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Abstract  
 
 
This project report discusses the design and implementation of new features involved in 


JRelix, including semi-structured data loading, improved queries (recursive nesting, path 


expression and regular expression operators). Semi-structured data is self-describing thus 


more flexible. Acceptance of semi-structured data loading makes data loading for relation 


initialization more convenient in JRelix. To simply the edition of relation loading data, 


the data can be edited in a file and saved as a .txt file. The relation can then be declared 


and initialized by the data in the file. After allowing JRelix to accept recursive nesting, 


the regular expression operators (“*”, “+”, “.”, “?”) have been implemented to query the 


relations with a recursively nesting domain. In addition, path operator, which is likely to 


be frequently used in querying nested relations, has been implemented as a short-cut by 


using the / operator. The implementation of this project is part of the Aldat project at 


McGill University.  
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Chapter 1  
 
 
Introduction  
 
This project report describes the design and implementation of some new features 


involved in JRelix, including semi-structured data loading and improved queries 


(recursive nesting, path expression and regular expression operators). In section 1.1, a 


background material and motivation is given for the implementations. In section 1.2, a 


brief outline on the structure of this report can be found.  


  


1.1 Backgrounds and Motivation   
Relix System 
Over the past 18 years, Relix, which is a relational database language, has been designed 


and developed at the Aldat lab of the School of Computer Science at McGill. The original 


version of Relix was developed in the C language and ran on the UNIX operating system. 


Since then, the system has been enhanced with further developments. In 1998, the Relix 


system was redesigned to be implemented it in Java [Yua98, Hao98]. The new system 


was named JRelix and covered the most important functions of the original Relix system, 


with a further extension to support a nested relational model. 


 


The current JRelix system supports relational algebra, domain algebra and computations. 


Furthermore, the Internet capability has been integrated into JRelix, so it can also process 


remote data processing through the Internet [Wan02].  


 


Semi-structured Data  
 
The data resides in different forms ranging from unstructured data to highly structured 


data. At an extreme we find data coming form traditional relational or object-oriented 


databases, with a completely known structure. At another extreme, we have data that is 
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fully unstructured, such as sound or images. But most of the data falls somewhere in 


between those two extremes and the data have been given the term semi-structured data 


[Suc99].  


 


Semi-structured data is often described as “schema-less” or “self-describing”, and these 


terms mean that a pre-imposed schema or type system is needed for the interpretation of 


semi-structured data [Bun97]. Typically, when we store or program with data, we firstly 


describe the structure (type, scheme) of that data and then create instances of that type. In 


semi-structured data we directly describe the data using a simple syntax. For example, 


{name: “Joe”, ID: “23451”, Tel: “514-398-0980”} is a simple set of pairs such as name: 


“Joe” consisting of a label and a value. We are not constrained to make all the tuples the 


same type. One of the main strengths of semi-structured data is its ability to 


accommodate variations in structure. In addition, semi-structured data allows forgetting 


any type the data might have had, and serializes it by annotating each data item explicitly 


with its description (such as name, ID, etc). Such data is called self-describing. The term 


serialization signifies the conversion of the data into a byte stream that can be easily 


transmitted and reconstructed at receivers [ABS00].  


 


Schemas for semistructured data differ from those for relational data. In a traditional 


database approach, types are always fixed prior to populating the database. Once the data 


is populated, its binary storage cannot be interpreted without having knowledge the 


schema. With semistructured data we may specify the type after the database is populated. 


The type may often describe the structure only for a part of the data and, even then, do 


that with less precision. An important consequence is that a data instance may have more 


than one type [ABS00].  


 


The web provides numerous popular examples of semi-structured data. On the web, data 


consists of files in HTML format, with some structuring primitives such as tags and 


anchors. Secondly, the need for semi-structured data arises when integrating several 


sources. Finally, semi-structured data arises under a variety of forms for a wide range of 


application such as scientific databases and on-line documentations. [Abi95]. 
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The most popular example of semi-structured data is XML (Extensible Markup 


Language). It is a language for representing data as a string of text that includes 


interspersed “markup” for describing properties of the data. Using markup allows the text 


to be interspersed with information related to its content or form [Gra02]. Element is the 


basic component of XML. XML can contain attributes with varied order and multiple 


elements with the same element type. This makes it easier to represent more complex 


data.  


 


Semistructured Data DBMS 
 
The exploration of application of semi-structured data in databases is due to the advent of 


semi-structured data. Firstly, database systems were developed to manage semi-structured 


data. The most famous is Lore (Lightweight Object Repository), which was implemented 


at Stanford University. The Lore system is designed specifically for the management of 


semi-structured data. In general, Lore attempts to take advantage of structure where it 


exists, but can also handle irregular cases gracefully. Implementing the Lore system 


requires rethinking all aspects of a DMBS, including storage, query and user interface 


[MAG+97]. Secondly, data is not stored as semi-structured, but it can be exported as 


semi-structured and presented to other applications or users. Semi-structured data can be 


entered into a database by compressing the data and storing the data in the structure of the 


database, such as relations [Gra02].  


 


A semi-structured data interface to a relational DBMS provides access to robust database 


technology with the advantages of semi-structured data delivery. It is especially useful 


when a relational database already exists. Loading the semi-structured data into an 


existing relational database allows more flexible data input for the relational database 


system [GRA02].  


 


Generally, there are two approaches in devising query language for semi-structured data. 


First, take SQL as a starting point and features are added to perform useful queries. The 


second one is to start from a language based on the notion of computation on 
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semi-structured data then to modify that language into acceptable syntax [Bun97]. 


Several query languages for semi-structure data have been proposed: LOREL 


[QRS+95,AQM+96,AQM+97,MAG+97], UnQL [BDS95, BDHS96], WebSQL 


[MMM96]. Their common feature is the ability to traverse arbitrary long paths in the data, 


usually specified in the form of a regular path expression: thus these query languages are 


recursive. [Suc99].  


 


Motivation 


Due to the advantages of semi-structured data, one part of this project is devoted to the 


implementation of embedding semi-structured data into JRelix. An advantage is that the 


data structure can be much more flexible. Alternatively, the self-describing data could be 


embedded in natural language text.  


 


We can further explore the flexibility of semistructured data. For nested relations, path 


expressions are useful to describe the hierarchy. And the notion of path expression takes 


its full power when we start using it in conjunction with wild card (.) or regular 


expression operators, such as Kleene star (*), plus operator (+) and question mark 


operator (?). This project is also devoted to implementing path expression, recursive 


nesting and the regular operators. 


 


 


1.2 Outline of the Report 


This project report discusses the design and implementation of some new features in 


JRelix. Chapter 1 of this report introduces the project topic. In chapter 2, the overview of 


the current JRelix system is given. Chapter 3 describes how the new features of JRelix are 


used, including semi-structured data input, recursive nesting, path expression (“/”) and 


the regular expression operators (“*”, “+”, “.”, “?”). Chapter 4 explores the issues 


involved in implementating the new features. In chapter 5, a brief summary is provided 


and future work is presented.  
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Chapter 2  
 
 


JRelix Overview 


This chapter is to introduce JRelix, describing how to use JRelix to perform database 


operations. Section 2.1 explains how to start JRelix. Section 2.2 describes the declarations 


of domains and relations and the initialization of relations. The functional operations of 


relational algebra will be explored in section 2.4. The use of domain algebra operations 


will be presented in section 2.5. In the section 2.6, the usage of views and computations 


will be briefly introduced.  


