out when we present our final

result.

The Sequence attribute – is an important attribute to the text2attr operator. It comes

from the integer type domain given in the parameters. When it is not provided, A null

value will be passed to the matcher.

The interpreter parses the parameters in groups, each of which starts with a pattern

parameter and ends before the next group or the end of the parameters. Each group stands

for one level of elements which will be grepped from the text and hierarchized into the

relation. In the next step, the interpreter will grep different levels of elements in the text

with the help of the parameter groups, and arrange the returned relations into a temporary

vector.

Step 2. Grep in the text.

The pattern matcher takes a group of parameters and greps one type of elements defined

by the pattern. It retrieves the value, position and sequence of the matches, puts them into

corresponding attributes in the intermediate relation and returns it to the interpreter.

 81

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

We are grepping two types of elements in our example, thus two intermediate relations

are generated in this step:

Relation for char elements:
+----------------------+-------------+-------------+
| char | _temp_X9X_2 | charseq |
+----------------------+-------------+-------------+
A	0	0
f	1	1
t	2	2
e	3	3
r	4	4
	5	5
w	6	6
o	7	7
r	8	8
k	9	9
,	10	10
	11	11
J	12	12
o	13	13
e	14	14
	15	15
m	16	16
e	17	17
t	18	18
	19	19
S	20	20
u	21	21
e	22	22
.	23	23
+----------------------+-------------+-------------+

Relation for word elements:
+----------------------+-------------+-------------+
| word | _temp_X9X_3 | wordseq |
+----------------------+-------------+-------------+
After	0	0
	5	1
work	6	2
,	10	3
	11	4
Joe	12	5
	15	6
met	16	7
	19	8
Sue	20	9
.	23	10
+----------------------+-------------+-------------+

In the intermediate relations, value and sequence information resides in the user-defined

 82

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

attributes, and position information resides in a temporary attribute. We are now going to

take a further step to build the hierarchical structure.

Step 3. Low-range join and projection in relation.

To retrieve the hierarchical text structure, different levels of elements are related by

applying a low-range join operation to the intermediate relations on the temporary

position attributes. It produces a universal relation containing position, value and

sequence information as follows.
+-------------+----------+-------------+-------------+----------+-------------+
| _temp_X9X_2 | char | charseq | _temp_X9X_3 | word | wordseq |
+-------------+----------+-------------+-------------+----------+-------------+
0	A	0	0	After	0
1	f	1	0	After	0
2	t	2	0	After	0
3	e	3	0	After	0
4	r	4	0	After	0
5		5	5		1
6	w	6	6	work	2
7	o	7	6	work	2
8	r	8	6	work	2
9	k	9	6	work	2
10	,	10	10	,	3
11		11	11		4
12	J	12	12	Joe	5
13	o	13	12	Joe	5
14	e	14	12	Joe	5
15		15	15		6
16	m	16	16	met	7
17	e	17	16	met	7
18	t	18	16	met	7
19		19	19		8
20	S	20	20	Sue	9
21	u	21	20	Sue	9
22	e	22	20	Sue	9
23	.	23	23	.	10
+-------------+----------+-------------+-------------+----------+-------------+

The Starting position of the elements is not desired in the result. We project the relation

to the attributes provided by the parameter groups and present it as the final result.
+-------------+----------------------+-------------+----------------------+
| charseq | char | wordseq | word |
+-------------+----------------------+-------------+----------------------+
| 0 | A | 0 | After |

 83

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

1	f	0	After
2	t	0	After
3	e	0	After
4	r	0	After
5		1	
6	w	2	work
7	o	2	work
8	r	2	work
9	k	2	work
10	,	3	,
11		4	
12	J	5	Joe
13	o	5	Joe
14	e	5	Joe
15		6	
16	m	7	met
17	e	7	met
18	t	7	met
19		8	
20	S	9	Sue
21	u	9	Sue
22	e	9	Sue
23	.	10	.

+-------------+----------------------+-------------+----------------------+

4.6 Markup-To-Nest Operator

The need to read and parse xML texts into JRelix requires an xML parser. It should be

able to take different kinds of xML, i.e. XML and HTML, as the argument. To achieve

the flexibility and to make our implementation independent of development

environments, we decided to implement our specific xML parser.

