

Implementation of Recursively Nested Relation
of JRelix

Zhan Yu

School of Computer Science
McGill University, Montreal

 January 2004

The project report submitted to the faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
 Master of Science in Computer Science

 T.H. Merrett, Supervisor

 Copyright © Zhan Yu 2004

 1

Abstract

This project report discusses the design and implementation of new features involved in

JRelix, including semi-structured data loading, improved queries (recursive nesting, path

expression and regular expression operators). Semi-structured data is self-describing thus

more flexible. Acceptance of semi-structured data loading makes data loading for relation

initialization more convenient in JRelix. To simply the edition of relation loading data,

the data can be edited in a file and saved as a .txt file. The relation can then be declared

and initialized by the data in the file. After allowing JRelix to accept recursive nesting,

the regular expression operators (“*”, “+”, “.”, “?”) have been implemented to query the

relations with a recursively nesting domain. In addition, path operator, which is likely to

be frequently used in querying nested relations, has been implemented as a short-cut by

using the / operator. The implementation of this project is part of the Aldat project at

McGill University.

 2

Acknowledgments

I would like to express my gratitude to all those who gave me the possibility to complete

the project. My great appreciation goes to my supervisor Dr T. H. Merrett for his

guidance, patience, advice and encouragement in all the time of this project. I would also

express my thanks for his generous financial support and the time he spent with me on

the topics of this project.

My appreciation goes to Zongyan Wang. I benefited from her valuable advices

throughout the work. I would also like to thank the School of Computer Science for the

graduate courses and the research environment.

Finally, I would like to thank my wife, Ying Wang, for her love, support during my study

at McGill.

 3

Contents

Abstract ... 2

Acknowledgment .. 3

List of Figures ... 4

Chapter 1 Introduction

1.1. Background and Motivation………………………………………………. 8

1.2. Outline of the Report …………………………………………………. 11

Chapter 2 JRelix Overview

2.1 Getting Started ………………………………………………………….. 12

2.2 Commands ……………………………………………………………… 13

2.3 Declaration ……………………………………………………………… 13

 2.3.1 Domain Declaration ……………………………………………… 13

 2.3.2 Relation Declaration and Initialization …………………………… 15

2.4 Assignment ……………………………………………………………... 17

2.5 Relational Algebra ……………………………………………………… 17

 2.5.1 Unary Operators …………………………………………………... 17

 2.5.2 Binary Operators ………………………………………………….. 19

2.6 Domain Algebra ………………………………………………………… 21

 2.6.1 Scalar Operations …………………………………………………. 21

 2.6.2.Aggregate Operations……………………………………………… 22

2.7 Nesting …………………………………………………………………... 23

Chapter 3 Users’ Manual

3.1 Semi-structure data input ………………………………………………... 26

 3.1.1. An Example .. 26

 3.1.2. Domain Declaration ... 27

 4

 3.1.3. Relation Declaration and Initialization .. 28

3.2 Input data from a file ... 30

3.3 Recursive Declaration and Initialization ... 32

3.4 Path Expression Operator .. 36

3.5 Regular Expression Operators ... 40

 3.5.1. Kleene Star (“*”) and Plus Operator (“+”) 40

 3.5.2 Dot Operators (“.”) ... 47

 3.5.3 Question Mark Operator ... 50

Chapter 4 Implementation and Solution Strategy

 4.1 Developing Environment .. 52

 4.2 System Overview .. 52

 4.3 Implementation of Semi-Structured Data Input ... 53

 4.4 Implementation of Inputting data from a file ……………………………. 57

 4.5 Implementation of Recursive Nesting .. 58

 4.6 Implementation of Syntactic Sugar .. 60

 4.7 Implementation of Expression Operators “*” “+” “.” “?” 63

Chapter 5 Summary and Future work .. 69

Bibliography

 5

List of Figures

Figure 2.1 Initial Screen of Starting JRelix …………………………………………… 12

Figure 2.3.1 Atomic domain types in JRelix ………………………………………….. 14

Figure 2.3.2. Examples of domain declaration ……………………………………….. 15

Figure 2.3.3 Initialization of relation EmployeeInfo ………………………………….. 16

Figure 2.3.4. Contents of relation EmployeeInfo ……………………………………… 16

Figure 2.5.1. Retrieve the attribute name from relation EmployeeInfo ……………….. 18

Figure 2.5.2. Check if there is any tuple in relation EmployeeInfo …………………… 18

Figure 2.5.3. Retrieve the tuples of relation EmployeeInfo where department is “IT”.. 19

Figure 2.5.4. Find employees of the department “IT” ……………………………… 19

Figure 2.6.1. Scalar operations ……………………………………………………….. 22

Figure 2.6.2. Examples of vertical operations ………………………………………... 23

Figure 2.7.1. All Fax Number. Version 1 ……………………………………………… 25

Figure 2.7.2. All Fax Number. Version 2 ……………………………………………… 25

Figure 3.1.1 Example: Relation EmployeeInfo ... 26

Figure 3.1.2 Example: Semi-structure input of Relation EmployeeInfo 27

Figure 3.1.3 Initialization of nested domain otherContactInfo 28

Figure 3.1.4 Example of different cases for relation R ... 30

Figure 3.2.1. Emp_xml.txt file for initialization of relation EmployeeInfo 31

Figure 3.2.2. Emp_curly_bracket.txt file for initialization of relation EmployeeInfo 31

Figure 3.3.1: Contents of the relation Dept ... 33

Figure 3.3.2. Initialization of a recursive nesting relation and its attributes 34

Figure 3.3.3. An example query for recursive nested attribute 35

Figure 3.3.4. Initialization for recursive nested attribute .. 36

Figure 3.4.1 Address of dept ... 37

Figure 3.4.2: dname of address ... 37

Figure 3.4.3. Projection of recursive nested attribute subdept .. 37

Figure 3.4.4. Path operator in projection .. 38

Figure 3.4.5. Multiple attributes in projection .. 38

 6

Figure 3.4.6. Path operator in selection ... 39

Figure 3.5.1. All dname in dept and subdept ... 41

Figure 3.5.2. All dname in subdept .. 42

Figure 3.5.3. Projection of all attributes from recursively nested relation 43

Figure 3.5.4. Projection of add attributes using Kleene Star .. 44

Figure 3.5.5. Kleene star in selection .. 44

Figure 3.5.6. Queries with “*” and “+” in selection and projection 46

Figure 3.5.7. “*” and “+” in selection and projection ... 47

Figure 3.5.8. Query: retrieve all dname from relation dept and its nested attributes 48

Figure 3.5.9. Query: retrieve all dname from the nested attributes of dept 49

Figure 3.5.10. Example of Wildcard ... 49

Figure 3.5.11. Example for the syntax of Question mark operator 50

Figure 3.5.12. Example for question mark operator .. 51

Figure 4.3.1. The tree created by parser for the initialization of EmployeeInfo 55

Figure 4.3.2. The tree modified for the initialization of EmployeeInfo 56

Figure 4.3.3. The domain information of EmployeeInfo ... 57

Figure 4.4.1. An example of the queries about recursive nesting relation 60

Figure 4.5.1 An example of trees modification for sugar expression 62

Figure 4.5.2. Relation company .. 63

Figure 4.6.1. An example of Kleene Star operator ... 64

Figure 4.6.2. The original and final tree of R(/N)*/A …………………………………. 64

Figure 4.6.3. Kleene Star in Selection .. 65

Figure 4.6.4. The original tree and final tree of query [B] where (N/)*A=value in R … 65

Figure 4.6.5. Kleene Star in projection and selection ... 66

Figure 4.6.6. The relation dept .. 66

Figure 4.6.7. Projection of a attribute from all levels .. 67

 7

Chapter 1

Introduction

This project report describes the design and implementation of some new features

involved in JRelix, including semi-structured data loading and improved queries

(recursive nesting, path expression and regular expression operators). In section 1.1, a

background material and motivation is given for the implementations. In section 1.2, a

brief outline on the structure of this report can be found.