 


2.1 Getting started  
JRelix runs on any platform that has the Java Runtime Environment (JRE) version 1.1 or 


up. To start JRelix interpreter, type the following  


java JRelix 


As the result, JRelix copyright information will be displayed in its run-time environment, 


as illustrated in Figure 2.1.  


 


 
                 


                         Figure 2.1 JRelix startup 


After successful starting up, prompt > is shown and JRelix is ready to accept user inputs.  
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2.2 Commands  


In this section, the most commonly used commands of JRelix are presented.  


pr Expression Display the result of a relational expression.  


time Time on/off interpreter.  


trace Log on/off. 


sr (<IDENTIFIER>)? Display the description of the relation identifier. All relations 


are shown if identifier is omitted.   


sd (<IDENTIFIER>)? Display the description of the attribute identifier. All attributes 


are shown if identifier is omitted.   


dd IDList Remove the attributes specified in IDList.  


dr IDList Remove the relations, views or computations specified in IDList.  


quit Exit the system. JRelix performs clean-up procedure and saves the information 


before it returns the original operating system.  


 


 


2.3 Declarations 
2.3.1 Domain Declaration  
 
Use the following syntax to declare domains: 


domain IDLIST Type; 


where domain is a keyword and IDLIST specifies the list of domains being declared, Type 


donates the types of these domains. In the current JRelix system there are two kinds of 


domain types: atomic and complex. The atomic types are primary such as integer, string, 


long, double, etc. Nine atomic data types for domains declaration are shown in Figure 


2.3.1.  
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Type Short Form Corresponding Java Type 


integer intg signed int, 4 bytes 


short short signed short int, 2 bytes 


long long singed long, 8 bytes 


double double singed double, 8 bytes 


float float signed float, 4 bytes 


string strg String 


boolean bool true,false 


attribute attr String 


universal univ String 


numeric num  


                  Figure 2.3.1 Atomic domain types in JRelix 


                   


In addition, two complex domain types have been implemented in JRelix: i.e. nested 


relation and computation. In general, the syntax used to declare nested domains is as 


follows: 
domain nest_domain_name(domName1,domName2…); 


where the nest_domain_name specifies the name of the nested domain being declared and 


the domain list that the nested relational domain contains are present in the following 


bracket.  


As well, the following syntax is to declare a computational domain: 
  domain comp_domain_name comp(domName1,domName2…); 


Note that the current JRelix implementation required that the attributes on which a nested 


attribute is defined must be declared already, so the recursively defined nested attributes 


were now allowed. The current implementation allows them. The details about 


recursively defined nested attributes will be presented in next chapter.  


 


Figure 2.3.2 gives some examples of declaring both atomic-type domains and 


complex-type domains. 
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                Figure 2.3.2. Examples of domain declaration 


 


2.3.2 Relation Declaration and Initialization  
 
The following syntax is used to declare and initialize relations  
 


relation IDLIST “(“ IDLIST “)” (Initialization)?  
 
where the first IDLIST specifies the name of a relation to be declared or initialized. The 


domain list that the relation being declared contains is specified in the second IDLIST.  


When initialization is absent, an empty relation is declared without any tuple data inside, 


otherwise, a relation is declared with actual data tuples, called relation initialization. The 


most often used initialization is the so called curly bracket syntax in which relations start 


and terminate with curly bracket { and }, while their tuples are surrounded with round 


bracket ( and ). Also, the use of the name of another relation can initialize a relation.  


 


For a nested relation, surrogates are used to replace actual values of nest attributes. The 


actual data for a nest attribute are stored in a relation with additional attribute .id which 


function is to link surrogates of the attributes in its parent relation. The name of the 


relation is the name of the nested attributes prefixed with a dot(.). 


 


The following is the examples of relational declaration and initialization.  


 


In the example presented in Figure 2.3.3, the relation EmployeeInfo contains three 


domains, name, department and ContactInfo. The type of the domain name and 


department is strg, while ContactInfo is a nested domain, which is defined on email and 


fax.  
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           Figure 2.3.3 Initialization of relation EmployeeInfo 


 


To display the contents of the relation, the command pr can be used.  
pr EmployeeInfo; 


The relation EmployeeInfo is shown in Figure 2.3.4. Since ContactInfo is a nested 


domain, .ContactInfo is generated to store all the ContactInfo data. Note that in relation 


EmployeeInfo, surrogates 608, 609and 610 for nested attribute Contact link the values 


608,609 and 610 of attribute .id in relation .ContactInfo. 


 


 
 


  Figure 2.3.4. Contents of relation EmployeeInfo 
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2.4 Assignment  
 
JRelix provides two assignment operators, which are replacement (<−) and incremental 


assignment (<+). The replacement operators completely replace the left-hand relation that 


may have been defined or not. The data in the right-hand relation is copied into the 


left-hand relation. The incremental assignment adds new tuples and the attributes of the 


right-hand relation must be compatible with those of the relation on the left. The 


renaming assignment allows attributes on the left to be matched with the attributes on the 


right. The syntax for assignment is shown below: 


Identifier (“<−“|“<+” ) Expression 
or 


Identifier  “[“ IDList(“<−“|“<+”ExpressionList “)” Expression 
 


 
2.5 Relational Algebra    
 
In this section, the syntax and semantics of the relational algebra are presented. Firstly, 


we describe the unary operators and binary operators. Assignment and incremental 


assignment operations are then described.  


 


2.5.1 Unary Operators 
 
There are six unary operators, including projection, selection, T-selection, QT-selections 


implemented in JRelix system.  


 


Projection  
The syntax for projection is as follows:  


“[“ (IDList)? “]” in (Projection | Selection) 


Projection extracts a subset of attributes named in IDList from a source relation. 


Duplicate tuples in the result relation are removed. If IDList is absent, a relation 


containing only one tuple with a boolean domain “.bool” is projected. The value of the 


boolean domain is true if the relation resulting from the projection has at least one tuple, 


and otherwise the value is false. Figure 2.5.1 and Figure 2.5.2 show examples of 


projection.  
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Projection query1: Retrieve the attribute name in relation EmployeeInfo  


 


  


 
           


           Figure 2.5.1. Retrieve the attribute name from relation EmployeeInfo 


 


Projection query 2: Check if there is any tuple in relation EmployeeInfo  


 


  
              


           Figure 2.5.2. Check if there is any tuple in relation EmployeeInfo  


 


Selection  


 
Selection is used to return a subset of a source relation that satisfies certain conditions. 