4.6.1 xML Parser

A similar semi-structure data parser was implemented to create relations from specific

semi-structure inputs with the help of the JRelix parser [Yu03]. Breaking away from the

relation building parser, our new xML parser is more flexible and capable of handling

different kinds of xML formats. It parses a markup text input and constructs a tree using

the SimpleNode class in the JRelix system.

 84

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Basically, the parser reads through the text and builds one node for each element it

encounters in the text. The structure of the xML input is preserved by the tree structure of

the nodes. The following table shows how parser-tree nodes represent the elements in the

markup text.

Element SimpleNode instance

name String identifier

content Object info

attributes Hashtable attrs

children Vector children

In addition to parsing an xML into a tree, the xML parser calculates the starting position

of each element, and records it by inserting an attribute called “.relativepos” into the

attribute list of the node. The new attribute represents the relative position of the element

to the beginning of the xML input with tags excluded. As we will see in the

implementation of mu2nest, the relative position helps to compute the absolute position

of the element in the whole text.

To demonstrate how the xML parser works on markup texts, we use the same text

personmu as in section 3.5.2.
<Person>
 <Name>Ted</Name> married
 <Family><Spouse>Alice</Spouse> in <Married>1932</Married>. Their children,
 <Children><Name>Mary</Name> (<DoB>1934</DoB>) married
 <Family><Spouse>Alex</Spouse> in <Married>1954</Married>
 (<Children><Name>Joe</Name> was born to Mary and Alex in <DoB>1956</DoB>
 </Children>)
 </Family>
 and <Name>James</Name> (<DoB>1935</DoB>) married
 <Family><Spouse>Jane</Spouse> in <Married>1960</Married>
 (<Children>James and Jane had <Name>Tom</Name> in
 <DoB>1961</DoB> and <Name>Sue</Name> in <DoB>1962</DoB>
 </Children>).
 </Family>
 </Children>
 </Family>
</Person>

 85

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

From the top level down, our parser produces a tree for the whole text.

Person - info=<Person><Name>Ted</Name> married <Family> ... </Family></Person>
 - attrs: .relativepos=0
 Name - info=<Name>Ted</Name>
 - attrs: .relativepos=0
 Family - info=<Family><Spouse>Alice</Spouse> in <Married>1932</Married> ... </Family>
 - attrs: .relativepos=12
 Spouse - info=<Spouse>Alice</Spouse>
 - attrs: .relativepos=12
 Married - info=<Married>1932</Married>
 - attrs: .relativepos=21
 Children - info=<Children><Name>Mary</Name> (<DoB>1934</DoB>) married...</Children>
 - attrs: .relativepos=43
 Name - info=<Name>Mary</Name>
 - attrs: .relativepos=43
 DoB - info=<DoB>1934</DoB>
 - attrs: .relativepos=49
 Family - info=<Family><Spouse>Alex</Spouse> in <Married>1954 ... </Family>
 - attrs: .relativepos=63
 Spouse - info=<Spouse>Alex</Spouse>
 - attrs: .relativepos=63
 Married - info=<Married>1954</Married>
 - attrs: .relativepos=71
 Children - info=<Children><Name>Joe</Name> was born to Mary and ... </Children>
 - attrs: .relativepos=77
 Name - info=<Name>Joe</Name>
 - attrs: .relativepos=77
 DoB - info=<DoB>1956</DoB>
 - attrs: .relativepos=110
 Name - info=<Name>James</Name>
 - attrs: .relativepos=120
 DoB - info=<DoB>1935</DoB>
 - attrs: .relativepos=127
 Family - info=<Family><Spouse>Jane</Spouse> in <Married>1960 ... </Family>
 - attrs: .relativepos=141
 Spouse - info=<Spouse>Jane</Spouse>
 - attrs: .relativepos=141
 Married - info=<Married>1960</Married>
 - attrs: .relativepos=149
 Children - info=<Children>James and Jane had <Name>Tom</Name> in ... </Children>
 - attrs: .relativepos=155
 Name - info=<Name>Tom</Name>
 - attrs: .relativepos=174
 DoB - info=<DoB>1961</DoB>
 - attrs: .relativepos=181
 Name - info=<Name>Sue</Name>
 - attrs: .relativepos=190
 DoB - info=<DoB>1962</DoB>
 - attrs: .relativepos=197

 86

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

The xML parser builds up a tree of the exact structure of the markup text. If there is any

attribute given in the tags of the markup text, it will also be extracted and processed in

the same way as the system-generated attribute “.relativepos”.