1.1 Backgrounds and Motivation
Relix System
Over the past 18 years, Relix, which is a relational database language, has been designed

and developed at the Aldat lab of the School of Computer Science at McGill. The original

version of Relix was developed in the C language and ran on the UNIX operating system.

Since then, the system has been enhanced with further developments. In 1998, the Relix

system was redesigned to be implemented it in Java [Yua98, Hao98]. The new system

was named JRelix and covered the most important functions of the original Relix system,

with a further extension to support a nested relational model.

The current JRelix system supports relational algebra, domain algebra and computations.

Furthermore, the Internet capability has been integrated into JRelix, so it can also process

remote data processing through the Internet [Wan02].

Semi-structured Data

The data resides in different forms ranging from unstructured data to highly structured

data. At an extreme we find data coming form traditional relational or object-oriented

databases, with a completely known structure. At another extreme, we have data that is

 8

fully unstructured, such as sound or images. But most of the data falls somewhere in

between those two extremes and the data have been given the term semi-structured data

[Suc99].

Semi-structured data is often described as “schema-less” or “self-describing”, and these

terms mean that a pre-imposed schema or type system is needed for the interpretation of

semi-structured data [Bun97]. Typically, when we store or program with data, we firstly

describe the structure (type, scheme) of that data and then create instances of that type. In

semi-structured data we directly describe the data using a simple syntax. For example,

{name: “Joe”, ID: “23451”, Tel: “514-398-0980”} is a simple set of pairs such as name:

“Joe” consisting of a label and a value. We are not constrained to make all the tuples the

same type. One of the main strengths of semi-structured data is its ability to

accommodate variations in structure. In addition, semi-structured data allows forgetting

any type the data might have had, and serializes it by annotating each data item explicitly

with its description (such as name, ID, etc). Such data is called self-describing. The term

serialization signifies the conversion of the data into a byte stream that can be easily

transmitted and reconstructed at receivers [ABS00].

Schemas for semistructured data differ from those for relational data. In a traditional

database approach, types are always fixed prior to populating the database. Once the data

is populated, its binary storage cannot be interpreted without having knowledge the

schema. With semistructured data we may specify the type after the database is populated.

The type may often describe the structure only for a part of the data and, even then, do

that with less precision. An important consequence is that a data instance may have more

than one type [ABS00].

The web provides numerous popular examples of semi-structured data. On the web, data

consists of files in HTML format, with some structuring primitives such as tags and

anchors. Secondly, the need for semi-structured data arises when integrating several

sources. Finally, semi-structured data arises under a variety of forms for a wide range of

application such as scientific databases and on-line documentations. [Abi95].

 9

The most popular example of semi-structured data is XML (Extensible Markup

Language). It is a language for representing data as a string of text that includes

interspersed “markup” for describing properties of the data. Using markup allows the text

to be interspersed with information related to its content or form [Gra02]. Element is the

basic component of XML. XML can contain attributes with varied order and multiple

elements with the same element type. This makes it easier to represent more complex

data.

Semistructured Data DBMS

The exploration of application of semi-structured data in databases is due to the advent of

semi-structured data. Firstly, database systems were developed to manage semi-structured

data. The most famous is Lore (Lightweight Object Repository), which was implemented

at Stanford University. The Lore system is designed specifically for the management of

semi-structured data. In general, Lore attempts to take advantage of structure where it

exists, but can also handle irregular cases gracefully. Implementing the Lore system

requires rethinking all aspects of a DMBS, including storage, query and user interface

[MAG+97]. Secondly, data is not stored as semi-structured, but it can be exported as

semi-structured and presented to other applications or users. Semi-structured data can be

entered into a database by compressing the data and storing the data in the structure of the

database, such as relations [Gra02].

A semi-structured data interface to a relational DBMS provides access to robust database

technology with the advantages of semi-structured data delivery. It is especially useful

when a relational database already exists. Loading the semi-structured data into an

existing relational database allows more flexible data input for the relational database

system [GRA02].

Generally, there are two approaches in devising query language for semi-structured data.

First, take SQL as a starting point and features are added to perform useful queries. The

second one is to start from a language based on the notion of computation on

 10

semi-structured data then to modify that language into acceptable syntax [Bun97].

Several query languages for semi-structure data have been proposed: LOREL

[QRS+95,AQM+96,AQM+97,MAG+97], UnQL [BDS95, BDHS96], WebSQL

[MMM96]. Their common feature is the ability to traverse arbitrary long paths in the data,

usually specified in the form of a regular path expression: thus these query languages are

recursive. [Suc99].

Motivation

Due to the advantages of semi-structured data, one part of this project is devoted to the

implementation of embedding semi-structured data into JRelix. An advantage is that the

data structure can be much more flexible. Alternatively, the self-describing data could be

embedded in natural language text.

We can further explore the flexibility of semistructured data. For nested relations, path

expressions are useful to describe the hierarchy. And the notion of path expression takes

its full power when we start using it in conjunction with wild card (.) or regular

expression operators, such as Kleene star (*), plus operator (+) and question mark

operator (?). This project is also devoted to implementing path expression, recursive

nesting and the regular operators.

1.2 Outline of the Report

This project report discusses the design and implementation of some new features in

JRelix. Chapter 1 of this report introduces the project topic. In chapter 2, the overview of

the current JRelix system is given. Chapter 3 describes how the new features of JRelix are

used, including semi-structured data input, recursive nesting, path expression (“/”) and

the regular expression operators (“*”, “+”, “.”, “?”). Chapter 4 explores the issues

involved in implementating the new features. In chapter 5, a brief summary is provided

and future work is presented.

 11

Chapter 2

JRelix Overview

This chapter is to introduce JRelix, describing how to use JRelix to perform database

operations. Section 2.1 explains how to start JRelix. Section 2.2 describes the declarations

of domains and relations and the initialization of relations. The functional operations of

relational algebra will be explored in section 2.4. The use of domain algebra operations

will be presented in section 2.5. In the section 2.6, the usage of views and computations

will be briefly introduced.

2.1 Getting started
JRelix runs on any platform that has the Java Runtime Environment (JRE) version 1.1 or

up. To start JRelix interpreter, type the following

java JRelix

As the result, JRelix copyright information will be displayed in its run-time environment,

as illustrated in Figure 2.1.

 Figure 2.1 JRelix startup

After successful starting up, prompt > is shown and JRelix is ready to accept user inputs.

 12

2.2 Commands

In this section, the most commonly used commands of JRelix are presented.

pr Expression Display the result of a relational expression.

time Time on/off interpreter.

trace Log on/off.

sr (<IDENTIFIER>)? Display the description of the relation identifier. All relations

are shown if identifier is omitted.

sd (<IDENTIFIER>)? Display the description of the attribute identifier. All attributes

are shown if identifier is omitted.

dd IDList Remove the attributes specified in IDList.

dr IDList Remove the relations, views or computations specified in IDList.

quit Exit the system. JRelix performs clean-up procedure and saves the information

before it returns the original operating system.

2.3 Declarations
2.3.1 Domain Declaration

Use the following syntax to declare domains:

domain IDLIST Type;

where domain is a keyword and IDLIST specifies the list of domains being declared, Type

donates the types of these domains. In the current JRelix system there are two kinds of

domain types: atomic and complex. The atomic types are primary such as integer, string,

long, double, etc. Nine atomic data types for domains declaration are shown in Figure

2.3.1.