The syntax for selection is as follows:  


where  SelectClause in Projection 


where selectClause specify the certain conditions that the result relations must satisfy. A 


example of selection is shown in Figure 2.4.3.  


Selection query 1: Retrieve the tuples of relations EmployeeInfo where department is 


“IT”. 
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   Figure 2.5.3. Retrieve the tuples of relation EmployeeInfo where department is “IT”. 


 


T-Selection   
 
T-selection is a combination of projection and selection. The general syntax for the 


T-Selection is  


“[“(IDList)?“]” where SelectClause in Projection 


Figure 2.4.4 gives a example of T-selection using the relation EmployeeInfo.  
 
T-Selection query 1: Find all employees of the department “IT”  


 


 
Figure 2.5.4. Find employees of the department “IT” 


 
 


2.5.2 Binary Operators   
There are two categories: µ-join and σ-join. µ-joins are set operations generalized to 


relations, and σ-joins generalize logical operations.  


 


The syntax of join operators is as following: 
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Expression JoinOperator Expression 


or 


Expression “[“ ExpressionList “:” JoinOperator (“:”)? 


ExpressionList “]” Expression 


 


In the first production, the common attributes of both sides are joined attributes. While in 


the second production, users can select the common attributes to be joined attributes.  


 


µ-join 


µ-join are used as set operations including union, intersection and difference. The µ-join 


can be defined in term of the left wing, the center wing and the right wing. The 


definitions of them are as following [Mer84]:  


 
The description of µ-join is summarized as following: 


 


ijoin or natjoin ≡ center  


ujion ≡ left wing U center U right wing 


ljoin ≡ left wing U center  


rjoin ≡ center U right wing 


djoin or dljoin ≡ left wing  


drjoin ≡ right wing  


sjoin ≡ left wing U right wing 


For more details please refer to [Mer84] 
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σ-join 


The σ-join extends truth-valued comparison operation on sets to relations by applying 


them to each set of values of join attribute for each of other values in the two 


relations[Mar84].  


 


Given relations R(W, X) and S(Y, Z), Rw is the set of values of X associated by R with a 


given value, w, of W, and Sz is the set of values of Y associated by S with a given value, z, 


of Z are sets of attributes of S, the following definitions are general, and even allow for X 


and Y to be the same set of attributes. X and Y must by at least compatible attribute 


sets[Mer84].        


 


 


 


 


 


 


 
 


 


2.6 Domain Algebra 


The algebra on attributes is called the domain algebra and contains two main components: 


scalar operations and aggregate operations. In the table view of relations, these can be 


thought of as “horizontal” and “vertical” operations [Mer84]. Horizontal domain 


operations work within the tuples, while vertical domain operations work among tuples.  


 


2.6.1 Scalar Operations 
 
Scalar operations work on a single tuple of a relation. In the current JRelix system, scalar 


operations include constant definition, renaming, arithmetic function, conditional 


statements etc. All these basic scalar operations are listed in Figure 2.6.1.  
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Figure 2.6.1. Scalar operations  


 


2.6.2 Aggregate Operations  
 
Aggregate operations, often referred as vertical operations, work on attribute values of all 


tuples in a relation. Basic vertical operations are listed as follows:  


- Reduction 


- Equivalence reduction 


- Functional mapping 


- Partial functional mapping   


The examples used to illustrate these operations are shown in Figure 2.6.2.    
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Figure 2.6.2. Examples of vertical operations  


For more information about the domain algebra, please refer to [Mer84, Yua98].   
 


2.7 Nesting 
The relational algebra and domain algebra can be applied to relation-valued attributes in 


nested relations that are an expanded data structure, where a value of an attribute can be a 
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relation. Generally speaking, there is no new syntax for nested relations; we just subsume 


the relational algebra into domain algebra.  


 


Unnesting operations and nesting operations are needed to raise and lower the levels of 


nesting. Since the nesting operation is still in a progress of implementation, here we are 


not going to discuss it.   


 
An example is given to illustrate unnesting operations. To find all fax numbers of 


employees, we can use the query shown in Figure 2.7.1, but note that the result is itself a 


nested relation. To remove the nested structure of the result, called unnesting, two steps 


are followed. Firstly, do the reduction,  


red ujoin of [fax] in ContactInfo;  


Projecting the red ujoin still given a nested relation, but a singleton. The second step is 


to lift a level through anonymity (i.e., no giving the name of the attribute of result 


relation), by writing the reduction directly in a projection list.  


AllFax’<-[red ujoin of [fax] in ContactInfo] in EmployeeInfo;  


(The result shown in Figure 2.7.2)  


Thus the system has no choice but to bring values of the attribute fax one level up, 


resulting in a single-level relation. The new syntax, syntactic sugar, which is likely to be 


frequently used in querying nested relations, has been implemented as a shorthand by 


using the / operator. So, the query can be  


AllFax’<-ContactInfo/ fax in EmployeeInfo; 


This is a path expression. Fully descripted in in chapter 3. 
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Figure 2.7.1. All Fax Number. Version 1 


 


 
                   


Figure 2.7.2. All Fax Number. Version 2 


   


Although there are also important components such as views, update, computation, and 


so on in JRelix, we are not going to elaborate them here since they are not crucial for the 


implementations of semi-structured data input and recursive nesting.  
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Chapter 3    
 


User’s Manual 
 


3.1 Semi-structured data input  
Compared to conventional data, which is described by a scheme available to the database 


system separately from the data, semi-structured data is self-describing by embedding the 


scheme with the data by using markup language tags. The self-describing data structure is 


more flexible than in conventional relations. In the following example (Figure 3.1), the 


relation EmployeeInfo, will be used to demonstrate the rule of using semi-structured data 


input in JRelix.  


 


3.1.1 An Example 


 
               Figure 3.1.1 Example: Relation EmployeeInfo 


 


The semi-structure input corresponding to the relation EmployeeInfo is shown in Figure 


3.2.  
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Figure 3.1.2 Example: Semi-structure input of Relation EmployeeInfo 


 


 


3.1.2 Domain Declaration   


The new syntax of domain declaration for the semi-structured data input is described 


below.  


 


Since the semi-structure data is self-describing, it is not necessary to define the domains 


used in a relation before the semi-structured input of the relational initialization 


(schemaless). The domains are declared in their first occurrence in the semi-structured 


input of the relation initialization using the following syntax:  
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<domainName type = data_type>… …</domainName> 
Where 


· domainName is the name of the new domain where type is being defined. 


· The start tag is surrounded by angle brackets, while the end tag has the angle 


bracket and a slash “/”. The domainName in the start tag and in the end tag 


should be the same.  


· The text after “ type = ” represents the data type of the new domain.  


· If the type of domain is not specified, the default type is strg (String). 


· The text between the start tag and the end tag is the data value of the domain. 


Since the type of the domains is illustrated in its start tag, the values of the 


domains, whose type is strg, do not have to be surrounded by quotes.  