4.6.2 mu2nest Operator

The mu2nest operator is implemented to convert markup texts into nested relations. It

extracts from the text the specified attributes at the top level and generates nested

relations for the child elements. In section 4.6.1 we have seen how the xML parser parses

a markup text personmu into an element tree. In this section, we will use the same

example to explain the implementation of the mu2nest operator.

>domain content strg;
>domain start, length intg;
>personnest <- mu2nest("<.*?>", content, start, length) personmu;
>pr personnest;
+----------------------+---------+---------+------------------+------------------+
| content | start | length | Name | Family |
+----------------------+---------+---------+------------------+------------------+
| Ted married Alice in | 0 | 203 | 20 | 21 |
+----------------------+---------+---------+------------------+------------------+
relation personnest has 1 tuple
>pr .Name;
+----------------------+----------------------+-------------+-------------+
| .id | content | start | length |
+----------------------+----------------------+-------------+-------------+
| 20 | Ted | 0 | 3 |
+----------------------+----------------------+-------------+-------------+
relation .Name has 1 tuple
>pr .Family;
+----------------------+--+
| .id | content |
+----------------------+--+
| 21 | <Family .abspos=12><Spouse>Alice</Spouse> in <Married>1932 |
+----------------------+--+
relation .Family has 1 tuple

To create nested relations from the markup text, the mu2nest operator takes the following

four steps:

 87

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Step 1. Generate domain lists for top level and one level down relations.

In this step, mu2nest interprets the domain parameters given by the user, and generates

domain lists for three types of relations:

The Parent relation, or top-level relation, which comes from the root node in the

element tree. In the first step, the domain list of the parent relation only contains

user-provided domains, i.e. content, start and length in our example.

The Leaf child relation, which comes from a leaf node in the element tree. Its domain

list contains exactly the same domains passed by the user, before an .id domain is added

at the time it becomes a nested relation.

The Non-leaf child relation, which comes from a non-leaf node in the element tree. It

contains a content domain, or an .unanalyzed domain if the content domain is omitted by

the user. An .id domain will also be added into the relation when it becomes nested.

Step 2. Parse markup text into an element tree

With the help of our xMLParser, mu2nest reads the input text as a string and parses it into

a SimpleNode tree with the element structure preserved. The generated tree of our

example is showed in section 4.6.1. In the following steps, we will traverse the first two

levels of the tree and convert them into nested relations.

Step 3. Build up the top level relation

The children of the root of the tree are traversed for the first time, and every child is

inserted in the parent relation as a nested relation. In our example, child relations Name

and Family are inserted into the top level relation in this step.

Now that the domain list of the top level relation is complete, we can create this relation

and assign its values from the text. The assignment of the values is shown in the table

with values in our example.

 88

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

Attribute Value Example

content Content of the top level element with tags excluded Ted married Alice ... in 1962).

start Absolute position of the top level element 0

length Length of the top level element with tags excluded 203

The absolute position of an element is represented by its .abspos attribute. The attribute

helps to calculate the absolute positions of itself and its descendents in the whole text.

The .abspos attribute is added to the element when the element is a non-leaf node, and

will be separated for further analysis, i.e. the Family element in our example.

So far we are unable to assign child relation surrogates in this step because the child

relations are not generated. We will leave it for the next step.

Step 4. Build up the one level down relations

We traverse the child nodes for the second time, and assign values to leaf child relation

and non-leaf child relation. The value assignment is shown as follows:

Attribute Value Example

Leaf child relation Name

content Element value without tags Ted

start Sum of the absolute position of the parent and

the relative position of the child

0

length Length of the element value 3

Non-leaf child relation Family

content Element value with tags, and with the .abspos

attribute inserted to remember its absolute

position

<Family .abspos=12><Spouse>Alice

</Spouse> in ... </Family>

The relative position of the child is represented by the .relativepos attribute which is

 89

CHAPTER 4. IMPLEMENTATION OF TEXT OPERATIONS

added by the xML parser. The sum of the relative position of the child and the absolute

position of the parent in the whole text gives the absolute position of the child element,

i.e. the start attribute of the leaf child relation.