 13

Type Short Form Corresponding Java Type

integer intg signed int, 4 bytes

short short signed short int, 2 bytes

long long singed long, 8 bytes

double double singed double, 8 bytes

float float signed float, 4 bytes

string strg String

boolean bool true,false

attribute attr String

universal univ String

numeric num

 Figure 2.3.1 Atomic domain types in JRelix

In addition, two complex domain types have been implemented in JRelix: i.e. nested

relation and computation. In general, the syntax used to declare nested domains is as

follows:
domain nest_domain_name(domName1,domName2…);

where the nest_domain_name specifies the name of the nested domain being declared and

the domain list that the nested relational domain contains are present in the following

bracket.

As well, the following syntax is to declare a computational domain:
 domain comp_domain_name comp(domName1,domName2…);

Note that the current JRelix implementation required that the attributes on which a nested

attribute is defined must be declared already, so the recursively defined nested attributes

were now allowed. The current implementation allows them. The details about

recursively defined nested attributes will be presented in next chapter.

Figure 2.3.2 gives some examples of declaring both atomic-type domains and

complex-type domains.

 14

 Figure 2.3.2. Examples of domain declaration

2.3.2 Relation Declaration and Initialization

The following syntax is used to declare and initialize relations

relation IDLIST “(“ IDLIST “)” (Initialization)?

where the first IDLIST specifies the name of a relation to be declared or initialized. The

domain list that the relation being declared contains is specified in the second IDLIST.

When initialization is absent, an empty relation is declared without any tuple data inside,

otherwise, a relation is declared with actual data tuples, called relation initialization. The

most often used initialization is the so called curly bracket syntax in which relations start

and terminate with curly bracket { and }, while their tuples are surrounded with round

bracket (and). Also, the use of the name of another relation can initialize a relation.

For a nested relation, surrogates are used to replace actual values of nest attributes. The

actual data for a nest attribute are stored in a relation with additional attribute .id which

function is to link surrogates of the attributes in its parent relation. The name of the

relation is the name of the nested attributes prefixed with a dot(.).

The following is the examples of relational declaration and initialization.

In the example presented in Figure 2.3.3, the relation EmployeeInfo contains three

domains, name, department and ContactInfo. The type of the domain name and

department is strg, while ContactInfo is a nested domain, which is defined on email and

fax.

 15

 Figure 2.3.3 Initialization of relation EmployeeInfo

To display the contents of the relation, the command pr can be used.
pr EmployeeInfo;

The relation EmployeeInfo is shown in Figure 2.3.4. Since ContactInfo is a nested

domain, .ContactInfo is generated to store all the ContactInfo data. Note that in relation

EmployeeInfo, surrogates 608, 609and 610 for nested attribute Contact link the values

608,609 and 610 of attribute .id in relation .ContactInfo.

 Figure 2.3.4. Contents of relation EmployeeInfo

 16

2.4 Assignment

JRelix provides two assignment operators, which are replacement (<−) and incremental

assignment (<+). The replacement operators completely replace the left-hand relation that

may have been defined or not. The data in the right-hand relation is copied into the

left-hand relation. The incremental assignment adds new tuples and the attributes of the

right-hand relation must be compatible with those of the relation on the left. The

renaming assignment allows attributes on the left to be matched with the attributes on the

right. The syntax for assignment is shown below:

Identifier (“<−“|“<+”) Expression
or

Identifier “[“ IDList(“<−“|“<+”ExpressionList “)” Expression

2.5 Relational Algebra

In this section, the syntax and semantics of the relational algebra are presented. Firstly,

we describe the unary operators and binary operators. Assignment and incremental

assignment operations are then described.

2.5.1 Unary Operators

There are six unary operators, including projection, selection, T-selection, QT-selections

implemented in JRelix system.

Projection
The syntax for projection is as follows:

“[“ (IDList)? “]” in (Projection | Selection)

Projection extracts a subset of attributes named in IDList from a source relation.

Duplicate tuples in the result relation are removed. If IDList is absent, a relation

containing only one tuple with a boolean domain “.bool” is projected. The value of the

boolean domain is true if the relation resulting from the projection has at least one tuple,

and otherwise the value is false. Figure 2.5.1 and Figure 2.5.2 show examples of

projection.

 17

Projection query1: Retrieve the attribute name in relation EmployeeInfo

 Figure 2.5.1. Retrieve the attribute name from relation EmployeeInfo

Projection query 2: Check if there is any tuple in relation EmployeeInfo

 Figure 2.5.2. Check if there is any tuple in relation EmployeeInfo

Selection

Selection is used to return a subset of a source relation that satisfies certain conditions.

The syntax for selection is as follows:

where SelectClause in Projection

where selectClause specify the certain conditions that the result relations must satisfy. A

example of selection is shown in Figure 2.4.3.

Selection query 1: Retrieve the tuples of relations EmployeeInfo where department is

“IT”.

 18

 Figure 2.5.3. Retrieve the tuples of relation EmployeeInfo where department is “IT”.

T-Selection

T-selection is a combination of projection and selection. The general syntax for the

T-Selection is

“[“(IDList)?“]” where SelectClause in Projection

Figure 2.4.4 gives a example of T-selection using the relation EmployeeInfo.

T-Selection query 1: Find all employees of the department “IT”

Figure 2.5.4. Find employees of the department “IT”

2.5.2 Binary Operators
There are two categories: µ-join and σ-join. µ-joins are set operations generalized to

relations, and σ-joins generalize logical operations.

The syntax of join operators is as following:

 19

Expression JoinOperator Expression

or

Expression “[“ ExpressionList “:” JoinOperator (“:”)?

ExpressionList “]” Expression

In the first production, the common attributes of both sides are joined attributes. While in

the second production, users can select the common attributes to be joined attributes.

µ-join

µ-join are used as set operations including union, intersection and difference. The µ-join

can be defined in term of the left wing, the center wing and the right wing. The

definitions of them are as following [Mer84]:

The description of µ-join is summarized as following:

ijoin or natjoin ≡ center

ujion ≡ left wing U center U right wing

ljoin ≡ left wing U center

rjoin ≡ center U right wing

djoin or dljoin ≡ left wing

drjoin ≡ right wing

sjoin ≡ left wing U right wing

For more details please refer to [Mer84]

 20

σ-join

The σ-join extends truth-valued comparison operation on sets to relations by applying

them to each set of values of join attribute for each of other values in the two

relations[Mar84].

Given relations R(W, X) and S(Y, Z), Rw is the set of values of X associated by R with a

given value, w, of W, and Sz is the set of values of Y associated by S with a given value, z,

of Z are sets of attributes of S, the following definitions are general, and even allow for X

and Y to be the same set of attributes. X and Y must by at least compatible attribute

sets[Mer84].

2.6 Domain Algebra

The algebra on attributes is called the domain algebra and contains two main components:

scalar operations and aggregate operations. In the table view of relations, these can be

thought of as “horizontal” and “vertical” operations [Mer84]. Horizontal domain

operations work within the tuples, while vertical domain operations work among tuples.

2.6.1 Scalar Operations

Scalar operations work on a single tuple of a relation. In the current JRelix system, scalar

operations include constant definition, renaming, arithmetic function, conditional

statements etc. All these basic scalar operations are listed in Figure 2.6.1.

 21

Figure 2.6.1. Scalar operations

2.6.2 Aggregate Operations

Aggregate operations, often referred as vertical operations, work on attribute values of all

tuples in a relation. Basic vertical operations are listed as follows:

- Reduction

- Equivalence reduction

- Functional mapping

- Partial functional mapping

The examples used to illustrate these operations are shown in Figure 2.6.2.

 22

Figure 2.6.2. Examples of vertical operations

For more information about the domain algebra, please refer to [Mer84, Yua98].

2.7 Nesting
The relational algebra and domain algebra can be applied to relation-valued attributes in

nested relations that are an expanded data structure, where a value of an attribute can be a

 23

relation. Generally speaking, there is no new syntax for nested relations; we just subsume

the relational algebra into domain algebra.