· For subsequent occurrence of the same domains, the following syntax is used  


<domainName>… …</domainName> 


· For a nested domain, it is not necessary to specify the names of attributes that the 


nested domains contain. Similar to the initialization of a relation, the text 


between the start tag of a nest domain and its end tag is the initialization of the 


nested domain. In the example shown above, the nested domain 


otherContactInfo is initialized by the following text:  


    


 


         
  


… …  


 
     


 


Figure 3.1.3 Initialization of nested domain otherContactInfo 


 


3.1.3 Relation Declaration and Initialization 
The relation declaration syntax for loading semi-structured data is: 


relation  IDList  Initialization 


where  


   · The first IDList specifies the name of the relation being declared and the 
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production Initialization is the angle bracket syntax in which the relation starts 


and terminates with first angle bracket < and the last angle bracket >.  


   · Specification of the attributes on which relations are defined are omitted, since the  


semi-structured data input contains the information about the attributes of the  


relations to be initialized.  


   · The name of the relation that is to be initialized is not necessarily the same as the 


first tag and its corresponding end tag in its semi-structure data input. 


relation R<-<R1>… … </R1>; 


is acceptable.   


 


In addition, to take further advantage of the semi-structured data, some entries for 


relations can be missed in their semi-structured data input for their initialization, since 


each entry has its own tags to describe it. As in the example relation EmployeeInfo, some 


entries are missed and in this situation the null values (dc) are added for the missing 


entries. For the nested relation, “dc” can be added automatically, if it is necessary, to 


terminate the initialization. 


 


Furthermore, the tags <.tuple> and </.tuple>, used to separate tuples, are optional. 


However, they are compulsory when there is ambiguity. If <.tuple> and </.tuple> are 


missed, the reoccurrence of the same domains will be considered to be in a new tuple. 


And the separations of tuples are also dependent on the occurrence order of domains in 


the input data. To explain this more clearly, figure 3.1.4 illustrates a relation initialized by 


different cases of semi-structured data.  


 


Refer back to the example in section 3.1.1. Both “Patrick” and “Josee” have the same 


attribute employeeName, so it would be regarded as being in two different tuples. But, 


since Id is just after EmployeeInfo in the domain list of the relation, if “2002” is not the Id 


of “Josee”, <.tuple> and </.tuple> have to be used to avoid ambiguity, since without the 


tags “Josee” “2002” would be considered as being two domain entries in a same tuple.      


 


Note that relations initialized with semi-structure data input are the same as with the 
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relations initialized with a curly bracket input. All relational algebra and domain algebra 


can be performed. 


   
Figure 3.1.4 Example of different cases for relation R 


 


3.2 Input Data From a File 


To simplify the edition of input semi-structured data, a relation schema can be edited in a 


file and saved as a text file. Then a relation can be declared and initialized using the 


following syntax: 


relation rel_name <- “ file_path/ file_name ”;  


It is not necessary for the relation name to be same as the relation name in the file.  


 


Take the relation EmployeeInfo as an example: firstly we edited the input of the relation 


EmployeeInfo in a file and saved it as “Emp_xml.txt” (Figure 3.2.1):  
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Emp_xml.txt:  


 


          
 


Figure 3.2.1. Emp_xml.txt file for initialization of relation EmployeeInfo 


 


Then we may declare the relation EmployeeInfo and initialize it with the following:  


relation EmployeeInfo <-“Emp_xml.txt”; 


 


This initialization mechanism can also be used to declare and initialize relations where 


initialization requires curly bracket syntax. The only difference from the above case is 


that in this case the attributes on which the relation is defined should be specified. See the 


example in the following figure 3.2.2:   


 


Emp_curly_bracket.txt: 


 


                
 


Figure 3.2.2. Emp_curly_bracket.txt file for initialization of relation EmployeeInfo 
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Then the relation can be initialized by the following:  


relation EmployeeInfo(employeeName,Id,teleNum, otherContactInfo) 


 <- “Emp_curly_bracket.txt”; 


 


Note that in this case, it is necessary for domains to be declared before the relation 


initialization.  


 


 


3.3 Recursive Nesting Declaration and Initialization  
In recursive nesting, a relation name can be an attribute of itself.  


 


Declaration of recursively nested attributes uses the syntax for nested domain declaration 


domain IDList “(“ IDList “)” 


Here IDList specifies the name of a nested attribute being declared, “(“ IDList “)” is 


used to specify the names of attributes on which the nested attribute is defined. The 


former Relix required that the attributes on which a new nested attribute is defined must 


be already defined. Therefore recursively defined nested attributes were not allowed. 


Now, recursively defined nested attributes are allowed, meaning the name of an attribute 


on which a nested attribute is defined can be the same as the name of the nested attribute. 


For example, the following is permitted in order to declare a nested attribute N and a 


relation containing the nested attribute. 


domain A data_type; 


domain N(A,N);    


relation R(N) ……; 


 


In the following sub-section, I will illustrate a recursive nesting example. The relation 


“dept” contains a recursive domain “subdept ” to indicate the hierarchical structure 


involved in departments. (Figure 3.3.1)   
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               Figure 3.3.1: Contents of the relation Dept 


 


Similar to the non-recursive nested relation, the relation can be initialized as illustrated in 


Figure 3.3.2.  
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Figure 3.3.2. Initialization of a recursive nesting relation and its attributes 


 34







Note that null value (dc) must be added to terminate the recursion. Finally, it is necessary 


to mention that the names subdept, subdept_0 and subdept_1 are automatically created by 


JRelix to represent the hierarchical structure of the entries. The reason to implement 


recursive nesting in this way is that in current JRelix implementation, relation names and 


relational domain’s names are stored in the form of hashTable and the names are used as 


keys. However, it is not necessary for users to know the name subdept_n. As illustrated in 


Figure 3.3.3, subdept can represent any level of the recursive nested attribute subdept in 


queries.  


 


       
       Figure 3.3.3. An example query for the recursive nested attribute 


 


Recursively nested attributes can also be initialized in semi-structured data format. Figure 


3.3.4 shows a small example where a relation R containing a recursively nested attribute 


is initialized with a semi-structured data input. Note that in the semi-structured input the 


null value (dc) will be added automatically to terminate the recursion.  
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Figure 3.3.4. Initialization for the recursive nested attribute 


 


3.4 Path Expression Operator 
Path expression will concatenate attribute names into a path by using the “/” operation. 


The syntax in using path expression is as follows:  


           [rel_name/] (nested_rel_name “/”)*[ domain_name]  


We take the example relation dept shown in the last section to illustrate the syntactic 


sugar. Let’s start with the following: suppose we would like to project the nested attribute 


address, instead of 


addr<-[red ujoin of [red ujoin of address] in contact ] in dept; 


The red ujoin of raises the level of nesting as in section 2.7. Now, the simpler format  


addr<-dept/contact/address  


can be used. The result is listed in figure 3.4.1.   
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                    Figure 3.4.1 Address of dept   


 


We can go further,  


dname<-[red ujoin of [red ujoin of [dname] in address] in contact] in dept;  


becomes  


dname<-dept/contact/address/dname;  (Figure 3.4.2)  


 


 
                     Figure 3.4.2: dname of address                    


 


For the recursive nested attribute subdept,  


query<-dept/subdept/subdept; 


can lift subdept on the second level to the top-level relation dept (Figure 3.4.3).  