Rather than remembering the absolute position in the start attribute, a non-leaf child

relation saves it as the value of the .abspos attribute for further analysis. That is the way

mu2nest preserves the position information in domain algebra computation and

recursions.

 90

CHAPTER 5. CONCLUSIONS

Chapter 5

Conclusions

The first part of this chapter provides a summary of the research and implementation that

have been accomplished, and the new features of the extended JRelix database system. In

the second part of the chapter, some suggestions are given for research and enhancement

in the future.

5.1 Summary

We have proposed an Aldat extension within which text can be described and

manipulated meaningfully as an equivalent of relation. The extension is implemented in

the JRelix database, which is enhanced into a federated relational/text database. The

extended operations are simple and intuitive. Yet supported by the inherent capability of

semi-structured data manipulation in JRelix, they are able to perform simple text mining

in plain text, discover schema in implicit structured text, convert between relations and

texts, and execute search and extraction in structured/unstructured text.

The problem of text management is solved satisfactorily, and the following new features

are introduced into the enhanced JRelix system.

 91

CHAPTER 5. CONCLUSIONS

 Text type is added. As a new user-defined element in JRelix, text is now able to be

stored as a subfield in relations, or as an independent data type equivalent to

relations. The former allows the existing relational and domain algebra to be applied

on text as a string attribute, while the latter allows indices and views to be built for

the text, and text retrieval/update to be executed without querying relations in a

relational system.

 Simple text mining is provided. The implicit information and natural structure inside

text can be extracted by the text-to-attribute operation which parses text fragments

into attributes in a relation.

 Text structure retrieval is accomplished. Structured text marked up by SGML-style

tags can be converted into a parse tree represented by nested relations. In a tree

structure, subtexts of a node and its descendants are labelled on the node as pure text,

which also leads to a simple solution to the subtree extraction problem.

 Semi-structured data is catered for. The structured text in JRelix is allowed to be

semi-structured but well-formed text, with a fluid and finite schema. The problem of

text schema discovery can be solved satisfactorily with the programming tools

already implemented in JRelix [Merr03, Yu04].

 Full-text search is achieved, for both plain text and structured text. Regular

expressions are adopted as the pattern matching standard in JRelix, which allows

exact match and approximate match in a flexible way.

 Text comparison is implemented. The binary grep operations provide simple but

powerful comparison between two texts, which include both independent text and

text embedded in relations.

 92

CHAPTER 5. CONCLUSIONS

As an enhancement of a database programming language, the design and implementation

of our text database model are modest. The enhancement does not provide many

high-level operations on text such as automated grammatical inference tools and

heterogeneous data sources reconciliation tools. Instead, it endows JRelix with basic but

extensible text operations on the basis of which further programming can perform

complex text manipulations. While the needs for text management are rapidly evolving,

it gives a key to the database programmers to develop appropriate database systems for

different applications.

5.2 Future Work

5.2.1 Text Update

We have not designed or implemented text update operations in the enhanced

text/relational database. In a similar manner to the update operation in relational algebra,

text update is an important tool for processing vast bodies of textual information. Unlike

the data in conventional databases which is structured and divided into regions (e.g.

attributes, tuples and relations), text has no intrinsic inner boundaries or regions, to

which updates can be confined. This gives us the flexibility in defining text operations,

and at the same time the challenge to make sure the change of the text is properly

bounded and effective. We propose to extend the relational update operator to text and

adopting regular expressions. Text update will be performed by replacing the subtexts

matched by the update criteria with the new value given by the text expression.

The simplest update is to replace a certain string in the text with a new string. In the

following example, we replace the name of Ted to Tom in the text person, which we have

used in section 3.1.1.

>update person change "Ted" <- "Tom";

The updates using regular expression will change any strings in the text which satisfy the

 93

CHAPTER 5. CONCLUSIONS

update criteria. In the following example, we change all 20th century years to 19th century

years in person, e.g. to change 1956 to 1856, etc.

>update person change "19/d/d"<- "18/d/d";

As another example of the usage of regular expression in text update, the following

command deletes the markups embedded in the text,

>update personmu change "<.*?>" <- "";

A more complicated update is to compare two texts and change one of them according to

the result of the comparison. In the following example, we find out and mark up the

added string in newtext by comparing newtext with oldtext using the dgrep operation. The

expected result of the update is shown in figure 5.3.