Unnesting operations and nesting operations are needed to raise and lower the levels of

nesting. Since the nesting operation is still in a progress of implementation, here we are

not going to discuss it.

An example is given to illustrate unnesting operations. To find all fax numbers of

employees, we can use the query shown in Figure 2.7.1, but note that the result is itself a

nested relation. To remove the nested structure of the result, called unnesting, two steps

are followed. Firstly, do the reduction,

red ujoin of [fax] in ContactInfo;

Projecting the red ujoin still given a nested relation, but a singleton. The second step is

to lift a level through anonymity (i.e., no giving the name of the attribute of result

relation), by writing the reduction directly in a projection list.

AllFax’<-[red ujoin of [fax] in ContactInfo] in EmployeeInfo;

(The result shown in Figure 2.7.2)

Thus the system has no choice but to bring values of the attribute fax one level up,

resulting in a single-level relation. The new syntax, syntactic sugar, which is likely to be

frequently used in querying nested relations, has been implemented as a shorthand by

using the / operator. So, the query can be

AllFax’<-ContactInfo/ fax in EmployeeInfo;

This is a path expression. Fully descripted in in chapter 3.

 24

Figure 2.7.1. All Fax Number. Version 1

Figure 2.7.2. All Fax Number. Version 2

Although there are also important components such as views, update, computation, and

so on in JRelix, we are not going to elaborate them here since they are not crucial for the

implementations of semi-structured data input and recursive nesting.

 25

Chapter 3

User’s Manual

3.1 Semi-structured data input
Compared to conventional data, which is described by a scheme available to the database

system separately from the data, semi-structured data is self-describing by embedding the

scheme with the data by using markup language tags. The self-describing data structure is

more flexible than in conventional relations. In the following example (Figure 3.1), the

relation EmployeeInfo, will be used to demonstrate the rule of using semi-structured data

input in JRelix.

3.1.1 An Example

 Figure 3.1.1 Example: Relation EmployeeInfo

The semi-structure input corresponding to the relation EmployeeInfo is shown in Figure

3.2.

 26

Figure 3.1.2 Example: Semi-structure input of Relation EmployeeInfo

3.1.2 Domain Declaration

The new syntax of domain declaration for the semi-structured data input is described

below.

Since the semi-structure data is self-describing, it is not necessary to define the domains

used in a relation before the semi-structured input of the relational initialization

(schemaless). The domains are declared in their first occurrence in the semi-structured

input of the relation initialization using the following syntax:

 27

<domainName type = data_type>… …</domainName>
Where

· domainName is the name of the new domain where type is being defined.

· The start tag is surrounded by angle brackets, while the end tag has the angle

bracket and a slash “/”. The domainName in the start tag and in the end tag

should be the same.

· The text after “ type = ” represents the data type of the new domain.

· If the type of domain is not specified, the default type is strg (String).

· The text between the start tag and the end tag is the data value of the domain.

Since the type of the domains is illustrated in its start tag, the values of the

domains, whose type is strg, do not have to be surrounded by quotes.

· For subsequent occurrence of the same domains, the following syntax is used

<domainName>… …</domainName>

· For a nested domain, it is not necessary to specify the names of attributes that the

nested domains contain. Similar to the initialization of a relation, the text

between the start tag of a nest domain and its end tag is the initialization of the

nested domain. In the example shown above, the nested domain

otherContactInfo is initialized by the following text:

… …

Figure 3.1.3 Initialization of nested domain otherContactInfo

3.1.3 Relation Declaration and Initialization
The relation declaration syntax for loading semi-structured data is:

relation IDList Initialization

where

 · The first IDList specifies the name of the relation being declared and the

 28

production Initialization is the angle bracket syntax in which the relation starts

and terminates with first angle bracket < and the last angle bracket >.

 · Specification of the attributes on which relations are defined are omitted, since the

semi-structured data input contains the information about the attributes of the

relations to be initialized.

 · The name of the relation that is to be initialized is not necessarily the same as the

first tag and its corresponding end tag in its semi-structure data input.

relation R<-<R1>… … </R1>;

is acceptable.

In addition, to take further advantage of the semi-structured data, some entries for

relations can be missed in their semi-structured data input for their initialization, since

each entry has its own tags to describe it. As in the example relation EmployeeInfo, some

entries are missed and in this situation the null values (dc) are added for the missing

entries. For the nested relation, “dc” can be added automatically, if it is necessary, to

terminate the initialization.

Furthermore, the tags <.tuple> and </.tuple>, used to separate tuples, are optional.

However, they are compulsory when there is ambiguity. If <.tuple> and </.tuple> are

missed, the reoccurrence of the same domains will be considered to be in a new tuple.

And the separations of tuples are also dependent on the occurrence order of domains in

the input data. To explain this more clearly, figure 3.1.4 illustrates a relation initialized by

different cases of semi-structured data.

Refer back to the example in section 3.1.1. Both “Patrick” and “Josee” have the same

attribute employeeName, so it would be regarded as being in two different tuples. But,

since Id is just after EmployeeInfo in the domain list of the relation, if “2002” is not the Id

of “Josee”, <.tuple> and </.tuple> have to be used to avoid ambiguity, since without the

tags “Josee” “2002” would be considered as being two domain entries in a same tuple.

Note that relations initialized with semi-structure data input are the same as with the

 29

relations initialized with a curly bracket input. All relational algebra and domain algebra

can be performed.

Figure 3.1.4 Example of different cases for relation R

3.2 Input Data From a File

To simplify the edition of input semi-structured data, a relation schema can be edited in a

file and saved as a text file. Then a relation can be declared and initialized using the

following syntax:

relation rel_name <- “ file_path/ file_name ”;

It is not necessary for the relation name to be same as the relation name in the file.

Take the relation EmployeeInfo as an example: firstly we edited the input of the relation

EmployeeInfo in a file and saved it as “Emp_xml.txt” (Figure 3.2.1):

 30

Emp_xml.txt:

Figure 3.2.1. Emp_xml.txt file for initialization of relation EmployeeInfo

Then we may declare the relation EmployeeInfo and initialize it with the following:

relation EmployeeInfo <-“Emp_xml.txt”;

This initialization mechanism can also be used to declare and initialize relations where

initialization requires curly bracket syntax. The only difference from the above case is

that in this case the attributes on which the relation is defined should be specified. See the

example in the following figure 3.2.2:

Emp_curly_bracket.txt:

Figure 3.2.2. Emp_curly_bracket.txt file for initialization of relation EmployeeInfo

 31

Then the relation can be initialized by the following:

relation EmployeeInfo(employeeName,Id,teleNum, otherContactInfo)

 <- “Emp_curly_bracket.txt”;

Note that in this case, it is necessary for domains to be declared before the relation

initialization.

3.3 Recursive Nesting Declaration and Initialization
In recursive nesting, a relation name can be an attribute of itself.

Declaration of recursively nested attributes uses the syntax for nested domain declaration

domain IDList “(“ IDList “)”

Here IDList specifies the name of a nested attribute being declared, “(“ IDList “)” is

used to specify the names of attributes on which the nested attribute is defined. The

former Relix required that the attributes on which a new nested attribute is defined must

be already defined. Therefore recursively defined nested attributes were not allowed.

Now, recursively defined nested attributes are allowed, meaning the name of an attribute

on which a nested attribute is defined can be the same as the name of the nested attribute.

For example, the following is permitted in order to declare a nested attribute N and a

relation containing the nested attribute.

domain A data_type;

domain N(A,N);

relation R(N) ……;

In the following sub-section, I will illustrate a recursive nesting example. The relation

“dept” contains a recursive domain “subdept ” to indicate the hierarchical structure

involved in departments. (Figure 3.3.1)

 32

 Figure 3.3.1: Contents of the relation Dept

Similar to the non-recursive nested relation, the relation can be initialized as illustrated in

Figure 3.3.2.