         


 
 


          Figure 3.4.3. Projection of the recursive nested attribute subdept 
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Furthermore, the path operator can be at any end of a regular T-selection. The two queries 


below (Figure 3.4.4) illustrate the path operator used in projection and relational 


expression.   


 


 


 


             Figure 3.4.4. Path operator in projection 


 


To produce multiple attributes from a deeper level is also easy by using path operator. 


For instance,  


addrs<-[num,dname] in dept/contact/address;  


will project attributes num and dname from the deeper level address. The output is shown 


below. 


 


          


Figure 3.4.5. Multiple attributes in projection  
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In addition, the path operator can be used in selection. We have the query: Find all dname 


in dept where dname in its contact/address is “Park way”, the query 


dns<-[dname] where contact/address/dname ="Park way" in dept; 


that can be expanded as:  


dns<-[dname] where ([] where ([] where dname="Park way" in address)  


in contact) in R; 


will answer the query.  


 


Suppose we want to find all tels in contact where dname in address is “Park way”. The 


query  


telp<-[tel] where address/dname="Park way" in dept/contact; 


will complement the task. Outputs of these two examples are shown below.  


 


 


 
                 


Figure 3.4.6. Path operator in selection 


 


Finally, the queries listed below will produce the same results:  


dept/contact/address/dname; 


or 


contact/address/dname in dept; 


or 


address/dname in dept/contact; 
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or  


[dname] in dept/contact/address; 


 


3.5 Regular Expression Operators 


The regular expressions, similar to the regular expressions of XML, provide Kleene 


star(*), plus operator(+),question mark(?), and dot operator (.).  


 


3.5.1 Kleene Star (*) and Plus Operator (+) 
The Kleene star is involved for the recursive nesting in order to answer such queries as 


“find all some attribute(s) of a recursive nesting domain from a relation or recursively 


nested relation”.  


 


The syntax for Kleene star in projection or relational expression is the following:  


rel_name(/recursivelyNested_attribute_name)*[/attribuete_name] 


or 


rel_name/(recursivelyNested_attribute_name/)*attribuete_name 


 


The syntax for Kleene star in selection is the following:  
 


where [rel_name/]( recursivelyNested_attribute_name/)*attribute_name “=” value 
 


where rel_name is the names of relation or nested domains which contains a recursively 


nested attribute, while recursivelyNested_attribute_name is the names of recursively 


nested attributes and attribute_name is the names of domains to be projected from the 


recursively nested attribute.  


 


Since Kleene star indicates zero or many occurrences of its operand [Mer03], the 


consequence of the expression should be the projection of the attribute whose name is 


attribute_name from all levels of the recursively nested relation where the name is 


recursivelyNested_attribute_name and from the top_level relation which is rel_name.  
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Below I will display the use of the syntax with Kleene star by using the example relation 


dept. Firstly, if we would like to project dname from all levels of subdept and dept, the 


easiest way is: 


    dname<-dept(/subdept)*/dname;  


It is obvious that it is actually the same as the following query:  


    dname<-dept/dname ujoin dept/subdept/dname ujoin dept/subdept/subdept/dname; 


 


Apparently,  


dname<-[dname] in dept (/subdept)*;  


or 


dname<-(subdept/)*dname in dept;  


will produce the same result . The result is listed in Figure 3.5.1.  


 


 
           Figure 3.5.1. All dname in dept and subdept 


 


The “+” operator represents one or many occurrences. Therefore, queries  


dnameofSub<-dept(/subdept)+/dname; 


or  


dnameofSub<- [dname] in dept/(subdept)+; 


or  


dnameofSub<-(subdept)+/dname in dept;  


will also project the dname from all levels of subdept, but do not project dname of dept. 
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Their output is listed in Figure 3.5.2.  


 


  
  Figure 3.5.2. All dname in subdept  


 


In addition, to project all attributes from all levels of subdept,  


allSubDept<- dept(/subdept)+; 


is the simplest query to answer it.  


While,  


allDept<-dept (/subdept)*  


should produce all attributes from dept and from all levels of subdept.  


 


In this example, relation dept and its nested attribute subdept have the common attribute 


dname. In this situation, all dname are projected from dept and from all levels of subdept. 


The result is shown in Figure 3.5.3.  
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    Figure 3.5.3. Projection of all attributes from the recursively nested relation 


 


One point that should be mentioned is that these relations may be disjoint, that is, when   


top-level relations and recursively nested relations have no common attributes. In this 


case, N is a recursively nesting domain that contains A, B and R has domains X,Y, N. The 


query 


q<-R(/N)*; 


that is, 


  q<-R ujoin R/N ujoin R/N/N ujoin… R/N/N/../N; 


will be interpreted as a Cartesian product. A small example to illustrate this is shown in 


Figure 3.5.4.  
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         Figure 3.5.4. Projection of add attributes using Kleene Star 


 


The benefits of exploring Kleene star in selections are obvious. A simple query, 


deptName<-[dname] where (subdept/)*empcount=100 in dept; 


will produce all dname from dept that has a subdept which empcount is 100 and dname 


from dept which empcount is 100 (Figure 3.5.5). Without using the Kleene Star, the query 


to answer the question will be too complicated to be performed. Firstly, users have to 


know how many levels the recursively nested attribute subdept contains. Then perform 


the long query listed below:  


deptName<-[dname] where empcount=100 in dept  ujoin  


[dname] where subdept/empcount=100 in dept  ujoin 


[dname] where subdept/subdept/empcount=100 in dept;  


 


 
                Figure 3.5.5. Kleene star in selection  
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Also keep in mind that  


[dname] where (subdept/)* empcount=100 in dept; 


should include the dname from dept, where its empcount is 100, however, the expression 


  [dname] where (subdept/)+ empcount=100 in dept;  


that can be expanded to  


[dname] where subdept/empcount=100 in dept  ujoin 


[dname] where subdept/subdept/empcount=100 in dept; 


only projects dname from dept that have a subdept where empcount is 100.  


 


Furthermore, the following Figure3.5.7 will show the use of “*” (or “+”) both in selection 


and projection. The expression  


Q1<-subdept100<-[dname] where (subdept/)*empcount=100 in dept(/subdept)*; 


produces all dname from all levels of subdept which has a nested attribute subdept (no 


matter how many levels down) where empcount is 100 and all dname from dept where 


empcount is 100. In comparison, the query Q2 will not produce all dname from dept 


where empcount is 100, since in the example “+” is used instead of “*”. In order to 


provide a clearer explanation, these queries have been expanded in the following figure 


3.5.6. 
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 Figure 3.5.6. Queries with “*” and “+” in selection and projection  
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Figure 3.5.7. “*” and “+” in selection and projection  


 


3.5.2 Dot Operator  
In addition, we can avoid writing the names of intermediate nested attributes if we use a  


“wildcard”, namely “.”. Queries in figure 3.5.8 retrieve all dname from all relations that 


have the attribute dname. 
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Figure 3.5.8. Query: retrieve all dname from relation dept and its nested attributes 


 


Here, “.” indicates any relation name. So, “.*” stands for all relations and we don’t care at 


which level they are. “.*” can be shortened to “*” to resemble Unix conventions[Mer03].  