>update newtext change ".*" <- "<added>.*</added>" using newtext dgrep("\w+", pos1, val1,

val2, pos2) oldtext;

A

r

c

e

v

t

Sue wondered why she had accepted his invitation.

Figure 5.1 The text oldtext

Sue wondered why she had not accepted his invitation.

Figure 5.2 The text newtext before update

Sue wondered why she had <added>not </added>accepted his invitation.

Figure 5.3 The text newtext after update

s we have seen above, the syntax of the text update can be similar to that of the

elational update. The update region is specified by the regular expression in the change

lause or by the tuples returned by the using clause, and the new value is given by the

xpression following the assignment arrow (“<-“). This also proves that text can be

iewed as a special type of relation with implicit and flexible boundaries of attributes and

uples.

94

CHAPTER 5. CONCLUSIONS

5.2.2 Auto-Markup

Following on from the last example in section 5.2.1, text update can mark up some

valuable information, which gives convenience to the further processing of the text. In

the current implementation, electronic markups have to be inserted into text manually.

However, we are already able to discover the hidden information inside a text and extract

it into a relation with an implemented text mining tool, as we can see in the fourth

example in section 3.4. It leads to the idea that we can also mark up the discovered

information and leave it in the text for further process, such as text schema discovery and

text to relation conversion.

Thus an auto-markup tool is proposed for future enhancement, which looks for the

hidden information in the text with the given pattern and marks it up automatically with

given tags. For example, it is possible to mark up the text CourDesc in section 3.4 into a

new text CourDescMu with the following command,

>text CourDescMu <- automu("COMP\s+\d+", "CourName",

 "\w.*?\n", "CourTitl",

 "\w.*?\n", "CourIntr",

 "Prerequisite.*?\n", "CourPrer",

 "Instructor.*?\n", "CourInst") CourDesc;

The proposed automu operator accepts parameters in pairs. The first parameter gives the

pattern for matching, and the second parameter gives the name of the tag which will be

used to mark up the matches. The operator parses through the text without backtracking

and terminates at the end of the input string. It returns the following text as output.

 95

CHAPTER 5. CONCLUSIONS

5

A

o

i

o

i

w

s

<CourName>COMP 575</CourName> - <CourTitl>Fundamentals of Distributed

Algorithms</CourTitl>

<CourIntr>Study of a collection of algorithms that are basic to the world of concurrent

programming...</CourIntr>

<CourPrer>Prerequisite: COMP 310</CourPrer>

<CourInst>Instructor: Carl Tropper</CourInst>

<CourName>COMP 617</CourName> - <CourTitl>Information Systems</CourTitl>

<CourIntr>Seminar course. A major area of application of the techniques covered in

308-612 is discussed...</CourIntr>

<CourPrer>Prerequisite: COMP 612</CourPrer>

<CourInst>Instructor: Timothy Merrett</CourInst>

<CourName>COMP 642</CourName> - <CourTitl>Numerical Estimation</CourTitl>

<CourIntr>Efficient and reliable numerical algorithms in estimation and their

applications...</CourIntr>

<CourPrer>Prerequisites: MATH 323, MATH 324 and COMP 350</CourPrer>

<CourInst>Instructor: Xiao-Wen Chang</CourInst>

Figure 5.4 The result of the auto-markup operation

.2.3 High-level Join

s a special type of relation, text should be able to be joined with relations. This

peration is provided by the high-level join. It takes relations or texts as operands,

gnoring the difference between relation and text, and gives a relation or a set of texts as

utput. Let’s consider a secretary’s work in sending a New Year’s greeting to all the staff

n the company by email. Suppose we have a marked-up text as a greeting email template,

ith the changeable fields such as email, title and name surrounded by tags. The text is

hown in figure 5.2.

96

CHAPTER 5. CONCLUSIONS

A

T

T

g

s

>

T

i

g

From: marie@company.com

To: <email></email>

Dear <title></title> <name></name>,

Wish you a Merry Christmas and Happy New Year!

Regards,

Marie (Secretary)

Figure 5.2 The template text

nd we have a relation containing the email, title and name information for the letters.

he relation is shown in figure 5.3.
Staff

(email title name)

 andrew@company.com Mr. Andrew Z.W Pang

 bob@company.com Mr. Bob C. Smith

 sue@company.com Ms. Sue K. White

 ...