 33

 34

Figure 3.3.2. Initialization of a recursive nesting relation and its attributes

 34

Note that null value (dc) must be added to terminate the recursion. Finally, it is necessary

to mention that the names subdept, subdept_0 and subdept_1 are automatically created by

JRelix to represent the hierarchical structure of the entries. The reason to implement

recursive nesting in this way is that in current JRelix implementation, relation names and

relational domain’s names are stored in the form of hashTable and the names are used as

keys. However, it is not necessary for users to know the name subdept_n. As illustrated in

Figure 3.3.3, subdept can represent any level of the recursive nested attribute subdept in

queries.

 Figure 3.3.3. An example query for the recursive nested attribute

Recursively nested attributes can also be initialized in semi-structured data format. Figure

3.3.4 shows a small example where a relation R containing a recursively nested attribute

is initialized with a semi-structured data input. Note that in the semi-structured input the

null value (dc) will be added automatically to terminate the recursion.

 35

Figure 3.3.4. Initialization for the recursive nested attribute

3.4 Path Expression Operator
Path expression will concatenate attribute names into a path by using the “/” operation.

The syntax in using path expression is as follows:

 [rel_name/] (nested_rel_name “/”)*[domain_name]

We take the example relation dept shown in the last section to illustrate the syntactic

sugar. Let’s start with the following: suppose we would like to project the nested attribute

address, instead of

addr<-[red ujoin of [red ujoin of address] in contact] in dept;

The red ujoin of raises the level of nesting as in section 2.7. Now, the simpler format

addr<-dept/contact/address

can be used. The result is listed in figure 3.4.1.

 36

 Figure 3.4.1 Address of dept

We can go further,

dname<-[red ujoin of [red ujoin of [dname] in address] in contact] in dept;

becomes

dname<-dept/contact/address/dname; (Figure 3.4.2)

 Figure 3.4.2: dname of address

For the recursive nested attribute subdept,

query<-dept/subdept/subdept;

can lift subdept on the second level to the top-level relation dept (Figure 3.4.3).

 Figure 3.4.3. Projection of the recursive nested attribute subdept

 37

Furthermore, the path operator can be at any end of a regular T-selection. The two queries

below (Figure 3.4.4) illustrate the path operator used in projection and relational

expression.

 Figure 3.4.4. Path operator in projection

To produce multiple attributes from a deeper level is also easy by using path operator.

For instance,

addrs<-[num,dname] in dept/contact/address;

will project attributes num and dname from the deeper level address. The output is shown

below.

Figure 3.4.5. Multiple attributes in projection

 38

In addition, the path operator can be used in selection. We have the query: Find all dname

in dept where dname in its contact/address is “Park way”, the query

dns<-[dname] where contact/address/dname ="Park way" in dept;

that can be expanded as:

dns<-[dname] where ([] where ([] where dname="Park way" in address)

in contact) in R;

will answer the query.

Suppose we want to find all tels in contact where dname in address is “Park way”. The

query

telp<-[tel] where address/dname="Park way" in dept/contact;

will complement the task. Outputs of these two examples are shown below.

Figure 3.4.6. Path operator in selection

Finally, the queries listed below will produce the same results:

dept/contact/address/dname;

or

contact/address/dname in dept;

or

address/dname in dept/contact;

 39

or

[dname] in dept/contact/address;

3.5 Regular Expression Operators

The regular expressions, similar to the regular expressions of XML, provide Kleene

star(*), plus operator(+),question mark(?), and dot operator (.).

3.5.1 Kleene Star (*) and Plus Operator (+)
The Kleene star is involved for the recursive nesting in order to answer such queries as

“find all some attribute(s) of a recursive nesting domain from a relation or recursively

nested relation”.

The syntax for Kleene star in projection or relational expression is the following:

rel_name(/recursivelyNested_attribute_name)*[/attribuete_name]

or

rel_name/(recursivelyNested_attribute_name/)*attribuete_name

The syntax for Kleene star in selection is the following:

where [rel_name/](recursivelyNested_attribute_name/)*attribute_name “=” value

where rel_name is the names of relation or nested domains which contains a recursively

nested attribute, while recursivelyNested_attribute_name is the names of recursively

nested attributes and attribute_name is the names of domains to be projected from the

recursively nested attribute.

Since Kleene star indicates zero or many occurrences of its operand [Mer03], the

consequence of the expression should be the projection of the attribute whose name is

attribute_name from all levels of the recursively nested relation where the name is

recursivelyNested_attribute_name and from the top_level relation which is rel_name.

 40

Below I will display the use of the syntax with Kleene star by using the example relation

dept. Firstly, if we would like to project dname from all levels of subdept and dept, the

easiest way is:

 dname<-dept(/subdept)*/dname;

It is obvious that it is actually the same as the following query:

 dname<-dept/dname ujoin dept/subdept/dname ujoin dept/subdept/subdept/dname;

Apparently,

dname<-[dname] in dept (/subdept)*;

or

dname<-(subdept/)*dname in dept;

will produce the same result . The result is listed in Figure 3.5.1.

 Figure 3.5.1. All dname in dept and subdept

The “+” operator represents one or many occurrences. Therefore, queries

dnameofSub<-dept(/subdept)+/dname;

or

dnameofSub<- [dname] in dept/(subdept)+;

or

dnameofSub<-(subdept)+/dname in dept;

will also project the dname from all levels of subdept, but do not project dname of dept.

 41

Their output is listed in Figure 3.5.2.

 Figure 3.5.2. All dname in subdept

In addition, to project all attributes from all levels of subdept,

allSubDept<- dept(/subdept)+;

is the simplest query to answer it.

While,

allDept<-dept (/subdept)*

should produce all attributes from dept and from all levels of subdept.

In this example, relation dept and its nested attribute subdept have the common attribute

dname. In this situation, all dname are projected from dept and from all levels of subdept.

The result is shown in Figure 3.5.3.

 42

 Figure 3.5.3. Projection of all attributes from the recursively nested relation

One point that should be mentioned is that these relations may be disjoint, that is, when

top-level relations and recursively nested relations have no common attributes. In this

case, N is a recursively nesting domain that contains A, B and R has domains X,Y, N. The

query

q<-R(/N)*;

that is,

 q<-R ujoin R/N ujoin R/N/N ujoin… R/N/N/../N;

will be interpreted as a Cartesian product. A small example to illustrate this is shown in

Figure 3.5.4.

 43

 Figure 3.5.4. Projection of add attributes using Kleene Star

The benefits of exploring Kleene star in selections are obvious. A simple query,

deptName<-[dname] where (subdept/)*empcount=100 in dept;

will produce all dname from dept that has a subdept which empcount is 100 and dname

from dept which empcount is 100 (Figure 3.5.5). Without using the Kleene Star, the query

to answer the question will be too complicated to be performed. Firstly, users have to

know how many levels the recursively nested attribute subdept contains. Then perform

the long query listed below:

deptName<-[dname] where empcount=100 in dept ujoin

[dname] where subdept/empcount=100 in dept ujoin

[dname] where subdept/subdept/empcount=100 in dept;

 Figure 3.5.5. Kleene star in selection

 44

Also keep in mind that

[dname] where (subdept/)* empcount=100 in dept;

should include the dname from dept, where its empcount is 100, however, the expression

 [dname] where (subdept/)+ empcount=100 in dept;

that can be expanded to

[dname] where subdept/empcount=100 in dept ujoin

[dname] where subdept/subdept/empcount=100 in dept;

only projects dname from dept that have a subdept where empcount is 100.

