Copyright ©1998 Timothy Howard Merrett
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and full citation in a prominent place. Copyright for components of this work owned by others than T. H. Merrett must be honoured. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or fee. Request permission to republish from: T. H. Merrett, School of Computer Science, McGill University, fax 514 398 3883.

The author gratefully acknowledges support from the taxpayers of Québec and of Canada who have paid his salary and research grants while this work was developed at McGill University, and from his students (who built the implementations and investigated the data structures and algorithms) and their funding agencies.

T. H. Merrett ©98/10
Degeneracy in Binary Trees

1. Ideal \((h = \log_2 N)\)

2. Degenerate \((h = N)\)

T. H. Merrett
3. Actual ($h = 2\ln N$, expected)

We need balance.

Can we satisfy these rules? Given a maximum fanout, f:

- The root has at least two subtrees (unless it is a leaf).

- Every node (apart from root or leaf) has s subtrees, $f/2 \leq s \leq f$.

- All leaves are on the same level.
B-Tree

1. 0 [A B]

2. 2 [B D]
 0 [A C] 1 [C D]

3. 0 [A C] 1 [C D] 2 [B D] 3 [E F]

4. 2 [B D] 6 [D F]
 0 [A C] 1 [C D] 3 [E F] 4 [G H]

5. 2 [B D] 6 [D F] 3 [F H]

Java

RandomAccessFile btreed = new RandomAccessFile("bTree","r");
btreed.seek(loc*(f*4 + (f-1)*recordSize));

T. H. Merrett
B-Tree with Full Records

4 \(\text{PR H} \)

2 \(\text{NYC N} \)

1 \(\text{GNS E} \)

3 \(\text{L&S E} \)

5 \(\text{NYC H} \)

6 \(\text{B&O H} \)

7 \(\text{GTRC N} \)

8 \(\text{GNS E} \)

T. H. Merrett
Splitting a Node of a B-tree

The diagram illustrates a B-tree node being split. The node contains values from $p_0, k_{p}, p_1, \ldots, k_{[f/2]-1}, p_{[f/2]-1}$ to $k_{[f/2]}^t, k_{[f/2]+1}^t, \ldots, k_f^t, p_f$. When the node is split, p moves to the parent node, the original node becomes the left node, and a new right node is created with the split values.

T. H. Merrett

©98/9
B-Tree Improvements

1. B*-Tree \((2 \rightarrow 3\) splits: at least \(\sim 2/3\) full)

\(2f\) keys in 2 nodes and parent; put in 3 nodes, moving up keys \(\lfloor 2f/3\rfloor\) and \(\lceil 4f/3\rceil\) \(f = 3\)

1. \(0\) \(A\) \(B\)

2. \(2\) \(B\)

\(0\) \(A\) \(1\) \(C\) \(D\)

3. \(2\) \(C\)

\(0\) \(A\) \(B\) \(1\) \(D\) \(E\)

4. \(2\) \(B\) \(D\)

\(0\) \(A\) \(1\) \(C\) \(3\) \(E\) \(F\)

5. \(2\) \(B\) \(E\)

\(0\) \(A\) \(1\) \(C\) \(D\) \(3\) \(F\) \(G\)

6,7,8.

\(6\) \(D\)

\(0\) \(A\) \(1\) \(C\) \(3\) \(E\) \(4\) \(G\) \(7\) \(I\) \(J\)

T. H. Merrett

©98/9
2. Inhomogeneous B-Tree
Decrease height (hence cost) by increasing fanout (but without changing bytes/block), for a given number of records.

\[f = 5 \]

\(a \) (3 bytes) is the key for record \(A \) (10 bytes) etc.
B-Trees: Activity, Volatility, and Symmetry

Volatility lo hi
Symmetry √ ×
Activity √ √:

If $|\text{RAM}| = O(\log N)$ then retrieve each needed page only once for any level of activity. E.g., above, 4 buffers can fit into RAM.