Figure 5.3 The staff relation

he task now is to fill in the email template with the staff information and generate

reeting messages. The work can be done by applying ijoin on the template text and the

taff relation as follows,

messages <- template ijoin staff;

he enhanced ijoin operation takes the marked up subfields in template as attributes and

nner-joins the text and the relation on their common attributes. The result contains a

enerated message for each tuple in the staff relation as shown below,

97

CHAPTER 5. CONCLUSIONS

C

p

r

T

f

t

m

a

messages

(email title name template)

andrew@company.com Mr. Andrew Z.W Pang From: marie@company.com

To: <email>andrew@company.com</email>

Dear <title>Mr.</title>

 <name>Andrew Z.W Pang</name>,

Wish you a Merry Christmas and Happy New

Year!

Regards,

Marie (Secretary)

bob@company.com Mr. Bob C. Smith From: marie@company.com

To: <email>bob@company.com</email>

Dear <title>Mr.</title>

 <name>Bob C. Smith</name>,

Wish you a Merry Christmas and Happy New

Year!

Regards,

Marie (Secretary)

sue@company.com Ms. Sue K. White From: marie@company.com
To: <email>sue@company.com</email>

Dear <title>Ms.</title>

 <name>Sue K. White</name>,

Wish you a Merry Christmas and Happy New

Year!

Regards,

Marie (Secretary)

Figure 5.4 Generated messages relation

omplementing the text update and text-to-relation operations, hyper-join serves as a

rototype of the relation-to-text operations and disregards the natural difference between

elations and texts.

he implementation of text integration into JRelix is only the beginning of text research

or database programming languages. The proposed future work indicates a vast area for

ext research and application in JRelix, which will exploit the outstanding data

anipulation power of JRelix and endow JRelix with the characteristic of processing text,

 huge body of evolving data on the Web.

98

BIBLIOGRAPHY

Bibliography

[Abit97a] S. Abiteboul, “Querying Semistructured Data”, Proc. 6th Int. Conf. On

Database Theory (ICDT’97), Delphi, Greece (January 1997), Lecture

Nodes in Computer Science 1186, Springer-Verlag, 1-18.

[Abit97b] S. Abiteboul, D. Quass, J. McHugh, J. Widon and J. Weiner, “The Lorel

Query Language for Semistructure Data”, Journal of Digital Libraries 1, 1

(April 1997) pp. 68-88.

[Abit99] S. Abiteboul, P. Buneman, and D. Suciu, “Data on the Web : From

Relations to Semistructured Data and XML”, Morgan Kaufmann, 1999.

[Agra99] R. Agrawal, R. Bayardo, and R. Srikant, “Athena: Mining-based interactive

management of text databases”, Research Report RJ 10153, IBM Almaden

Research Center, San Jose, CA 95120, July 1999.

[Bake98] P. Baker, “Design and Implementation of Database Computations in Java”,

Master’s thesis, School of Computer Science, McGill University, 1998.

[Blak94] G. E. Blake, M. P. Consens, P. Kilpelainen, P.-A. Larson, T. Snider and F.

W. Tompa, “Text/relational Database Management Systems: Harmonizing

SQL and SGML”, Proc. Application of Databases (ADB94) Vadstena,

Sweden (June 1994), Lecture Notes in Computer Science 819,

Springer-Verlag, pp. 267-280.

[Brow98] L.J. Brown, M. Consens, I.J. Davis, C.R. Palmer, and F.W. Tompa. “A

structured text ADT for object relational databases”, Theory and Practice

of Object Systems 4(4), 1998.

[Bune97] P. Buneman, “Semistructured Data”, Proc. of Symposium on Principles of

Database Systems (PODS’97), p 117-121, 1997.

[Calv01] D. Calvanese, S. Castano, F. Guerra, et al, “Towards a Comprehensive

Methodological Framework for Semantic Integration of Heterogeneous

 99

BIBLIOGRAPHY

Data Sources”, In Eighth International Workshop on Knowledge

Representation Meets Databases (KRDB), 2001.

[Chaf00] J. Chaffee, S. Gauch, “Personal ontologies for web navigation”,

Proceedings of the ninth international conference on Information and

knowledge management, p.227-234, November 06-11, 2000, McLean,

Virginia, United States

[Comp91] IEEE Computer, Special Issue on Heterogeneous Distributed Database

Systems, 24(12), December, 1991.