Furthermore, the following Figure3.5.7 will show the use of “*” (or “+”) both in selection

and projection. The expression

Q1<-subdept100<-[dname] where (subdept/)*empcount=100 in dept(/subdept)*;

produces all dname from all levels of subdept which has a nested attribute subdept (no

matter how many levels down) where empcount is 100 and all dname from dept where

empcount is 100. In comparison, the query Q2 will not produce all dname from dept

where empcount is 100, since in the example “+” is used instead of “*”. In order to

provide a clearer explanation, these queries have been expanded in the following figure

3.5.6.

 45

 Figure 3.5.6. Queries with “*” and “+” in selection and projection

 46

Figure 3.5.7. “*” and “+” in selection and projection

3.5.2 Dot Operator
In addition, we can avoid writing the names of intermediate nested attributes if we use a

“wildcard”, namely “.”. Queries in figure 3.5.8 retrieve all dname from all relations that

have the attribute dname.

 47

Figure 3.5.8. Query: retrieve all dname from relation dept and its nested attributes

Here, “.” indicates any relation name. So, “.*” stands for all relations and we don’t care at

which level they are. “.*” can be shortened to “*” to resemble Unix conventions[Mer03].

In comparison, unlike the

addDepts<-dept/.*/dname;

the queries

addDepts<-dept/.+/dname;

or

addDepts<-dept/+/dname; (Figure 3.5.9)

do not project the dname attribute of the relation dept, since “+” represents one or many.

 48

Figure 3.5.9. Query: retrieve all dname from the nested attributes of dept

We can explore the wildcard further. The example in figure 3.5.10 signifies that (././)

means any two levels below the relation dept. The query is to find out all dname in the

nested attributes that are two levels below the dept. Since both the relation

dept/contact/address and the recursively nested attribute subdept of dept contain the

domain dname, the query

q1<-dept/(././)dname;

will produce the result which is the same as the result of the query

q1<-dept/contact/address/dname ujoin dept/subdept/subdept/dname;

 Figure 3.5.10. Example of Wildcard

 49

3.5.3 Question Mark Operator
Question mark operator (?) allows zero or one occurrence of its operands. Figure 3.5.11

and Figure 3.5.12 show the syntax for the question mark operator using the example

relation dept.

Figure 3.5.11. Example for the syntax of Question mark operator

In the figure 3.5.11 the query

qm_f<-dept/(contact/addres/)? dname;

means that if contact/address has the attribute dname, the dname of contact/address

should be projected with dname in dept. Otherwise, only project dname in dept.

Sometimes we don’t want to write down the names at intermediate levels. We can use (./)

instead of writing down the specific names of relations in intermediate levels. In the

figure 3.5.12, the query

qm<-dept/(././)? dname;

is used to find dname from the relation dept and from all relations that is two levels

below dept. Since in the relation dept both dept/contact/address and its recursively nested

attribute subdept have the domain dname, the query should produce the same result as the

query listed below:

 50

qm<-dept/dname ujoin dept/contact/address/dname ujoin

dept/subdept/subdept/dname;

Figure 3.5.12. Example for question mark operator

 51

Chapter 4

Implementation and Solution Strategy

Implementation details for the new features in JRelix as shown in last chapter will be

presented in this chapter. In section 4.1 and 4.2 an overview of the system architecture is

given. In section 4.3, we introduce how to allow the current JRelix system to accept

semi-structured data input. In section 4.4, we discuss the implementation of recursive

nesting. In section 4.5, we describe the implementation of path expression operator. In

the last section, the implementation of the expression operators, including “*”, “+”, “.”,

and “?”, are presented.

4.1 Developing Environment
JRelix is written in Java. The old version Relix is implemented in the C programming

language. It runs on UNIX, and Windows as well. The parser is generated by JavaCC

and JJTree. JavaCC, is a java compiler compiler that acts as a parser generator. It reads

high-level grammar specification and converts it to a Java program that matches the

grammar. JJTree is a preprocessor for JavaCC that inserts parser tree building action at

various places in the JavaCC source.

4.2 System Overview

The JRelix system contains three main conceptual modules: a front-end interface, a

database engine and a system database maintainer. The picture is shown below:

 52

The Front-end Interface consists of a parser and an interpreter. It is an interface

between the user and the database engine. The parser accepts the user command input;

then performs command syntax analysis. The user command can be translated into

intermediate code that has a tree structure. Then the tree is passed to the interpreter. The

interpreter performs error checking, traverses the tree and generates a set of method

calls that can be accepted by the database engine.

The Database engine is the central part of the JRelix system. It implements relational

algebra, domain algebra, computation and nested relation.

The Database maintainer maintains user-defined data and system information of the

JRelix system. These system files are stored as “.rel”, “.dom”, “.rd”, “.expr” and

“.comp”. Files “.rel” and “.dom” stores information about all relations and domains that

are defined in the database. File “.rd” stores all information that links relations and the

domains on which the relation are defined. File “.expr” stores the syntax trees for virtual

domain and views and file “.comp” stores syntax trees for computations.

4.3 Implementation of Semi-Structured Data Input
All JRelix statements and input commands are parsed first and then they are transferred to

the syntax trees in the Parser class. The syntax trees are then decomposed top-down into

 53

some sub-trees in Interpreter class and are further processed. In order to make the current

JRelix accept the semi-structure data input, quite a few additions have been brought to

the Parser and Interpreter class.

Theoretically, the semi-structured data input should be parsed twice. In the first parsing,

all domains should be declared. The domain list of the relation should be collected. In

addition, the missing entries should be added to the original semi-structured data input

before processing the second parsing to create a corresponding syntax tree. Subsequently

the second-time parsing will be involved to generate a syntax tree, which can be

processed correctly in the Interpreter class. However, the implementation avoids going

back to the parser again after parsing the input in order to decrease the processing system

time. After the Interpreter receives the immature tree translated by the parser from a

semi-structured data input to initialize a relation, firstly the domain information is

collected while interpreting the syntax tree and the domain list of the relation is then

created. Secondly, the tree is modified by adding the nodes that are corresponding to the

missing entries. Finally, the correct syntax tree resulting from the modification will be

further processed to initialize the relation. The example below is used to explain this

procedure.

Note that in the parsing time, only tags <.tuple> and </.tuple> can be used to

separate tuples. When <.tuple> and </.tuple> are missing, entries are added to the

same tuple. In order to clarify this explanation, the relation EmployeeInfo shown in

chapter 3.1.1 was taken as an example. Firstly, the syntax tree corresponding to the

semi-structured input of the relation EmployeeInfo, generated by the parser, is illustrated

in Figure 4.3.1 below. It is clear from the figure that the resulting syntax tree of

EmployeeInfo initialization has only two tuples since only one pair of <.tuple> and

</.tuple> is includ

Figure 4.3.1. The tree created by parser for the initialization of EmployeeInfo

As declared before, since semi-structured data is self-describing, information of domains

to be defined is in the input of a relation initialization, and entry missing is also allowed.

Hence, during the parser time, all information, including the domain names and its

defined types except for their values, have been saved in the syntax tree. In the syntax

trees created by parser for semi-structured data inputs, the field name in nodes is used to

store domain names. And if there is information about the defined types of domains, the

defined types are also stored in the name field as a whole string with domain names

instead of null. For example, parsing

<employeeName type = strg>Ban</employeeName>

results in a node with “employeeName type = strg”.

After passing the whole syntax tree to Interpret class, extra steps are carried out to further

 55

modify the syntax tree to be processed. The modifications include adding nodes that are

corresponding to the entries that have been missed in the input (the value for the missing

entries is set to be dc) and correctly group the entries to tuples. The XMLInitialization

function is used to implement these modifications. For the relation EmployeeInfo

initialization, the tree further modified by the function is shown below:

Figure 4.3.2. The tree modified for the initialization of EmployeeInfo

Before processing the tree correctly corresponding to the initialization data, new domains

in the input must be declared. XmlDomInfo class is created to contain the names and the

types of the domains being declared. XmlRelInfo class is introduced to save the domain

list of a relation. In the case of the initialization of the relation EmployeeInfo, by

traversing the tree passed from parser, the information of all domains and the domain lists

of all relations can be obtained (Shown in Figure 4.3.3).