T. H. Merrett

©98/9
Cost Analysis of B-Trees

<table>
<thead>
<tr>
<th>Level</th>
<th>No. Nodes</th>
<th>No. Records</th>
<th>No. Nodes</th>
<th>No. Records</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>$f - 1$</td>
<td>1</td>
<td>$[\frac{f}{2}] - 1$</td>
</tr>
<tr>
<td>1</td>
<td>f</td>
<td>$f - 1$</td>
<td>2</td>
<td>$[\frac{f}{2}] - 1$</td>
</tr>
<tr>
<td>2</td>
<td>f^2</td>
<td>$f - 1$</td>
<td>2$[\frac{f}{2}]$</td>
<td>$[\frac{f}{2}] - 1$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>$h - 1$</td>
<td>f^{h-1}</td>
<td>$f - 1$</td>
<td>2$[\frac{f}{2}]^{h-2}$</td>
<td>$[\frac{f}{2}] - 1$</td>
</tr>
</tbody>
</table>

(best case)

$$N = (f - 1)(1 + f + f^2 + ... + f^{h-1}) = f^h - 1$$

(worst case)

$$N = 1 + 2(f_2 - 1)(1 + f_2 + ... + f_2^{h-2}) = 2 * f_2^{h-1} - 1$$

where $f_2 = [\frac{f}{2}]$.

$$\log_f N + 1 \leq h \leq 1 + \log_{[\frac{f}{2}]}(N + 1)/2$$

T. H. Merrett
Cost Analysis of φ-ary Trees

<table>
<thead>
<tr>
<th>Level</th>
<th>No. Nodes</th>
<th>No. Accesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>φ</td>
<td>2φ</td>
</tr>
<tr>
<td>2</td>
<td>φ²</td>
<td>3φ²</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>h − 1</td>
<td>φ^{h−1}</td>
<td>hφ^{h−1}</td>
</tr>
</tbody>
</table>

total nodes = \(1 + φ + φ^2 + \ldots + φ^{h−1} = \frac{φ^{h−1}}{φ−1} \)

total accesses = \(1 + 2φ + 3φ^2 + \ldots + hφ^{h−1} \)

Note that \((k + 1)φ^k = \frac{d}{dφ}φ^{k+1} \)

So total accesses = \(\frac{d}{dφ}φ^{h−1} = \frac{hφ^{h+1}−(h+1)φ^{h}+1}{(φ−1)^2} \)

average accesses = total accesses / total nodes

Special cases:

- binary tree (φ = 2)

 average accesses = \(\frac{(h−1)2^h+1}{2^{h−1}} \approx h − 1 \)

- large φ

 average accesses \(\approx \frac{hφ^{h−1}}{φ^{h−1}} = h \)

So expected depth of search is \(h − 1 \) for binary tree; and \(h \), effectively, for anything else.

T. H. Merrett
Text and PATRICIA

1) Truncated Trie 2) PATRICIA Trie

Sample “text”:
mocha : 1110110101110111011000111110100011100001
with “starts” every eight bits.

Note that pointers alone, to each byte of a 100 Mb text, would occupy 4 times the size of the text: text indexes are big.

Using PATRICIA tries, stored 1 bit per node, and simple tricks, a byte-by-byte text index can be reduced to 2.7 times the text size. (Word-by-word: 0.7 times.)

Not only any substring but also arbitrary regular expressions can be found.

T. H. Merrett
Volatility—Updating Tries

Adding 00101111

T. H. Merrett
Updating Tries

Adding 10001010

N.B. t node levels per page level; $\geq 2^t - 1$ nodes per page

Adding 01011010

T. H. Merrett
Updating Tries

Deleting 10001000

T = 0
B = 0
Symmetry

kd-Trees (2d-Tree)

T. H. Merrett
kd-Tries (2d-Trie)

Bit interleaving, e.g.: $(6,5) = (110,101) \Rightarrow 111001$

T. H. Merrett
Orthogonal Range Queries

b) partial range; c) exact match; d) partial match

T. H. Merrett
ORQ with Z-Order
(also applies to kd-tries)

a) 1 probe, 1 scan
b,c) 2 probes, 2 scans;
or 1 probe, 1 scan with extraneous reads
d) 4 probes, 4 scans; or ..

T. H. Merrett