[Coom87] J. H. Coombs, A. H. Renear, S. J. de Rose, “Markup systems and the future

of scholarly text processing”, Comm. ACM 30, 11 (November 1987),

933-947.

[Coop97] G. Cooper, “A simple constraint-based algorithm for efficiently mining

observational databases for causal relationships”, Data Mining and

Knowledge Discovery, 2(1997).

[Fayy96] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining to

knowledge discovery: An overview”, in Advances in Knowledge

Discovery and Data Mining, edited U. M Fayyad, G. Piatetsky-Shapiro, P.

Smyth, and R. Uthurusamy, AAAI Press/MIT Press, pp. 1--34, 1996.

[Feld98] R. Feldman et al, “Text mining at the term level”, In Proc. of the 2nd

European Symposium on Principles of Data Mining and Knowledge

Discovery (PKDD'98), Nantes, France, Sept 1998.

[Fuku98] K. Fukuda, T. Tsunoda, A. Tamura and T. Takagi, “Toward Information

Extraction: Identifying Protein Names from Biological Papers”,

Proceedings of the Pacific Symposium on Biocomputing (PSB’98), page

705-716, Maui, Hawaii, January 1998.

[Gao99] X. Gao and L. Sterling, “Semi-Structured Data Extraction from

Heterogeneous Sources”, 2cd International Workshop on Innovative

Internet Information Systems (IIIS'99), in conjunction with the European

Conference on Information Systems (ECIS'99), Copenhagen, Denmark.

1999.

 100

BIBLIOGRAPHY

[Gonn87] G. H. Gonnet and F. W. Tompa, “Mind your grammar: a new approach to

modeling text”, Very Large Data Bases (VLDB), Vol. 13 (September

1987), 339-346.

[Hao98] B. Hao, “Implementation of the Nested Relational Algebra in Java”,

Master’s thesis, School of Computer Science, McGill University, 1998.

URL: http://www.cs.mcgill.ca/~tim/cv/theses/hao.ps.gz.

[He97] H. He, “Implementation of nested relations in a database programming

language”, Master’s thesis, School of Computer Science, McGill

University, 1997. URL: http://www.cs.mcgill.ca/~tim/cv/theses/he.ps.gz.

[Horn03] F. Horn, L. Lee, F.E. Cohen, “MuteXt: an automated method to extract

mutation data from the literature”, Pacific Symposium on Biocomputing

2003, January 3-7, 2003, Lihue, Hawaii (USA).

[ISO86] International Organization for Standardization, Information processing –

text and office systems – Standard Generalized Markup Language (SGML).

ISO 8879: 1986

[Kazm86] Rick Kazman, “Structuring the text of the Oxford English Dictionary

through finite state transduction”, Technical Report CS86-20, University of

Waterloo, Computer Science Department, 1986.

[Kori99] Noriko Kando, “Text Structure Analysis as a Tool to Make Retrieved

Documents Usable”, Research and Development Department, National

Center for Scientific Information Systems (NACSIS), Japan, 1999.

[Lamp94] L. Lamport, “Latex User Guide and Reference Manual”, 2 edition, Addison

Wesley, 1994.

[Lent97] B. Lent, R. Agrawal and R. Srikant, “Discovering Trends in Text

Databases”, Proc. 3 rd Int Conf. On Knowledge Discovery and Data

Mining, California, 1997.

[Lin01] D. Lin and P. Pantel, “DIRT - Discovery of inference rules from text”, In

Proceedings of the ACM SIGKDD Conference on Knowledge Discovery

and Data Mining, 2001.

[Litw90] W. Litwin, L. Mark and N. Roussopoulos, “Interoperability of multiple

 101

BIBLIOGRAPHY

autonomous databases”, ACM Computing Surveys, 22(3):267-293, 1990.

[Lui96] R. Lui, “Implementation of Procedures in a Database Programming

Language”, Master’s thesis, School of Computer Science, McGill

University, 1996. URL: http://www.cs.mcgill.ca/~tim/cv/theses/lui.ps.gz.

[Matt00] Matthew Young-Lai and Frank Wm. Tompa, "Stochastic Grammatical

Inference of Text Database Structure", Machine Learning, 40(2): 111-137,

2000

[McHu97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore: A

database management system for semistructured data”, SIGMOD Record,

26(3): 54-66, September 1997.