 56

Figure 4.3.3. The domain information of EmployeeInfo

Instead of going back to the parser again, domain declaration trees corresponding to

“domain employeeName strg;”, “domain Id strg;”, “domain teleNum intg;”, “domain

FaxNum intg;”, “domain cell intg” and “domain otherContactInfo(FaxNum,cell);” are

created. The function executeDaclaration is then invoked to declare all these domains.

After declaring all domains, the tree which correctly corresponds to the initialization data

will be processed to initialize the relation.

4.4 Implementation of Inputting Data From a File
To declare and initialize a relation using the data in a file, firstly the data is retrieved from

the file. The data in the format of “String” is then combined with the relation name to

produce a new input string that is acceptable to JRelix. The Parser Class is subsequently

invoked to parse the new input string, and finally the syntax tree corresponding the new

input is processed by Interpreter to initialize the relation. A small example is presented

below to explain the process.

 57

4.5 Implementation of Recursive Nesting
The current implementation of JRelix requires that the attributes on which a new nested

attribute is defined must already be defined. Recursively defined nested attributes are not

allowed. Hence, to implement recursive nesting, firstly of all, the recursive definition of

domains [e.g domain N(A, N)] must be accepted. Modifications are made to the method

lookupDom() in the Environment class to allow the recursive definition of domains.

Secondly, careful modifications are made to the method RelationalInitialization () in

the Interpreter class, which is used to initialize a relation. To keep the hierarchical

structure of recursive nested relations, the number of levels of the recursive nested

relations are recorded when the relations are initialized. As I mentioned in the last

chapter, hashtable is used in the current system to save the data of relations. The key of

the reltable is relation names, hence a duplicate name is not allowed in the table. So, the

recursive relation names on each recursive level have been changed according the

current level value. Furthermore, after a relation initialization the recursive domain

names in the relations on all recursive levels have also been modified according to the

recursive level values. The source code that implements this function is added to the

 58

method RelationalDeclaration() in the Interpreter class.

Take the recursive nested relation R(A,N), which contains the recursive domain N, as an

example. Suppose R has 4 levels, then after the initialization of the relation R, four

relations, as illustrated below, that have been created:

R(A,N)
.N(A,N_0)
.N_0(A, N_1)
.N_1(A,N_2)
.N_2(A,N_3)

Note that the type of domains N, N_0, N_1,N_2 is IDLIST, while the type of domain

N_3 is a LONG and is used to stop the chain of DAG. However, compared to

non-recursive domains, the types of the recursive domains should be changed when

another relation, which contains the same recursive domain N, is to be initialized. For

instance, another relation Q(B,N), where the recursive level of N is more than 4, is

initialized after the initialization of the relation R. In the situation, after the initialization

of relation Q, the domain type of N_3 is changed to IDLIST from LONG.. The

modification of recursive domain types is implemented by functions putRecurDom in

the Environment class and rmRecurDom in the domTable class.

An advantage of this implementation is that operations on non-recursive nesting will

still work on the recursive nesting, since the recursive nesting retains the exactly the

same structure as the non-recursive nesting. However, it is not necessary for users to

find values of recursive levels and use the different relation names on different recursive

levels to query recursively nested relations. In queries that concern the recursive nesting

relations users can simply use the recursive domain name at any level. For example, the

queries:

RN<-[red ujoin of [red ujoin of N] in N] in R;

RA<-[red ujoin of [red ujoin of [A] in N] in N] in R;

etc. are acceptable. To allow the queries, modifications are made to the syntax trees,

generated from the queries by parser. The modification is simple: change the names of

 59

Identifier nodes that carry the name of the same recursive relation name to

corresponding recursive relation names before implementating operations. Figure 4.4.1

presents a clearer explanation.

 Figure 4.4.1. An example of the queries involved in the recursive nesting relation

It must be noted that in recursive nesting, the recursive loop will not terminate until the

null value, dc, is found.

4.6 Implementation of Path Expression Operator
In the current JRelix system, the vertical operation red ujoin of is used for level-lifting

in nested relations. For example, the query

Address<-[red ujoin of otherContactInfo] in EmployeeInfo;

accomplishes the raising of otherContactInfo, the nested attribute of the relation

EmployeeInfo, to the relation EmployeeInfo. Using the operator “/”, the path operator

will turn this into

Address<- EmployeeInfo /otherContactInfo;

 60

To implement the path operator, firstly the parser should recognize the command with

the path operator “/’ and build up the corresponding syntax trees for level lifting.

Obviously, syntax trees for path operator are the same as the trees translated from the

red ujoin of operation. However, “/” is used as the division operator in the current

JRelix system. The path operator is overloaded. For example, for the query

let p be R/A;

where the “/” could be a division operator or a path operator. In order to check whether it

is a path operator or a division operator, the function lookupDom in Environment class is

called. If R is a relation and contains a domain A, “/” is a path operator; otherwise it is a

division operator. Then the syntax trees corresponding to the path operator or division

operator are built up.

To take fuller advantage of path operator, the last component of path operator query can

either be a relation name or a domain name. Given the example relation EmployeeInfo,

to project its domain employeeName from relation EmployeeInfo, we can simply use the

expression

 Ename<- EmployeeInfo/employeeName;

In this case, the syntax trees passed from parser to interpreter should be further modified.

Firstly, the type of the last attribute is determined and the syntax tree passed from the

Parser is then modified before being further processed if the last attribute is a domain,

not a relation. The function sugarInProject in Interpreter class implements the

operations. The following figure shows how the trees change if the last component of a

path expression is a domain name. In the example, since employeeName is a domain, the

syntax tree passed from the parser from the query EmployeeInfo/employeeName is

modified by the method sugarInProject before being processed. If the last component in

the path expression EmployeeInfo/otherContactInfo is a relation’s name, the tree is

processed directly without any modification.

 61

 Figure 4.5.1 An example of trees modification for the path expression

As mentioned in previous chapter, path expression operator may be used in any part of a

regular T-selector. In this case, the trees passed to the Interpreter are modified to their

correct forms in order to enable further processing. For example, the query

street/cname in company/address;

(the structure of the relation company is shown in Figure 4.5.2) contains a path operator

in both projection and expression. The syntax tree translated from the query will be

modified, resulting in a tree corresponding to the query:

[cname] in company/address/street;

before being further processed in the Interpret class. Furthermore, as declared in the

previous chapter, the path operator may also be used in selection, for example, the query

[cname] where address/city ="Montreal" in company;

contains a path operator in its selection. In this situation, the syntax tree, modified from

the tree passed from parser and being further processed to accomplish this query,

corresponds to the query below,

 62

[cname] where ([] where city = "Montreal" in address) in company;

The codes to implement these functions are used in the method sugarInProject().

Figure 4.5.2. The relation company

4.7 Implementation of Expression Operators “*”, “+”, “.”
and “?”

In order to implement the operators “*”, “+”,”.” and ”?”, the subsets of queries that

contain the expression operators are stored in the syntax trees built up by the parser. For

example, the syntax tree for the query

 R(/N)*/A;

built up by the parser contains a node with name (N)*. Then, in Interpreter class,

significant modifications to the trees are required before further processing. The reason to

implement this way is: to build up correct syntax trees, parser should get all information

about the recursive nesting relations on that queries with which the operators are.

However, it might be hard for the parser to get all the information.