  


In comparison, unlike the  


addDepts<-dept/.*/dname; 


the queries  


addDepts<-dept/.+/dname;  


or  


addDepts<-dept/+/dname; (Figure 3.5.9)  


do not project the dname attribute of the relation dept, since “+” represents one or many.  
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Figure 3.5.9. Query: retrieve all dname from the nested attributes of dept 


 


We can explore the wildcard further. The example in figure 3.5.10 signifies that (././) 


means any two levels below the relation dept. The query is to find out all dname in the 


nested attributes that are two levels below the dept. Since both the relation 


dept/contact/address and the recursively nested attribute subdept of dept contain the 


domain dname, the query  


q1<-dept/(././)dname; 


will produce the result which is the same as the result of the query  


q1<-dept/contact/address/dname ujoin dept/subdept/subdept/dname;   


 


                     
            Figure 3.5.10. Example of Wildcard  
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3.5.3 Question Mark Operator  
Question mark operator (?) allows zero or one occurrence of its operands. Figure 3.5.11 


and Figure 3.5.12 show the syntax for the question mark operator using the example 


relation dept. 


  


      
 


Figure 3.5.11. Example for the syntax of Question mark operator  


 


In the figure 3.5.11 the query  


qm_f<-dept/(contact/addres/)? dname; 


means that if contact/address has the attribute dname, the dname of contact/address 


should be projected with dname in dept. Otherwise, only project dname in dept.    


 


Sometimes we don’t want to write down the names at intermediate levels. We can use (./) 


instead of writing down the specific names of relations in intermediate levels. In the 


figure 3.5.12, the query  


qm<-dept/(././)? dname; 


is used to find dname from the relation dept and from all relations that is two levels 


below dept. Since in the relation dept both dept/contact/address and its recursively nested 


attribute subdept have the domain dname, the query should produce the same result as the 


query listed below:  
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qm<-dept/dname ujoin dept/contact/address/dname ujoin  


dept/subdept/subdept/dname;  


 


 


 


  
Figure 3.5.12. Example for question mark operator 
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Chapter 4  
 


 


Implementation and Solution Strategy 


 


Implementation details for the new features in JRelix as shown in last chapter will be 


presented in this chapter. In section 4.1 and 4.2 an overview of the system architecture is 


given. In section 4.3, we introduce how to allow the current JRelix system to accept 


semi-structured data input. In section 4.4, we discuss the implementation of recursive 


nesting. In section 4.5, we describe the implementation of path expression operator. In 


the last section, the implementation of the expression operators, including “*”, “+”, “.”, 


and “?”, are presented.     


 


4.1 Developing Environment  
JRelix is written in Java. The old version Relix is implemented in the C programming 


language. It runs on UNIX, and Windows as well. The parser is generated by JavaCC 


and JJTree. JavaCC, is a java compiler compiler that acts as a parser generator. It reads 


high-level grammar specification and converts it to a Java program that matches the 


grammar. JJTree is a preprocessor for JavaCC that inserts parser tree building action at 


various places in the JavaCC source.  


 


4.2 System Overview 


The JRelix system contains three main conceptual modules: a front-end interface, a 


database engine and a system database maintainer. The picture is shown below: 
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The Front-end Interface consists of a parser and an interpreter. It is an interface 


between the user and the database engine. The parser accepts the user command input; 


then performs command syntax analysis. The user command can be translated into 


intermediate code that has a tree structure. Then the tree is passed to the interpreter. The 


interpreter performs error checking, traverses the tree and generates a set of method 


calls that can be accepted by the database engine.  


 


The Database engine is the central part of the JRelix system. It implements relational 


algebra, domain algebra, computation and nested relation.  


 


The Database maintainer maintains user-defined data and system information of the 


JRelix system. These system files are stored as “.rel”, “.dom”, “.rd”, “.expr” and  


“.comp”. Files “.rel” and “.dom” stores information about all relations and domains that 


are defined in the database. File “.rd” stores all information that links relations and the 


domains on which the relation are defined. File “.expr” stores the syntax trees for virtual 


domain and views and file “.comp” stores syntax trees for computations.  


 


 


4.3 Implementation of Semi-Structured Data Input  
All JRelix statements and input commands are parsed first and then they are transferred to 


the syntax trees in the Parser class. The syntax trees are then decomposed top-down into 
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some sub-trees in Interpreter class and are further processed. In order to make the current 


JRelix accept the semi-structure data input, quite a few additions have been brought to 


the Parser and Interpreter class.  


 


Theoretically, the semi-structured data input should be parsed twice. In the first parsing, 


all domains should be declared. The domain list of the relation should be collected. In 


addition, the missing entries should be added to the original semi-structured data input 


before processing the second parsing to create a corresponding syntax tree. Subsequently 


the second-time parsing will be involved to generate a syntax tree, which can be 


processed correctly in the Interpreter class. However, the implementation avoids going 


back to the parser again after parsing the input in order to decrease the processing system 


time. After the Interpreter receives the immature tree translated by the parser from a 


semi-structured data input to initialize a relation, firstly the domain information is 


collected while interpreting the syntax tree and the domain list of the relation is then 


created. Secondly, the tree is modified by adding the nodes that are corresponding to the 


missing entries. Finally, the correct syntax tree resulting from the modification will be 


further processed to initialize the relation. The example below is used to explain this 


procedure. 


 


Note that in the parsing time, only tags <.tuple> and </.tuple> can be used to 


separate tuples. When <.tuple> and </.tuple> are missing, entries are added to the 


same tuple. In order to clarify this explanation, the relation EmployeeInfo shown in 


chapter 3.1.1 was taken as an example. Firstly, the syntax tree corresponding to the 


semi-structured input of the relation EmployeeInfo, generated by the parser, is illustrated 


in Figure 4.3.1 below. It is clear from the figure that the resulting syntax tree of 


EmployeeInfo initialization has only two tuples since only one pair of <.tuple> and 


</.tuple> is includ 







 
Figure 4.3.1. The tree created by parser for the initialization of EmployeeInfo 


 


As declared before, since semi-structured data is self-describing, information of domains 


to be defined is in the input of a relation initialization, and entry missing is also allowed. 


Hence, during the parser time, all information, including the domain names and its 


defined types except for their values, have been saved in the syntax tree. In the syntax 


trees created by parser for semi-structured data inputs, the field name in nodes is used to 


store domain names. And if there is information about the defined types of domains, the 


defined types are also stored in the name field as a whole string with domain names 


instead of null. For example, parsing  


<employeeName type = strg>Ban</employeeName>  


results in a node with “employeeName type = strg”.  