[Merr84] T. H. Merrett, “Relational Information Systems”, Reston Publishing Co.,

Reston, VA, 1984.

[Merr03] T. H. Merrett, “A Nested Relation Implementation for Semistructured

Data”, School of Computer Science, McGill University, December 2003.

[Midd01] S. E. Middleton, D. C. De Roure and N. R. Shadbolt, “Capturing

Knowledge of User Preferences: ontologies on recommender systems”,

International Conference On Knowledge Capture, 2001.

[Raym96] D. R. Raymond, F. W. Tompa and D. Wood, “From Data Representation to

Data Model: Meta-Semantic Issues in the Evolution of SGML”, Computer

Standards and Interfaces 18 (1996) pp. 25-36.

[Salm94] A. Salminen and F. W. Tompa, “PAT expressions: an algebra for text

search”, Acta Linguistica Hungarica 41, 1-4(1992-1993) 1994, 277-306

[Salm96] A. Salminen and F. W. Tompa, “Grammars++ for Modelling Information in

Text”, Dept. of Computer Science Technical Report CS-96-40, University

of Waterloo (November 1996) 46 pp.

[Seba02] F. Sebastiani, “Machine learning in automated text categorization”, ACM

Computing Surveys, 34(1):1--47, March 2002.

[Shan95] H. Shang. “Trie methods for text and spatial data on secondary storage”,

Ph.D. Dissertation, School of Computer Science, McGill University,

January 1995. URL: http://www.cs.mcgill.ca/~tim/cv/theses/shang.ps.gz.

 102

BIBLIOGRAPHY

[Shet90] A. Sheth and J.A. Larson, “Federated database systems for managing

distributed, heterogeneous, and autonomous databases”, ACM Computing

Surveys, 22(3):183-236, 1990.

[Silv98] C. Silverstein, S. Brin, R. Motwani and J. D. Ullman, "Scalable Techniques

for Mining Causal Structures", Proc. 1998 Int. Conf. Very Large Data

Bases, pages 594--605, New York, NY, August 1998.

[Sun00] W. Sun, “Updates and Events in a Nested Relation Programming

Language”, Master’s thesis, School of Computer Science, McGill

University, 2000.

URL: http://www.cs.mcgill.ca/~tim/cv/theses/wSunThesis.html.

[Tana02] L. Tanabe, W. J. Wilbur, “Tagging gene and protein names in biomedical

text”, Bioinformatics 18(8) (2002) 1124-1132.

[Thie92] J. Thierry-Mieg and R. Durbin, “Syntactic definitions for the ACeDB data

base manager”, Technical report, MRC Laboratory for Molecular Biology,

Cambridge, England, 1992.

[Tomp89] F. W. Tompa, “What is (tagged) text?”, Dictionaries in the Electronic Age:

Proc. 5th Conf. of University of Waterloo Centre for the New OED, Oxford,

UK (September 1989) pp. 81-93.

[Tomp92] F. W. Tompa, “Experiences with the OED”, Centre for the New OED and

Text Research, University of Waterloo, 1992.

URL: http://db.uwaterloo.ca/~fwtompa/.papers/hist.dict.ps

[Tomp97] F.W. Tompa, “Views of text”, Digital Media Information Base (DMIB'97),

Nara, Japan, November 26-28, 1997

[Wein85] E. S. C. Weiner, “The New OED: Problems in the computerization of a

Dictionary”, University Computing, Vol. 7 (1985) 66-71

[Yu04] Z. Yu, “Implementation of Recursively Nested Relation of JRelix”, School

of Computer Science, McGill University, January 2004.

URL: http://www.cs.mcgill.ca/~tim/cv/theses/YuProject.pdf.gz

[Yuan98] Z. Yuan, “Implementation of the domain algebra in Java”, Master’s thesis,

School of Computer Science, McGill University, 1998.

 103

BIBLIOGRAPHY

URL: http://www.cs.mcgill.ca/~tim/cv/theses/yuan.ps.gz

[Zhen02] Y. Zheng, “Abstract Data Types and Extended Domain Operations in a

Nested Relational Algebra”, Master’s thesis, School of Computer Science,

McGill University, 2002.

URL: http://www.cs.mcgill.ca/~tim/cv/theses/yzheng_thesis_ps.tar.gz.

 104