First of all, in Interpreter the function searchSTAR is invoked before process syntax trees

are passed from parser, to check whether there are expression operators in any node of

the trees. If there are such operators in the trees, function modifyNodeForKSTAR is then

celled to make necessary modifications to the trees.

For example, suppose N is a recursively nested domain that contains the attributes A and

B. R(/N)*/A should be solved by lifting the attribute A in the nested attributes N at all

 63

recursive levels to the top level relation R and ujoin them, as illustrated in Figure 4.6.1.

Figure 4.6.1. An example of Kleene Star operator

The figure 4.6.2 below shows the modification made to the original tree of R(/N)*/A

before further processing.

Figure 4.6.2. The original and final tree of R(/N)*/A

 64

As mentioned in the previous chapter, the Kleene star “*” can be used in any part of a

regular T-selector. An example for Kleene star in selection is shown in Figure 4.6.2.

Figure 4.6.3. Kleene Star in Selection

The figure 4.6.4 below shows the modification made to the original tree of the query [B]

where (N/)*A=value in R before further processing.

Figure 4.6.4. The original tree and final tree of query [B] where (N/)*A=value in R

 65

It is more complicated if the Kleene star occurs in both projection and selection. Figure

4.6.3 illustrates an example of this case.

 Figure 4.6.5. Kleene Star in projection and selection

For the case R/.*/A or R/*/A, extra steps to find all relations, regardless of level,

containing the attribute A are required. The nestDomsA is created to handle this case. The

example relation dept (Figure 4.6.4) used in the previous chapter is taken to illustrate this

case in Figure 4.6.5.

 Figure 4.6.6. The relation dept

 66

 Figure 4.6.7. Projection of an attribute from all levels

The most popular queries using the operator “*” are presented above. Operator “+” is

almost the same as the “*”. The only difference between them is that for the queries with

the operator “+”, the top-level relation is ignored. The final trees modified from the

original tree passed from the passer will be processed to accomplish the queries.

For the dot operator “.”, search steps are also required to find the relations that satisfy

specific conditions which are specified in queries. For example, the query

 dept/(././)dname;

will be accomplished in this way: first, all relations, which are two-levels below the

relation dept and contain the attribute dname, should be found. Subsequently, the syntax

trees, corresponding to ujoin and projection of the attribute dname from these relations, is

generated by modifying the tree passed from the parser, which has a node with the name

(././). The new method withoutRelName() is created to accomplish these functions. Finally,

the modified tree will be further processed in order to answer to the query.

The new method modifyNodeForQuestionMarker() is involved in the implementation of

the question mark operator “?”. The implementation policy for “?” is not complicated.

Firstly, find whether the answer to the “?” is yes or no. If the answer is no, a warning will

be given. If the answer is yes, then modifications to trees passed from the parser are

required, since the original trees translated by parser contain the node which name is (..)?

 67

and can not be processed. Take the query

dept/(contact/addres/)? dname;

as a example. In the function modifyNodeForQuestionMarker, firstly it is found that

dept/contact/address contains a attribute dname, subsequently, the syntax tree

corresponding to the query

 dept/contact/addres/ dname;

is generated by modifying the syntax tree passed from parser. The result of the query will

be given after processing the modified syntax tree.

Due to their complexity, not all original trees and final trees in the examples are

illustrated in this section.

 68

Chapter 5

Summary and Future Work

In this project, the design and implementation of some new features of JRelix, including

semi-structured data loading, recursive nesting and improved query path expression and

regular expression operators were described. In the implementation of these new features,

the syntax of the former JRelix was used where it is possible. The new features are

summarized below:

·Acceptance of semi-structured data loading makes data loading for relation

initialization more convenient in JRelix. To simply the edition of relation loading data,

the data can be edited in a file and saved as a .txt file. The relation can then be declared

and initialized by the data in the file.

· The syntax for the semi-structured data input is similar to XML. The types of the

domains in the relations to be initialized by a semi-structured data input are specified in

the input data. While loading data some entries can be missed and in this situation the

null values (dc) are added for the missing entries.

· To support recursive nesting, recursively defined nested attributes are now

permitted After the relations containing a recursively defined domain are initialized, the

modifications to the names of the nested relations created in the initialization are

performed to indicate the hierarchical structure of the relations. The advantage of the

implementation is that operations on non-recursive nesting can still work on the recursive

nesting,

· Regular expression operators (“*”, “+”, “.”, “?”) have been implemented to

query relations with a recursively nested domain.

· In addition, path expression operator, which is likely to be frequently used in

 69

querying nested relations, has been implemented as a shorthand by using the / operator.

So far, only the major functions of these new features have been implemented. There is

further work to be done to refine the implementation.

· To date, only semi-structured data loading is accepted. Query results can be

output as semi-structured data by further implementations. In addition, further work on

semi-structured data queries may be explored.

· Further implementations on the regular expression operators, which includes

combination of these operators, additions of “or” operator (|) and etc, will improve the

queries with the expression operators.

 · Union type, which allows attributes alter their types, could be implemented

with further work, permitting an attribute to have more than one type.

 70

Biobiography

[Abi95] Serge Abiteboul. Querying SemiStructured Data. INRIA-Rocquencourt,

1995.

[ABS00] S.Abiteboul, P.Buneman, D.Suciu. Data On the Web. Morgan Kaufman

Publishers, San Francisco, 2000.

[AQM+96] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and

Janet Wiener. The Lorel query language for semistructured data, 1996,

Manuscript available from http://www-db.stanford.edu/lore/.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel

query language for semistructured data. International Journal on Digital

Libraries, 1(1):68-88, April, 1997.

[BDHS96] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A

Query Language and Optimization techniques for unstructured data. In

SIGMOD, 1996.

[BDS95] Peter Buneman, Susan Davidson, and Dan Suciu. Programming

constructs for unstructured data. In Pproceedings of DBPL’95, Gubbio,

Italy, September 1995.

[Bun97] Peter Buneman. Semistructure Data. Department of Computer and

Information Science, University of Pennsylvania, Philadelphia,

 PA.1997.

 71

http://www-db.stanford.edu/lore/

[GRA02] Mark Graves. Designing XML Databases. Page 4-24.

[Hao98] Biao Hao. Implementation of the Nested Relational in Java. Master’s

thesis, McGill University, Montreal, Canada, 2002

[MAG+97] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, Jennifer

Widom. Lore: A Database Management System of Semistructure Data.

Stanford University, 1997.

[Mer77] T.H. Merrett. Relations as programming language elements.

Information Processing Letters, 1977. Reston Publishing Co.

[Mer84] T.H. Merrett. Relational Information Systems. Reston Publishing Co.

Reston, VA, 1984.

[Mer02] T.H. Merrett. The class notes for 308-612 Fall 2002. School of

Computer Science, McGill University.

www.cs.mcgill.ca/~612

[MMM96] A.Mendelzon, G.Mihaila, and T.Milo. Querying the World Wide Web. In

Proceedings of the Fourth Conference on Parallel and Distributed

Information Systems, Miami, Florida, December 1996.

[QRS+95] D.Quass, A.Rajaraman, Y.Sagiv, J. Ullman, and J. Widom. Querying

semistructure heterogeneous information . In International Conference

On Deductive and Object Oriented Databases, 1995.

[Suc99] Dan Suciu. Management of Semistructure Data. AT&T Labs, 1999

[Wan02] Zongyan Wang. Implementation of Distributed Data Processing in a

Database Programming Language. Master’s thesis, McGill University,

 72

http://www.cs.mcgill.ca/~612

2002.

[Yua98] Zhongxia Yuan. Java Implementation of the Nested Domain Algebra in

a Database Programming Language. Master’s thesis, McGill

University, 1998.

[Zhe02] Yi Zheng. Abstract Data Types and Extended Domain Operations on

Nested Relation Algebra. Master’s thesis, McGill University, Montreal,

2002

 73