 


After passing the whole syntax tree to Interpret class, extra steps are carried out to further 
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modify the syntax tree to be processed. The modifications include adding nodes that are 


corresponding to the entries that have been missed in the input (the value for the missing 


entries is set to be dc) and correctly group the entries to tuples. The XMLInitialization 


function is used to implement these modifications. For the relation EmployeeInfo 


initialization, the tree further modified by the function is shown below:  


 
Figure 4.3.2. The tree modified for the initialization of EmployeeInfo 


 


Before processing the tree correctly corresponding to the initialization data, new domains 


in the input must be declared. XmlDomInfo class is created to contain the names and the 


types of the domains being declared. XmlRelInfo class is introduced to save the domain 


list of a relation. In the case of the initialization of the relation EmployeeInfo, by 


traversing the tree passed from parser, the information of all domains and the domain lists 


of all relations can be obtained (Shown in Figure 4.3.3).   
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Figure 4.3.3. The domain information of EmployeeInfo 


 


Instead of going back to the parser again, domain declaration trees corresponding to 


“domain employeeName strg;”, “domain Id strg;”, “domain teleNum intg;”, “domain 


FaxNum intg;”, “domain cell intg” and “domain otherContactInfo(FaxNum,cell);” are 


created. The function executeDaclaration is then invoked to declare all these domains.  


 


After declaring all domains, the tree which correctly corresponds to the initialization data 


will be processed to initialize the relation.  


 


4.4 Implementation of Inputting Data From a File 
To declare and initialize a relation using the data in a file, firstly the data is retrieved from 


the file. The data in the format of “String” is then combined with the relation name to 


produce a new input string that is acceptable to JRelix. The Parser Class is subsequently 


invoked to parse the new input string, and finally the syntax tree corresponding the new 


input is processed by Interpreter to initialize the relation. A small example is presented 


below to explain the process.  
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4.5 Implementation of Recursive Nesting 
The current implementation of JRelix requires that the attributes on which a new nested 


attribute is defined must already be defined. Recursively defined nested attributes are not 


allowed. Hence, to implement recursive nesting, firstly of all, the recursive definition of 


domains [e.g domain N(A, N)] must be accepted. Modifications are made to the method 


lookupDom( ) in the Environment class to allow the recursive definition of domains.  


 


Secondly, careful modifications are made to the method RelationalInitialization ( ) in 


the Interpreter class, which is used to initialize a relation. To keep the hierarchical 


structure of recursive nested relations, the number of levels of the recursive nested 


relations are recorded when the relations are initialized. As I mentioned in the last 


chapter, hashtable is used in the current system to save the data of relations. The key of 


the reltable is relation names, hence a duplicate name is not allowed in the table. So, the 


recursive relation names on each recursive level have been changed according the 


current level value. Furthermore, after a relation initialization the recursive domain 


names in the relations on all recursive levels have also been modified according to the 


recursive level values. The source code that implements this function is added to the 
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method RelationalDeclaration() in the Interpreter class. 


 


Take the recursive nested relation R(A,N), which contains the recursive domain N, as an 


example. Suppose R has 4 levels, then after the initialization of the relation R, four 


relations, as illustrated below, that have been created:   


 


R(A,N)  
.N(A,N_0) 
.N_0(A, N_1)  
.N_1( A,N_2)  
.N_2( A,N_3)  


 


Note that the type of domains N, N_0, N_1,N_2 is IDLIST, while the type of domain 


N_3 is a LONG and is used to stop the chain of DAG. However, compared to 


non-recursive domains, the types of the recursive domains should be changed when 


another relation, which contains the same recursive domain N, is to be initialized. For 


instance, another relation Q(B,N), where the recursive level of N is more than 4, is 


initialized after the initialization of the relation R. In the situation, after the initialization 


of relation Q, the domain type of N_3 is changed to IDLIST from LONG.. The 


modification of recursive domain types is implemented by functions putRecurDom in 


the Environment class and rmRecurDom in the domTable class. 


 


An advantage of this implementation is that operations on non-recursive nesting will 


still work on the recursive nesting, since the recursive nesting retains the exactly the 


same structure as the non-recursive nesting. However, it is not necessary for users to 


find values of recursive levels and use the different relation names on different recursive 


levels to query recursively nested relations. In queries that concern the recursive nesting 


relations users can simply use the recursive domain name at any level. For example, the 


queries:  


RN<-[red ujoin of [red ujoin of N] in N] in R;  


RA<-[red ujoin of [red ujoin of [A] in N] in N] in R;  


etc. are acceptable. To allow the queries, modifications are made to the syntax trees, 


generated from the queries by parser. The modification is simple: change the names of 
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Identifier nodes that carry the name of the same recursive relation name to 


corresponding recursive relation names before implementating operations. Figure 4.4.1 


presents a clearer explanation. 


  


 
  Figure 4.4.1. An example of the queries involved in the recursive nesting relation 


 


It must be noted that in recursive nesting, the recursive loop will not terminate until the 


null value, dc, is found.  


 


4.6 Implementation of Path Expression Operator 
In the current JRelix system, the vertical operation red ujoin of is used for level-lifting 


in nested relations. For example, the query  


Address<-[red ujoin of otherContactInfo] in EmployeeInfo;  


accomplishes the raising of otherContactInfo, the nested attribute of the relation 


EmployeeInfo, to the relation EmployeeInfo. Using the operator “/”, the path operator 


will turn this into  


Address<- EmployeeInfo /otherContactInfo;  
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To implement the path operator, firstly the parser should recognize the command with 


the path operator “/’ and build up the corresponding syntax trees for level lifting. 


Obviously, syntax trees for path operator are the same as the trees translated from the 


red ujoin of operation. However, “/” is used as the division operator in the current 


JRelix system. The path operator is overloaded. For example, for the query  


let p be R/A; 


where the “/” could be a division operator or a path operator. In order to check whether it 


is a path operator or a division operator, the function lookupDom in Environment class is 


called. If R is a relation and contains a domain A, “/” is a path operator; otherwise it is a 


division operator. Then the syntax trees corresponding to the path operator or division 


operator are built up.  


 


To take fuller advantage of path operator, the last component of path operator query can 


either be a relation name or a domain name. Given the example relation EmployeeInfo, 


to project its domain employeeName from relation EmployeeInfo, we can simply use the 


expression 


    Ename<- EmployeeInfo/employeeName;  


In this case, the syntax trees passed from parser to interpreter should be further modified. 


Firstly, the type of the last attribute is determined and the syntax tree passed from the 


Parser is then modified before being further processed if the last attribute is a domain, 


not a relation. The function sugarInProject in Interpreter class implements the 


operations. The following figure shows how the trees change if the last component of a 


path expression is a domain name. In the example, since employeeName is a domain, the 


syntax tree passed from the parser from the query EmployeeInfo/employeeName is 


modified by the method sugarInProject before being processed. If the last component in 


the path expression EmployeeInfo/otherContactInfo is a relation’s name, the tree is 


processed directly without any modification.  
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          Figure 4.5.1 An example of trees modification for the path expression 


 


As mentioned in previous chapter, path expression operator may be used in any part of a 


regular T-selector. In this case, the trees passed to the Interpreter are modified to their 


correct forms in order to enable further processing. For example, the query  


street/cname in company/address; 


(the structure of the relation company is shown in Figure 4.5.2) contains a path operator 


in both projection and expression. The syntax tree translated from the query will be 


modified, resulting in a tree corresponding to the query:  


[cname] in company/address/street;  


before being further processed in the Interpret class. Furthermore, as declared in the 


previous chapter, the path operator may also be used in selection, for example, the query  


[cname] where address/city ="Montreal" in company;  


contains a path operator in its selection. In this situation, the syntax tree, modified from 


the tree passed from parser and being further processed to accomplish this query, 


corresponds to the query below,     
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[cname] where ([] where city = "Montreal" in address) in company;  


 


The codes to implement these functions are used in the method sugarInProject().    


 


  
Figure 4.5.2. The relation company  


 


4.7 Implementation of Expression Operators “*”, “+”, “.”  
and “?” 


In order to implement the operators “*”, “+”,”.” and ”?”, the subsets of queries that 


contain the expression operators are stored in the syntax trees built up by the parser. For 


example, the syntax tree for the query  


   R(/N)*/A;  


built up by the parser contains a node with name (N)*. Then, in Interpreter class, 


significant modifications to the trees are required before further processing. The reason to 


implement this way is: to build up correct syntax trees, parser should get all information 


about the recursive nesting relations on that queries with which the operators are. 


However, it might be hard for the parser to get all the information.  


  


First of all, in Interpreter the function searchSTAR is invoked before process syntax trees 


are passed from parser, to check whether there are expression operators in any node of 


the trees. If there are such operators in the trees, function modifyNodeForKSTAR is then 


celled to make necessary modifications to the trees.  


 


For example, suppose N is a recursively nested domain that contains the attributes A and 


B. R(/N)*/A should be solved by lifting the attribute A in the nested attributes N at all 
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recursive levels to the top level relation R and ujoin them, as illustrated in Figure 4.6.1.  


 


 
Figure 4.6.1. An example of Kleene Star operator   


 


The figure 4.6.2 below shows the modification made to the original tree of R(/N)*/A 


before further processing.   


 


 
 


Figure 4.6.2. The original and final tree of R(/N)*/A 
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As mentioned in the previous chapter, the Kleene star “*” can be used in any part of a 


regular T-selector. An example for Kleene star in selection is shown in Figure 4.6.2.  


 
Figure 4.6.3. Kleene Star in Selection  


 


The figure 4.6.4 below shows the modification made to the original tree of the query [B] 


where (N/)*A=value in R before further processing.   


 


 
Figure 4.6.4. The original tree and final tree of query [B] where (N/)*A=value in R 
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It is more complicated if the Kleene star occurs in both projection and selection. Figure 


4.6.3 illustrates an example of this case.   


 
              Figure 4.6.5. Kleene Star in projection and selection  


 


For the case R/.*/A or R/*/A, extra steps to find all relations, regardless of level, 


containing the attribute A are required. The nestDomsA is created to handle this case. The 


example relation dept (Figure 4.6.4) used in the previous chapter is taken to illustrate this 


case in Figure 4.6.5.  


 


  
 


                      Figure 4.6.6. The relation dept 
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         Figure 4.6.7. Projection of an attribute from all levels  


 


The most popular queries using the operator “*” are presented above. Operator “+” is 


almost the same as the “*”. The only difference between them is that for the queries with 


the operator “+”, the top-level relation is ignored. The final trees modified from the 


original tree passed from the passer will be processed to accomplish the queries.  


 


For the dot operator “.”, search steps are also required to find the relations that satisfy 


specific conditions which are specified in queries. For example, the query  


  dept/(././)dname; 


will be accomplished in this way: first, all relations, which are two-levels below the 


relation dept and contain the attribute dname, should be found. Subsequently, the syntax 


trees, corresponding to ujoin and projection of the attribute dname from these relations, is 


generated by modifying the tree passed from the parser, which has a node with the name 


(././). The new method withoutRelName() is created to accomplish these functions. Finally, 


the modified tree will be further processed in order to answer to the query.     


 
The new method modifyNodeForQuestionMarker() is involved in the implementation of 


the question mark operator “?”. The implementation policy for “?” is not complicated. 


Firstly, find whether the answer to the “?” is yes or no. If the answer is no, a warning will 


be given. If the answer is yes, then modifications to trees passed from the parser are 


required, since the original trees translated by parser contain the node which name is (..)? 
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and can not be processed. Take the query 


dept/(contact/addres/)? dname;  


as a example. In the function modifyNodeForQuestionMarker, firstly it is found that 


dept/contact/address contains a attribute dname, subsequently, the syntax tree 


corresponding to the query  


    dept/contact/addres/ dname; 


is generated by modifying the syntax tree passed from parser. The result of the query will 


be given after processing the modified syntax tree.  


 


Due to their complexity, not all original trees and final trees in the examples are 


illustrated in this section.  
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Chapter 5  


 


Summary and Future Work  


 
In this project, the design and implementation of some new features of JRelix, including 


semi-structured data loading, recursive nesting and improved query path expression and 


regular expression operators were described. In the implementation of these new features, 


the syntax of the former JRelix was used where it is possible. The new features are 


summarized below:  


 


·Acceptance of semi-structured data loading makes data loading for relation 


initialization more convenient in JRelix. To simply the edition of relation loading data, 


the data can be edited in a file and saved as a .txt file. The relation can then be declared 


and initialized by the data in the file.  


· The syntax for the semi-structured data input is similar to XML. The types of the 


domains in the relations to be initialized by a semi-structured data input are specified in 


the input data. While loading data some entries can be missed and in this situation the 


null values (dc) are added for the missing entries.  


· To support recursive nesting, recursively defined nested attributes are now 


permitted After the relations containing a recursively defined domain are initialized, the 


modifications to the names of the nested relations created in the initialization are 


performed to indicate the hierarchical structure of the relations. The advantage of the 


implementation is that operations on non-recursive nesting can still work on the recursive 


nesting, 


· Regular expression operators (“*”, “+”, “.”, “?”) have been implemented to 


query relations with a recursively nested domain.  


· In addition, path expression operator, which is likely to be frequently used in 
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querying nested relations, has been implemented as a shorthand by using the / operator.  


 


So far, only the major functions of these new features have been implemented. There is 


further work to be done to refine the implementation.    


· To date, only semi-structured data loading is accepted. Query results can be 


output as semi-structured data by further implementations. In addition, further work on 


semi-structured data queries may be explored.  


· Further implementations on the regular expression operators, which includes   


combination of these operators, additions of “or” operator ( | ) and etc, will improve the 


queries with the expression operators.   


       · Union type, which allows attributes alter their types, could be implemented 


with further work, permitting an attribute to have more than one type.      
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